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Abstract 
This review illustrates the most recent improvements and implementations of ANN in characterizing 
reservoirs in different regions for faster understanding of young petroleum geoscientists and engineers 
in the industry. Artificial Neural Networks (ANNs), one of the AI tools, has been effectively employed 
in several domains and has also gained popularity in reservoir characterization. Reservoir 
characterization is the act of creating a reservoir model based on its characteristics that are important 
to its capability to produce and store hydrocarbons with respect to fluid flow. The reservoir 
characterization domain is tricky because of the high complexity of non-linear data and ambiguity in 
data and modelling. The major objective of ANN application is to integrate obtained data from various 
geological, geophysical, petrophysical sources in reservoir characterization by identifying the complex 
non-linear correlation of input data. This work serves as an insight of the current implementation of 
ANN in the industry, which encourages more innovative intelligence systems that could accelerate the 
improvements of reservoir characterization evaluation protocols. 
Keywords: Artificial Neural Network (ANN); Reservoir characterization; Reservoir properties; Seismic data; 
Well log data. 

1. Introduction

Reservoir characterization is a procedure that combines all the available field data from
various data sources to determine different reservoir properties in spatial variability quantita-
tively [1]. Understanding the reservoirs enables maximum optimization of their lifetime per-
formance, which requires an integrated thorough reservoir study. Seismic, well logs and core 
data are the most key data sources in this domain. Several studies demonstrated successful 
implementation of seismic attributes in the estimation of reservoir properties [2]. The primary 
challenge is to define the relationship between wavelet morphology and lithological changes. 
Likewise, core data has been efficiently correlated with well log data to evaluate reservoir 
characteristics [3]. Well log data has a small coverage area with high resolution. In contrast, 
seismic data has a big coverage area of very low resolution. Core data has the highest reso-
lution and contains the most reliable information; however, it is constrained in availability due 
to its high cost. The integration of these different data types leads to a more efficient reservoir 
characterization process. Data integration from multiple sources may necessitate that the 
sources should be in the same domain (time or depth) [4]. 

The core data and well logs are recorded in terms of depth, whereas seismic data is rec-
orded in terms of time. They must be put under a common domain before data from different 
sources is implemented for reservoir characterization. Well-tie is an example process to bring 
different data in time and depth into the same domain. This method is commonly used by 
comparing the real seismic trace at a well as precisely as possible with the synthetic trace 
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created in the well [5]. However, geophysical data from numerous sources exhibit various 
characteristics, including sampling rate, frequency, and information quality variations. To 
manage such differences, signal processing techniques such as interpolation and regulariza-
tion are widely used.  

Over the years, the application of Artificial Neural Network (ANN) in reservoir characteriza-
tion was proved to be reliable. ANN can integrate different types of data efficiently, and model 
complex non-linear functions [6]. The major objective of this approach is to integrate obtained 
data from various geological, geophysical, petrophysical sources in reservoir characterization 
by identifying the complex non-linear correlation of this input data [7]. This technique is well-
fitting to deal with the data diversity and the associated scales and deliver efficient solutions 
for various complexity issues [8]. ANN demonstrated better modelling capability and overcame 
the constraints by integrating with other soft computing methods [9]. 

This review paper shows a structured brief review of ANN application in the reservoir char-
acterization domain for the last ten years. The key focus of this work is on the broadly adopted 
approach, ANN, and its changes in terms of learning, architecture, and integration with other 
soft computational methods.  

2. An overview of Artificial Neural Networks (ANNs) 

 
Figure 1. A schematic diagram of a basic ANN 
model 

ANN is inspired by biological learning pro-
cedures in human brain [10]. A human brain 
is a very complex and non-linear system. It 
can solve many kinds of problems, such as 
pattern recognition, perception faster than a 
computer. It consists of neurons that be-
come stronger when they learn something 
new. Each unit does a relatively easy job: it 
receives input from its neighbors or external 
sources and uses it to compute an output 
signal, which is then propagated to other 
units [11]. Figure 1 shows the architecture of 
a basic ANN model. ANN is a buildup of highly 
connected processing components called 
neurons like biological neurons. 

Firstly, the training step of ANN is performed to identify the pattern between the input and 
output data. A collection of paired inputs and outputs is fed into the network for ANN training. 
The input data is routed through nodes connected by links and determine the interconnected 
weighting factors. Once the training is complete, ANN must be validated to ensure the accu-
racy of synthetic results before being applied to new data. If the validation outcome is inac-
curate, the ANN is trained again [12]. After achieving successful validation performance, the 
trained network will produce synthetic numerical values for unpaired input data based on the 
patterns learned through training [13]. The benefit of using ANN is that synthetic outcomes are 
produced quickly and accurately for big datasets that would otherwise be interpreted manually.  

