# Available online at www.vurup.sk/pc Petroleum & Coal <u>51</u> (2) 70-74, 2009

# A PRELIMINARY UNDERSTANDING OF THE GAS-LIQUID REACTION BETWEEN SO<sub>2</sub>, NOX CONTANING GAS AND HETEROPOLY COMPOUND SOLUTION

Rui Wang\*, Gaofei Zhang, Luming Qiu, Haixia Zhao

School of Environmental Science & Engineering, Shandong University, Jinan, 250100, China, Email: ree\_wong@hotmail.com

Received January 1, 2009, accepted April 15, 2009

## Abstract

A primary investigation on the characteristics of the gas-liquid reaction between  $SO_2$ ,  $NO_x$  from gas stream and the aqueous solution of heteropoly compound was conducted, from which the main factors affecting the process were figured out. These include the concentration and composition of the absorbent solution, temperature, the presence of  $O_2$  in the gas stream, as well as the residence time of the gas in the scrubber.

Keywords: desulfurization; denitrification; flue gas; heteropoly compound.

# 1. Introduction

The emission of  $SO_2$  and  $NO_x$  from fuel combustion process has long been an environmental problem, attracting worldwide researchers. Treatment for them is an important step in controlling and preventing atmospheric pollution. Many methods have been developed to date for the separate removal of SO<sub>2</sub> and NO<sub>x</sub>. SO<sub>2</sub> removal includes dry adsorption method and wet absorption method. At present, dry method has not been widely used due to its limited sulfur loading capacity. Most desulfurization processes industrialized are wet absorption methods, especially the wet Ca(OH)<sub>2</sub> slurry absorption methods with different modifications<sup>[1,2]</sup>. The wet  $Ca(OH)_2$  slurry absorption method is quite effective for SO<sub>2</sub> removal, but the solid waste disposal and the high capital investment and expensive operation cost of this method is still an unresolved problem, which has already confined its application. As to the removal of  $NO_x$ , i.e. NO and  $NO_2$ , wet absorption methods using alkalis are practically ineffective, owing to the fact that NO, the predominant component of  $NO_{x_i}$  is insoluble in water. In view of the oxidation property of NO<sub>x</sub>, reduction methods are often considered, including the selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)<sup>[3]</sup>. At present, both SCR and SNCR have advanced to the point of commercial application. The SCR process relies on reduction by ammonia in the presence of a catalyst to convert NO and NO<sub>2</sub> to  $N_2$  and water vapor. Approximately 80%~90% NO<sub>x</sub> reduction appears feasible with SCR. The SNCR process directly reduces  $NO_x$  to  $N_2$  by the injection of  $NH_3$  or urea without catalyst at a temperature higher than SCR. The reduction of NO<sub>x</sub> in SNCR process is around 50%~60%. Before widespread application occurs, the high investment and operation cost of SCR and SNCR, together with several technical issues of both still require resolution. These technical issues include ammonia leaking which may cause secondary pollution, by-product formation and its subsequent impact on downstream equipment, and the disposal of liquid and solid waste. Combined  $SO_2/NO_x$  removal processes remain considered fairly complex and costly. However, emerging technologies have the potential to reduce  $SO_2$  and  $NO_x$  emissions for less than the combined cost of conventional FGD for  $SO_2$  control and SCR for  $NO_x$  control. Most processes are in the development stage, although some processes are commercially used on low to medium-sulphur coal-fired plants.

In view of the reversible redox property and good chemical stability of heteropoly compound (HPC), using the aqueous solution of  $H_3PMo_{12}O_{40}$  (abbr. to HPMo), a new method of simultaneous removal of  $SO_2$  and  $NO_x$  from gas stream was developed. This method, taking HPMo solution as medium for electron transfer, enables in nature the redox reaction between  $SO_2$  and  $NO_x$  under ambient conditions.

## 2. Material and Methods

Two cylinder-shaped glass gas scrubbers ( i.d.: 2.5cm) with multiorifice-plate (hole diameter:  $50 \sim 70 \mu$ m) at the bottom of which, containing equal volume of absorbent solution, were used in series to investigate the macrokinetic behaviors of the absorbent solution. The experimental data gained are the SO<sub>2</sub> and NO<sub>x</sub> concentrations in the outlet gas stream. The feed gas stream with constant concentrations of SO<sub>2</sub> and NO<sub>x</sub>, flowing at the rate of 0.5L/min, was prepared by mixing three gas streams of dilute SO<sub>2</sub>, dilute NO<sub>x</sub> and pure nitrogen after passing through mass flow controllers. The original gases of SO<sub>2</sub>, NO and NO<sub>2</sub> were commercial available, all with a purity of 99.97% or higher. The concentrations of SO<sub>2</sub> and NO<sub>x</sub> were analyzed with TH-990S digital flue gas detector. With the aid of NMR Analyzer (AMX 400, Bruker, Germany), P-31 NMR spectra were used to characterize the HPMo solution before and after using for the removal of SO<sub>2</sub> and NO<sub>x</sub>. All chemicals used were of reagent grade and deionized water was used throughout.