3. Application of ANN network in reservoir characterization 

Reservoir characterization implies determining petrophysical properties, like porosity, water 
saturation, permeability, and sand fractions, of the subsurface, which primarily indicate the 
presence of hydrocarbon [14]. Because of the heterogeneous nature of the earth's subsurface, 
estimating these reservoir properties is a challenging task.  

The reservoir characterization domain is further tricky by the fact that the methodology 
must not only deal with high-complexity non-linear data but also with ambiguity in data and 
modelling [15]. The seismic data is the easy target for background noise [16]. The statistical 
relationships between the input seismic data and estimated reservoir properties are compli-
cated and differ from location to location. Similarly, the relationships between well logs are 

229



Petroleum and Coal 

                          Pet Coal (2022); 64(2): 228-242 
ISSN 1337-7027 an open access journal 

highly complex [17]. Therefore, traditional methods such as linear regression may not effec-
tively identify a significant relationship in the problem. 

ANN can approximate any complex function using a sufficient number of computing features 
with the required accuracy [6]. The benefit of using ANN is that synthetic outcomes are pro-
duced quickly and accurately for big datasets that would otherwise be interpreted manually 
[12]. ANN is widely used in reservoir characterization by researchers worldwide to predict dif-
ferent petrophysical properties and well logs, lithofacies classification, seismic data noise at-
tenuation, automatic seismic data interpretation [8]. 

The overall categorization of the survey is illustrated in Figure 2. A review on the 25 recent 
studies has been conducted as presented in Table 1. 

 
Figure 1. ANN model types in reservoir characterization domain 

This table comprises the reviewed articles on ANN application in the reservoir characteri-
zation domain for the last ten years. The focus of the summary is on discussing various ANN 
models, including an overview of the widely used learning algorithms and their application 
domains.  

Table 1. The summary of brief review on ANN models in reservoir characterization 

ANN model No Authors Learning algorithm Application domain 

Feedforward 
Neural Net-
work (FFNN) 

1 Moghadam et 
al., 2011 [11] 

Feedforward backpropagation 
neural network algorithm 
(FFBPNN) 

Porosity and permea-
bility prediction 

2 Parra et al., 
2014 [18] Levenberg-Marquardt 

Porosity, permeability, 
and intrinsic attenua-
tion prediction 

3 Amit et al., 2014 
[19] Bayesian learning Photoelectric log pre-

diction 

4 Maman et al., 
2016 [20] 

Probabilistic Neural Network 
(PNN) 

Water saturation, the 
volume of shale and 
porosity prediction 

5 Maman et al., 
2018 [21] 

Probabilistic Neural Network 
(PNN) Facies classification 

6 Fadhil et al. 
2017 [22] 

Gradient descent with mo-
mentum & Levenberg-Mar-
quardt 

Cementation factor 
(m) prediction 

7 Mohammad et 
al. 2017 [23] Levenberg-Marquardt Permeability prediction 

8 Lukman et al. 
2018 [24] Levenberg-Marquardt Geochemical property 

prediction 

9 Ghasem et al. 
2019 [25] Cuckoo optimization algorithm Porosity and permea-

bility prediction 

10 Camila et al. 
2020 [26] 

Differential Evolution (DE) al-
gorithm Lithology classification 

11 George et al. 
2020 [27] Levenberg–Marquardt Porosity estimation 
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ANN model No Authors Learning algorithm Application domain 

Functional 
Neural Net-
work (FNN) 

12 Ahmed et al. 
2010 [28] 

Group method of data han-
dling (GMHD) Porosity prediction 

13 Emad et al. 
2012 [29] 

New FNN with polynomial ba-
sis Permeability prediction 

Modular Neural 
Network 
(MNN) 

14 Tahmasebi et al. 
2012 [30] Levenberg-Marquardt Permeability prediction 

15 Akhilesh et al. 
2013 [31] Levenberg-Marquardt Sand fraction predic-

tion 

Ensemble 
model of ANN 

16 Anifowose et al. 
2013 [32] Levenberg-Marquardt Porosity prediction 

17 Anifowose et al. 
2015 [33] Levenberg-Marquardt Permeability prediction 

Hybrid models 
of ANN 

18 Saumen et al. 
2010 [34] 

ANN + Hybrid Monte Carlo 
(HMC) algorithm 

Lithofacies classifica-
tion 

19 
Anifowose and 
Abdulraheem, 
2011 [35] 

Functionl Network + Type-2 
Fuzyy Logic System + SVM 

Porosity & permeabil-
ity prediction 

20 Wang et al., 
2013 [36] 

Fuzzy logic + Levenberg-Mar-
quardt Porosity 

21 Ahmed et al. 
2014 [37] 

Fuzzy ranking + Backpropaga-
tion ANN 

Fracture porosity de-
termination 

22 Morteza et al., 
2015 [17] 

ANN + Imperialist Competitive 
Algorithm (ICA) 

Water saturation pre-
diction 

23 Soumi et al. 
2018 [38] 

ANN + Support vector regres-
sion (SVR) + Adaptive neuro-
fuzzy system (ANFIS) 

Prediction of lithologi-
cal properties 

24 Salaheldin et al. 
2018 [39] 

ANN + modified self-adaptive 
differential evolution algo-
rithm (SaDE-ANN) 

Prediction of the bub-
ble point pressure (Pb) 
and gas solubility (Rs) 
of crude oils 

 25 Zhang et al. 
2020 [40] 

Machine Learning inversion al-
gorithm + SVM inversion algo-
rithm + Sequential Gaussian 
Simulation + Gaussian Indica-
tor Simulation. 

Prediction of acoustic 
impedance, porosity, 
lithofacies, and water 
saturation. 

A brief discussion on the application of various ANN types in reservoir characterization do-
main is made as followed. 

3.1. Feedforward neural networks (FFNN) 

 
Figure 2. The schematic illustration of FFNN struc-
ture 

FFNN, also recognized as a multi-layer 
perceptron (MLP), is the most common and 
simplest ANN model [41]. The FFNN nodes are 
linked so that information can only pass for-
ward. Each subsequent layer obtains infor-
mation from the previous layer. Hidden lay-
ers may or may not exist in the FFNN, but 
input and output layers are always present 
[42]. Figure 3 demonstrates the schematic il-
lustration of the structure of the FFNN. This 
type of neural network is easy to design and 
maintain; moreover, it is time-effective and 
responsive to noisy data [43]. 
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Moghadam et al. [11] used the ANN approach to predict porosity and permeability in the 
Darquvan reservoir, southwest of Iran. Feature selection method, dependency analysis and 
statistical regression analysis were implemented to select well log set as input for modelling. 
The results obtained from the ANN approach were compared with multilinear regression and 
exponential techniques. The results obtained from the multilinear regression showed the cor-
relation coefficients of 0.89 for porosity and 0.53 for permeability. However, this technique 
overestimated greater values and underestimated smaller values due to the nonlinearity of 
reservoir properties. Furthermore, the exponential approach's results showed a correlation 
coefficient of 0.43 for the core permeability estimation. The ANN approach overperformed 
both techniques and obtained the increased correlation for porosity and permeability to 0.99. 
This study concluded that the ANN approach is a reliable and effective tool in predicting po-
rosity and permeability. 

Parra et al. [18] implemented FFNN to determine porosity and permeability. The seismic 
data was used as the main input in this study. Gamma test was used as an input selection 
scheme in the area located in southeast Florida. The same technique, except ANN with well 
log data, was used on a sand-shelf reservoir in northeast Texas. The Gamma test supervised 
overfitting and established the best practical input-output relationship by determining the ap-
propriate set seismic attributes as input features. The study showed the training correlation 
coefficient of 0.90 for training data and 0.75 for validation data.  

Amit et al. [19] utilized the Probabilistic Neural Network (PNN) approach in the prediction of 
photoelectric log (Pe) log.  Furthermore, this log was used to determine the lateral distribution 
of the dolomitized reservoir in eastern Canada. This log was selected as it provides a sensitive 
response in the presence of dolomite. Firstly, multi-attribute regression was used to select a 
suitable input set of attributes for Pe log prediction. The selected seismic attributes were then 
used to train a PNN. The use of multi-attribute regression for attribute choice improved the 
correlation of the model from 0.74 to 0.88 in training. The study demonstrated the efficacy of 
the ANN method in the prediction of photoelectric log. 

Maman et al. [20] demonstrated the implementation of PNN using new attributes, namely 
SQp and SQs (Scale of Quality Factor of P and S waves), to predict porosity, the volume of 
shale and water saturation in the gas sand reservoir of offshore Malaysia. Newly developed 
attributes, namely SQp and SQs, were developed based on the attenuation concept through 
rock physics approximation. The log response of SQp attribute is equivalent to the gamma-
ray log, and the log response of SQs attribute resembles the resistivity log. These attributes 
were used as the main input feature for PNN model training. The ANN modelling results were 
validated using a blind well testing approach. The correlation coefficient in the blind well test 
proved the effectiveness of SQp & SQs attributes in predicting reservoir properties. A similar 
approach was implemented by Maman et al. [21] for facies classification in offshore Malaysia. 
The three-dimensional (3D) cubes of SQp & SQs attributes obtained from simultaneous 
method were used as input for ANN modelling. This approach helped to define and differentiate 
the gas sand distribution from the brine distribution in the study area. 