#### 3. Results and Discussion

During the process of SO<sub>2</sub> and NO<sub>x</sub> removal by HPMo solution, HPMo undergoes two successive transformations, i.e. from HPMo(VI) to HPMo(V) as a result of the reduction by SO<sub>2</sub>, and from HPMo(V) to HPMo(VI) resulting from the subsequent oxidation by NO<sub>x</sub>. Ideally, for the sustainment of the whole process, it is necessary that HPMo remain unchanged after the reduction-oxidation cycle. The feasibility of such process was confirmed through comparison of the P-31 NMR spectra (D<sub>2</sub>O as external lock, 85% H<sub>3</sub>PO<sub>4</sub> as external reference) of the fresh HPMo solution (0.09619mol/L) and that with same concentration but having been used for the absorption of SO<sub>2</sub> and NO<sub>x</sub> in series. The main chemical shift of the fresh HPMo emerges at -1.62ppm, with three others at 0.63ppm, 1.70ppm and -0.89ppm corresponding to H<sub>3</sub>PO<sub>4</sub> and other two minor impurities. A P-31 NMR spectrum with identical shape and location was found for the used HPMo solution, indicating that, subjecting to reactions with SO<sub>2</sub> and NO<sub>x</sub>, HPMo remains unchanged.

Conversions to  $SO_2$  and  $NO_x$  can reach upto 96% and 85% respectively corresponding to the following conditions:  $[SO_2]=1720 \text{ mg/Nm}^3$ ,  $NO_x/SO_2 = 1:1(v/v)$ ;  $[O_2]=10\%(v/v)$ ; gas rate: 0.40L/min; HPMo: 120mL, 2×10<sup>-2</sup>mol/L, pH=5.3; T=25°C; absorption time: 30min. The performance of HPMo solution absorbent system depends considerably on its concentration. Increasing HPMo concentration from  $5 \times 10^{-3}$  mol/L to  $2 \times 10^{-2}$  mol/L while other factors keep constant, conversions to  $SO_2$  and  $NO_x$  can increase from 92% to 96% and from 71% to 85%, respectively. Evidently, compared to single HPMo, the absorbent system comprising ascorbic acid (abbr. to Vc) as additive is superior (Figure 1). The high efficiency of the Vc containing system lies in the coexistance of HPMo(VI) and HPMo(V), which enables the simultaneous removal of SO<sub>2</sub> and NO<sub>x</sub> throughout the process. In the system of single HPMo, the HPMo(V), which is more effective for  $NO_x$  removal, is generated subsequent to the removal of  $SO_2$ . Hence, the removal efficiency of  $NO_x$  is lower. The optimal HPMo/Vc molar ratio was found to be 3: 1. The process efficiency of combined removal of SO<sub>2</sub> and NO<sub>x</sub> by HPMo decreases distinctly with an increase in absorption temperature, this is due predominantly to the effect of solubility limitation caused by the temperature increase. As a whole, ambient temperature is favorable to the process.



Figure 1 A comparison of the conversions of  $\mathrm{SO}_2$  and  $\mathrm{NO}_{\mathsf{x}}$  with and without Vc in the HPMo solution

 $[SO_2]=1720 \text{ mg/Nm}^3, NO_x/SO_2 = 1:1(v/v); [O_2]=5\%(v/v); gas rate: 0.40L/min; H_3PMo_{12}O_{40}: 120mL, 2×10^{-3}mol/L, pH=5.5; [Vc]=10g/L; T=25°C; absorption time: 30min. O_2 is an actual component in the flue gases. It was found that, with the increase of O_2 concentration, the removal of NO_x is enhanced considerably, but the removal of SO_2 falls distinctly. The presence of higher concentration O_2 will lower the solubility of SO_2 in solution, if such effect is predominant, the removal of SO_2 will decrease accordingly. That is the case in our experiments. The NO_x used is a mixture of NO_2 and NO. As NO can be easily oxidized into NO_2 by O_2, and NO_2 is quite active in the reaction with HPMo, it is natural that a net effect in the improvement of the denitrification process should appear$ 

in the presence of  $O_2$ .

For a gas-liquid chemical reaction, residence time of the feed gas determines the extent of the reaction and therefore requires special attention. From the results listed in Table 1, it can be seen that the removal of  $NO_x$  is enhanced significantly as the residence time increases, however, a slight enhancement on the removal of  $SO_2$  can be found, suggesting the absorption process for  $SO_2$  removal is faster than the absorption process for  $NO_x$  removal. The favorable residence time of the feed gas is ca. 38.5s.

| Conversion, %*  | Residence time, sec. |      |      |
|-----------------|----------------------|------|------|
|                 | 30.0                 | 38.5 | 51.0 |
| SO <sub>2</sub> | 81.8                 | 82.7 | 83.0 |
| NO <sub>x</sub> | 38.5                 | 51.1 | 53.9 |

Table 1 The effect of residence time of the feed gas

\*[SO<sub>2</sub>]=1720 mg/Nm<sup>3</sup>, NO<sub>x</sub>/SO<sub>2</sub> = 1:1(v/v); [O<sub>2</sub>]=10%(v/v); HPMo: 120mL, 2×10<sup>-3</sup>mol/L, pH=5.5; T=25°C; absorption time: 30min.

# Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant 20206006) is gratefully acknowledged.

**Note:** Owing to the equal contributions that Gaofei Zhang and Luming Qiu have made to this work, they share equal second authorship of this paper.

#### References

- [1] Riesenfield, F. C. and Kohl, A. L.: *Gas Purification*, 3<sup>rd</sup> edition, Gulf Publishing Co., New York, 1979.
- [2] Dalrymple, A. and Trofe, T. W.:. Chem. Eng. Prog., 85, 43-50, (1989).
- [3] Miller, M. J.:. Environ. Prog., 5, 171-177, (1986).