Fadhil et al. [22] predicted the cementation factor in Yamamma carbonate formation using 
the ANN approach. This methodology provided very efficient performance and excellent pre-
diction of cementation factor value with less than 10–4 Mean Square Error (MSE). The results 
proved that the network could be implemented as a very useful prediction approach, particu-
larly in carbonate formations where nature is complex and highly non-linear, resulting in no 
close traditional mathematical model explaining this method's behaviour without assumptions.  

Mohammad et al. [23] proposed a novel Wavenet Neural Network (WNN) model to advance 
the permeability prediction process. This approach was developed by integrating a FFNN and 
wavelet theory. The acquired results from WNN were compared with findings from MLP and 
RBF networks. The results obtained from RBF and MLP networks are similar, with a correlation 
coefficient of 0.89. However, the novel Wavenet approach achieved results with a correlation 
coefficient of 0.92. The results demonstrated that the novel WNN approach estimated perme-
ability better than conventional networks. Incorporating a wavelet transfer function, which has 
perpendicular and strong local properties, led to faster homogeneity than a typical neural 
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network. This suggested method is an additional effective technique for assessing and miti-
gating risk and ambiguity in oil and gas reservoir discovery. 

Lukman et al. [24] utilized the Levenberg-Marquardt algorithm for training ANN model to 
estimate continuous geochemical logs with no or minimal geochemical data from wells. The 
model was built on existing relationships between traditional well logs and laboratory-meas-
ured geochemical data from the Canning Basin, Western Australia. The ANN model gave an 
accuracy of 75% during the generation of continuous geochemical data at well locations. This 
data, obtained from the ANN model, was used as input for a subsequent geochemical property 
model. 

Ghasem et al. [25] employed ANN optimized by Cuckoo optimization algorithm using well 
log data to predict NMR log parameters such as porosity and permeability in one of the Iranian 
super oil fields. The conventional well log dataset, including electrical resistivity, bulk density, 
sonic wave velocity, and neutron porosity, were used as input for modelling. The correlation 
coefficient of 0.99 for the training stage and the correlation coefficient of 0.97 were achieved 
using the optimized ANN approach. The results demonstrated the precision and feasibility of 
the developed ANN-Cuckoo method in predicting NMR log data. This modelling presents a 
tremendous opportunity to dramatically reduce costs by eliminating the need for direct reser-
voir tests. 

Camila et al. [26] presented the application of ANN trained by an adaptive Differential Evo-
lution (DE) algorithm to categorize lithology using well log data in the Southern Provence 
Basin. This newly developed approach helped to generate a lithofacies model with high clas-
sification accuracy, which provides the opportunity to enhance the knowledge about the res-
ervoir's heterogeneity.  

George et al. [27] demonstrated a new geologic site characterization workflow using an ANN 
at the Southeast Regional Carbon Anthropogenic Test in Citronelle, Alabama. The field is cov-
ered with hundreds of wells with electrical logs that lack critical porosity measurements. Three 
new test wells were drilled at the injection site, each paired with a nearby legacy well contain-
ing vintage electrical logs. The test wells were logged for density porosity measu-rements and 
cored over the storage reservoir. ANN was developed at each well pair, trained, and validated 
by identifying patterns in vintage electrical logs and modern density porosity measurements. 
The trained neural network was applied to 36 oil wells in the Citronelle Region, creating syn-
thetic porosities of the storage reservoir and overlying stratigraphy. Finally, the storage res-
ervoir's permeability was calculated using a combination of synthetic porosity and an empiri-
cally derived relationship between porosity and permeability estimated from the core. The 
authors mentioned that this workflow could generate synthetic permeability and estimate CO2 
storage capacity in other oil fields. 

3.2. Functional Neural Network (FNN) 

The FNN is a generalization of the conventional neural network; it operates with generalized 
functional models rather than sigmoidal forms [35]. The preliminary design of FNN is problem-
driven. The FNN's final topology is defined by data domain, information about the neuron's 
other properties (invariance, commutativity and associativity) and knowledge expertise [44]. 
In FNNs, the neuron activities associated with each neuron are not set but are learned from 
input data. Consequently, it is not required to include weights correlated with connections 
since the influence of weights is included in neuron functions [45]. Furthermore, FNNs enable 
neurons to be multi-argument, multivariate, and various learnable functions instead of fixed 
functions. Furthermore, FNNs allow converging neuron outputs, which forces them to coincide. 
This results in a system of functional equations that necessitates certain compatibility require-
ments on the neuron functions. The typical architecture of FNNs is illustrated in Figure 4. 

Ahmed et al. [28] introduced the implementation of abductive network (AN) for porosity 
prediction in the Ghawar oil field, Saudi Arabia. This type of network uses iterated polynomial 
regression to construct an optimal non-linear predictor. The model selected the best two to 
six out of 27 attributes in a computationally efficient manner. The results from the AN were 
compared with the results from the regularized backpropagation ANN (RNN). The AN achieved 
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a correlation coefficient of 0.9 in porosity prediction. The correlation coefficient obtained with 
the RNN is 0.45. The AN presented more accurate and efficient outcomes, comparing to the 
results of the traditional ANN. The study concluded that the AN is an effective and reliable 
approach in predicting reservoir porosity distribution in heterogeneous reservoirs. 

 
Figure 3. Schematic illustration of typical FNN architecture 

Emad et al. [29] presented the application of a novel FNN for estimation of permeability in 
a carbonate reservoir using well logs. The new intelligence approach facilitates delivering the 
most prevalent shortcomings of current simulation approaches in statistics, machine learning, 
data processing, and AI. The new approach's output was compared to the most common 
modelling schemes, such as non-linear regression, neural networks, and fuzzy logic inference 
systems, using real-life industry wireline logs. The obtained results demonstrated the corre-
lation coefficients of 0.87, 0.93, and 0.95, respectively. However, the FNNs managed to 
achieve the outcomes with a correlation coefficient of 0.96. The findings demonstrated that 
FNNs' efficiency (separable and generalized associativity) architecture with a polynomial base 
is accurate, consistent, and outperforms most current predictive data mining modelling tech-
niques. Furthermore, the established FNNs predictive model was used to predict new unseen 
wells in real-time. Additionally, due to the strength of the FNN's intelligence structure, the 
proposed solution is predicted to perform equally with, if not better than, the other empirical 
and analytical approaches. 

3.3. Modular Neural Network (MNN) 

An additional ANN approach that gained increasing popularity in reservoir characterization 
is the MNN. This technique uses the split and conquer strategy. A complicated problem is 
divided into many, so that each learner can manage a relatively easier problem [30]. The 
outcome of this method is viewed as an integration of all activities. In other words, MNN can 
have various structures in itself, and even one can incorporate prior knowledge within it [47]. 
Also, since the complex task in MNN is decomposed into several smaller and simpler ones, 
one can anticipate an overall network with a smaller complexity. Each module cannot influence 
each other's work and uses a smaller part of the data [31]. This network has simpler structures 
than MLP and can respond to input much faster [30]. The key purpose of MNN is to find the 
optimal architecture, which will provide time-efficient and successful results [47]. Therefore, 
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MNN is more time-efficient, more reliable in handling very large datasets and can reduce 
undesirable fluctuations and affect the whole network. Figure 5 shows the schematic repre-
sentation of MNN architecture.  

 
Figure 4. Schematic representation of MNN architecture 

In 2012, Tahmasebi et al. [30] presented a novel MNN concept to the petroleum industry. 
This approach was implemented to predict permeability in the field of the Persian Gulf. By 
splitting the MLP into several simpler networks, the network's complexity was reduced, allow-
ing it to work on smaller and simpler datasets. The obtained result by modularization demon-
strated more accuracy and time-efficiency than MLP. The results show that the correlation 
coefficient was improved from 0.94 to 0.99 for MLP and MNN networks, respectively.  

Akhilesh et al. [31] implemented a similar technique for determining sand fractions using 
three seismic attributes, i.e. amplitude, instantaneous frequency, and inverted impedance in 
the onshore field, western India. The improvement in modelling ability of the model, minimized 
uncertainty. The average correlation coefficient increased from 0.20 to 0.75 and the average 
execution time reduced from 239 s to 59 s. The findings showed that MNN outperformed MLP 
in terms of reliability, time-efficiency and learning capability.  

3.4. Ensemble model of ANN 

Ensemble learning is an approach that incorporates and intelligently combines diverse mul-
tiple expert theories to resolve a problem [9]. This novel learning paradigm has its roots in 
human sociology, where final choices are made by taking into account the different views of 
a "committee of experts" to achieve an overall "ensemble" decision [48]. The ensemble learning 
technique is capable of handling both big data and sparse data situations [33]. This approach 
can manage and blend multiple expert views, such as different base model architectures, data 
sampling techniques, and differing examples of improved tuning parameters, to reduce the 
error associated with the final output [48]. The outcome can be the evaluation metric, the 
learning algorithm, parameters, et cetera [49]. Figure 6 demonstrates the basic schematic 
illustration of the Ensemble model of ANN. 

The ensemble machine learning idea is particularly valuable in petroleum reservoir charac-
terization due to the highly non-linear nature of the heterogeneity of datasets, reservoir char-
acteristics, and the ambiguities involved in assessing the various reservoir characteristics [50]. 
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Figure 5. The schematic architecture of the ANN Ensemble model 

In 2013, Fatai et al. [32] introduced the implementation of the first ensemble model of ANN 
in reservoir characterization. This model was first used to define the optimal number of hidden 
neurons in the ANN model to estimate porosity and permeability from well log data in northern 
Marion, North America. The number of hidden neurons in the individual ensemble models 
varies, and a combined decision was taken to figure out the best number of hidden neurons 
to predict the required property. In the presence of noisy and scarce data, the result was 
stronger in terms of correlation coefficient (higher than 0.86) compared to traditional models 
and random forest model. In 2015, Fatai et al. [33] presented the implementation of an en-
semble model for porosity and permeability determination using well log dataset in the North-
ern Marion Platform of North America and carbonate and sandstone reservoir in the Middle 
East. The achieved correlation was more than 92%. Moreover, the mean average error was 
0.2 for porosity prediction and less than 0.5 for permeability prediction. The ensemble model 
demonstrated better results than conventional approaches. 

3.5. Hybrid ANN models 

Hybrid ANN models involve combining two or more soft computing approaches to form a 
single functional entity for improved performance. The key concept behind hybridization is to 
overcome the limitations of one technique with the strength of other techniques [35]. A key 
requirement for integrating technologies is the existence of a "common denominator" to build 
upon [51]. The hybrid models of ANN are becoming progressively popular. This popularity lies 
in the extensive success of hybrid systems in many real-world complex problems [52]. Figure 
7 illustrates the generalized framework of a hybrid ANN model. 

 
Figure 6. The generalized framework of a hybrid ANN model 

Saumen et al. [34] developed a novel Bayesian neural network (BNN) using a powerful 
Hybrid Monte Carlo (HMC) algorithm to discriminate lithofacies from dense well log signals in 
the presence of various noises. It is a precise algorithm that can be implemented to almost 
any theory of continuous variables. HMC algorithm is a method of choice when several degrees 
of freedom are coupled, and single variable updates are impossible. This technique distin-
guished boundaries of lithofacies with an accuracy of approximately 92% for validation and 
93% for test samples. In addition to agreeing well with earlier outcomes, the results from BNN 
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demonstrated the presence of finer bed boundaries missed in previous research. Finer struc-
tures seem to have geologic importance for understanding the crustal inhomogeneity and 
structural discontinuities within the central European crust.  

To evaluate permeability and porosity in Northern Marion Plat-form North America, Fatai 
and Abdulraheem [35] suggested a hybrid ANN approach incorporating type-2 fuzzy logic, SVM 
and FNN approaches.  Every aspect of the complex problem was solved individually. Functional 
approximation capability of FNN, the ability of type-2 fuzzy logic to handle ambiguity, scala-
bility, and robustness of SVM in handling small and high-dimensional data were utilized in this 
study. As a result, the hybrid model outperformed other individual approaches with a correla-
tion of 96%. The more flexible and efficient stable model achieved at the expense of time of 
execution. 

Wang et al. [36] implemented a SFFNN to estimate porosity in the southwest Alberta region 
of Canada. A fuzzy ranking method was implemented for the selection suitable input dataset. 
The implementation of this approach was in two stages. Firstly, the applicable variables were 
determined by rating the variable using a fuzzy curve. Furthermore, a fuzzy surface was used 
to exclude highly dependent variables. The best well log set, consisting of 8 well logs were 
used as input for core porosity prediction. The Levenberg-Marquardt algorithm was imple-
mented for training purposes. A comparative analysis is performed by considering the follow-
ing function collection methods: crucial component analysis, fuzzy ranking, random selection 
without selection (considering all the variables), and all well log variables. The fuzzy ranking 
approach has obtained a balanced and consistent outcome relative to the remaining ap-
proaches. 

Ahmed et al. [37] demonstrated the implementation of fuzzy ranking and ANN  integration 
to define fracture porosity using four conventional log data (including gamma ray, neutron 
porosity, density and deep resistivity) in Hassi Messaoud oil field. The determination of frac-
ture porosity is challenging due to the heterogeneous distribution of fractures in reservoirs. 
The laboratory analysis of the core only provides direct measurements of fracture porosity, 
but it is costly procedure.  Fuzzy ranking method defined that gamma ray, neutron porosity, 
density and deep resistivity logs are critical and relevant well log data and cannot be ignored. 
The backpropagation algorithm was implemented for ANN training and the correlation coeffi-
cient of 0.87 between fracture porosity obtained from ANN and log data was achieved.  

Morteza et al. [17] determined the distribution of water saturation in one of the fields of the 
Mesaverde group region, Western US. Backpropagation based ANN integrated with imperialist 
competitive algorithm (ICA) approach were used for water saturation prediction. This algo-
rithm was developed based on human's socio-political behaviour [53]. Several well logs, includ-
ing gamma ray (GR), effective density -neutron porosity (PHIDNE), density porosity log 
(PHID), neutron porosity log (PHIN), were used as input for this approach. Several methods, 
including Principal Component Analysis (PCA) for data dimensionality reduction, factor analysis 
for applicable feature selection and outlier removal, were applied to input data to improve the 
data quality. As a result, ANN-based normal backpropagation provided the correlation coeffi-
cient of 0.93 for training data and 0.92 for validation data. However, the optimized model 
provided a more efficient result, a correlation coefficient of 0.97 for training data and 0.95 for 
validation data. The optimization methodology assisted in the development of the most prac-
tical and improved model performance. 

Soumi et al. [38] presented various algorithms for signal pre-processing and post-processing 
in predicting lithological properties. The major algorithms named Adaptive neuro-fuzzy system 
(ANFIS), Support vector regression (SVR) and ANN, and are extensively discussed for the 
combined modelling involving seismic and well logs.  

Salaheldin et al. [39] introduced the integration of ANN with a modified self-adaptive 
differential evolution algorithm to introduce a hybrid Self-adaptive ANN (SaDE-ANN) model. 
The novel approach was implemented to predict the bubble point pressure (Pb) and gas solu-
bility (Rs) of crude oils. This technique can be used to predict Rs and Pb with just three input 
parameters. The developed empirical correlation for Pb predicts the Pb with a correlation co-
efficient of 0.99 and an average absolute percentage error (AAPE) of 6%. The same results 
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were obtained for Rs using this novel approach with a correlation coefficient of 99% and AAPE 
of 6%. The developed technique will help reservoir and production engineers to understand 
better and manage reservoirs. 

Zhang et al. [40] introduced a novel ANN method based on well logs to determine good 
reservoir quality regions from seismic inversion and the spatial distribution of key reservoir 
characteristics in Pakistan's Sawan gas field. To begin, the spatial variations of saturation, 
porosity, and acoustic impedance were identified using a machine learning (ML) inversion 
algorithm. Meanwhile, the support vector machine (SVM) inversion method efficiently identi-
fied and mapped distinct reservoir characteristics to characterise and quantify fluid-rich areas. 
Furthermore, the lateral and vertical distributions of porosity and lithofacies from well logs 
and core data were defined using the Sequential Gaussian Simulation (SGS) and Gaussian 
Indicator Simulation (GIS) algorithms. This study concluded that integrating SVM and GIS 
algorithms is an effective approach in predicting reservoir properties' distribution in highly 
heterogeneous reservoirs. 

4. Discussion 

This brief survey shows that various advancements in ANN approaches are inspired by the 
constraints of ANN in solving problems in the reservoir characterization domain. Table 2 
demonstrates a general overview of the advantages and disadvantages of previously discussed 
ANN modelling methods. These methods have similar advantages and limitations in a variety 
of applications, including reservoir characterization.  

Table 2. ANN modelling approaches and their advantages and disadvantages 

ANN models Advantages Disadvantages 

Feedforward neu-
ral network 
(FFNN) 

Most basic form of ANN; 
Not require fundamental knowledge of 
mechanism of data generation; 
Has the ability to estimate different 
types of complex functions; 
Graceful deterioration; 

Proper tuning of hyperparameters is a 
difficulty. It is typically achieved using 
the method of trial and error; 
Computational complexity problem 
curse; 

Functional Neural 
Network (FNN) 

Information on the domain & data can 
provide greater capacity and time-effi-
ciency for generalization; 
Learned function is comprehensible; 
Weight initialization is not required 
while the activation function is learned 
during the training stage; 

The component change in the network 
has a great impact on the mathemati-
cal equation of the whole training pro-
cess; 
Model is problem-driven rather than 
data-driven; 

Modular neural 
network (MNN) 

Complex tasks are divided for easier 
task management; 
Shows better performance than general 
ANN model in the sense of processing 
time, efficiency and learning ability; 

Does not automatically select the 
range of networks and modelling archi-
tecture; 

Ensemble ANN 

Has the best performance compared to 
separate individual ANN model; 
In the sense of selected input attrib-
utes, hyperparameter and generalized 
error, it can provide the improved ANN 
model; 

Decision-making parameters are often 
hard to determine, on which the per-
formance is dependent; 

ANN with Fuzzy 
Logic 

Integrates both ANN's and fuzzy logic's 
strength; 
Because of reasoning ability, it can 
handle inaccuracy and uncertainty; 
Fuzzy classification can be imple-
mented in the selection of appropriate 
input elements for ANN modelling; 

It is important to pick the membership 
function properly. It can need experi-
ence skills; 
Demonstrates inefficiency on limited 
data; 
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According to the study, FFNN makes reservoir modelling simple; however, proper modelling 
generally requires a suitable input set, accurate tuning of hyperparameters, and an appropri-
ate dataset. In a heterogeneous reservoir, these requirements become more critical and must 
be properly considered. Hybrid modelling approaches [35] and ensemble modelling approaches [33] 
have capability of providing a good set of hypermeters for modelling; however this comes at 
a high computational expense. Excessive features might affect the modelling abilities, there-
fore feature selection is critical aspect when looking for efficient modelling. Fuzzy logic based 
hybrid models [35-37] demonstrated great performance in several studies. Unlike feature se-
lection, feature extraction changes existing features to lower dimensional space rather than 
explicitly deleting features from the current collection based on feature ranking. It generates 
new sets of features by combining existing features in a supervised or unsupervised manner. 

At present, data is often challenging in the oil & gas industry [54]; therefore, advanced 
techniques capable of processing high-dimensional and noisy data will offer a major benefit in 
reservoir characterization. Certain problems include the assumption that traditional ANN is 
inefficient when the data is extremely non-linear, as well as the risk of being trapped in the 
local minima [55], gets slow with the rise in the number of hidden layers, taking longer com-
putational time [56], overfitting problem [57], incapable of dealing with ambiguity [58] and etc. 
However, advances in science have made certain problems, such as the local minima issue, 
outdated.  

ANNs use data-driven methodology. As a result, the output quality is determined not only 
by the model but also by the quality of input data. Geophysical data is noisy data, and the 
properties of data from various sources differ greatly. Consequently, appropriate pre-pro-
cessing tools are necessary. The use of ANN mainly depends on the presumption that the 
training dataset generated will accurately reflect the relationship between the reservoir prop-
erty to be projected and the input data. As a result, it is essential to accurately choose a 
training range that accurately represents the total population [12].  

The geological spot has a considerable impact on the collected data too. If the geology 
varies, so do the features of the gathered data. Since the geology of the earth is dynamic, 
geophysical data responds differently based on its geology. As a result, we can conclude that 
the ANN methods for estimating petrophysical characteristics are restricted to a particular 
area. The simple geological complexity and high data quality can offer a decent accuracy level 
with fewer data samples and a simpler model. However, enough data is needed to construct 
the predictive model for high-complexity geological areas, increasing the model's complexity. 

5. Conclusion 

A survey on application of various ANN models in reservoir characterization domain is pre-
sented in this paper. ANN models have been modified over time to overcome the constraints, 
like the issues of hyperparameter tuning and complex function approximation. ANN delivers 
better results in various reservoir characterization tasks when integrated with other soft-com-
putational methods. Ensemble and modular ANN models are a very clear example of ANN 
implementation in a smart way to obtain more optimized architectures, optimal input features 
and training algorithms. Hybrid ANN models also demonstrated their effectiveness and relia-
bility in this domain. However, dealing with a high volume of data produced by advanced 
sensors in the petroleum industry needs innovative modelling approaches. The reservoir char-
acterization domain is further tricky by the fact that the methodology must not only deal with 
high-complexity non-linear data but also with ambiguity in data and modelling.  

Finally, the authors believe that the presented review in this study will provide new insights 
for a deeper understanding of ANN application in the reservoir characterization domain. The 
existing state-of-art of ANN applications in the reservoir characterization domain indicates 
promising outcomes. In the future, we expect to see more innovative intelligence systems 
that could accelerate the enhancements of reservoir characterization evaluation protocols.   
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