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Abstract 
This study aimed at writing a suitable permeability model from well logs, and also comparing to select 
the best empirical permeability model for the Enyenra field. Four (4) empirical permeability models 
(Tixier, Timur, Coates and Dumanoir, and Wylie and Rose), poro-perm transforms and statistical 
means of predicting permeability values were applied to eight (8) well log data sets to ascertain the 
best model for the field. Petrophysical interpretation and Multilinear Regression (MLR) analysis were 
carried out with the data provided. Results obtained showed that the transform realised from the MLR 
equation provided the most suitable model for the field that could reduce cost in reservoir 
characterization. Also, the porosity- permeability cross-plots transforms were suitable for the cored 
wells while the Timur model was selected as the best predictive method among the empirical models 
compared. Furthermore, the five (5) lithofacies predicted across all wells from the Self Organizing Maps 
(SOM) were sandstone (argillaceous), siltstone, mudstone and claystone. Generally, the Turonian 
reservoirs of the Enyenra Field had good reservoir quality while lithofacies recorded values of 
permeability ranges of 50-100 mD. 
Keywords: Multilinear regression; Permeability; Tano Basin; Turonian; Petrophysics. 

1. Introduction

Permeability determination is an essential parameter in the process of carrying out reser-
voir characterization studies reservoir development [1]. It is defined as the measure of the 
ability of a rock to permit the passage of fluids through its pores [2]. Permeability affects 
almost all phases of formation evaluation, reservoir characterization and production perfor-
mance and, there are various ways of estimating it. The common practice of estimating per-
meability is the use of well logs, cores and drill stem testing. Critical factors that influence 
permeability of geologic formation includes; pore size and geometry, mineralogy, sedimentary 
diagenesis, rock structure etc. [3]. Well tests and cores are best used in obtaining accurate 
permeability values. Though using well log data to derive permeability values is associated 
with reduced economic cost but this exercise gives a clue on the expected permeability values [4]. 

Some mathematical and practical approaches have been established in an attempt to un-
derstand the complexity of permeability computation [5,7-8]. Generally, two categories of equa-
tions are available i.e., the empirical and the statistical equations. However, recent approach 
adopts the artificial neural networks model-free function estimators called the "virtual meas-
urement [6]. All these established methods have contributed to the understanding of the fac-
tors controlling permeability. Also, it is an illusion to have a universal relation for permeability 
and other dependent variable [6]. 

9



Petroleum and Coal 

                           Pet Coal (2022); 64(1): 9-19 
ISSN 1337-7027 an open access journal 

In the Tano Basin of Ghana, studies have been carried out that is related to permeability 
values estimation using various approaches [7-8]. Most of the approaches used in such studies 
did not explore the comparative applicability of some established methods in reservoirs of the 
Tano Basin. This gap, thus necessitated the need to compare and determine the best method 
that is suitable to predict permeability values from well logs across the study area. This study 
compared four known empirical methods [9-12] in permeability values prediction to suggest the 
best method for the Enyenra Turonian reservoirs. Furthermore, a statistical equation was de-
veloped and used to predict permeability values across the Enyenra Turonian reservoirs.  

2. Geologic setting  

The geographical location of the Tano Basin is such that it is bounded to the west by the 
Ivory Coast Basin and to the east by the Salt Pond Basin [13]. The Basin evolved through a 
diverse phase of tectonically driven alteration over geologic time. The basin was initially a 
pull-apart but was later modified by wrenching in the Cretaceous Period. The Basin is charac-
terized by stratified Cretaceous to Eocene marine sedimentary rocks [14]. The Tano Basin is 
one of the prolific basins in Ghana and has been noted for its commercial productivity since 
December 2010 [15]. Reasons attributed to the overall favorable medium to high porosity and 
relatively high permeability reservoirs of the basin [16]. The study area (Fig. 1) is located in 
the western portion of the Tano Basin, in the present-day upper shelf to mid slope bathymetry. 
The Turonian play has been appraised as one of the promising plays in the Tano Basin [17]. 
The study area, which is the Enyenra field intercepts the Turonian play. According to Un-
published report by the Ghana National Petroleum Corporation (GNPC), the Enyenra discovery 
is a narrow, sinuous, lower to mid slope turbidite channel complex of Turonian age (Upper 
Cretaceous). The channel complex consists of heterogeneous, amalgamated and stacked 
channel sands deposited within an aggradational channel-levee complex. 
 

 
Fig. 1. Location map of study area showing the well location on the Enyenra Turonian reservoir 
(Source: GNPC, [17]) 

3. Data and methods  

The study made use of eight (8) wells data with logs (Gamma Ray (GR), Neutron, Density, 
and Resistivity), software suite to facilitate interpretation and other necessary information 
provided by GNPC. Also, core data for four (4) wells were available to calibrate other Well 
data. In order to obtain a valid estimated permeability values, well logs were properly selected 
and calibrated with core data.  While comparing core and log data, depth matching was criti-
cally done to avoid erroneous computations. Electro log templates were displayed to assist in 
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well log profile interpretation as shown in Fig. 2. The study was divided into two major folds: 
to use empirical models to compare and to generate a permeability equation statistically using 
well logs. 

 
Fig. 2. A log template representation showing multiple logs acquired and some core porosity- permea-
bility data for Well 1  

3.1. Lithofacies identification and prediction using the Self Organizing Maps (SOM) 

The rock types of the wells were analyzed and interpreted using neutron-density cross plot, 
RhoMatApp against DTMatApp cross plot and N/M cross plots. This was assisted by composite 
log and sedimentological data. To predict lithofacies calibrated to core, and to correlate rock 
types across the study area, the Self-Organizing Maps (SOM) unsupervised model was used 
to predict the lithofacies, which in turn inferred the permeability values in uncored intervals 
of the reservoirs. The GR, Density, Neutron were the main input log curves from each well. 
With SOM, each depth sample was identified with a particular node on the map within the 
study interval. The cluster randomness plot was then used to help select the ideal number of 
cluster groups to calibrate the SOM. This output dendrogram showed how the clustering of 
the SOM nodes has been performed [18]. 

3.2. Volume of clay/shale  

The clay volume was calculated using the module “Clay volume analyses” from the IPTM 
software. Two different clay volumes were calculated with the module; one using values ob-
tained from the GR log, and the other one using values obtained from the double clay indica-
tors; density and neutron logs. The volume of shale further assisted to compute the porosity 
and water saturation. For the linear responses, Vshale is calculated using the GR as:  

Vsh = 
𝐺𝐺𝐺𝐺log− 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚− 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

 …                        (i) 

The Double Clay Indicators (DCI) is based on the principle of defining a clean line and a 
clay point. The clay volume is calculated as the distance where the input data falls between 
the clay point and the clean line.  
VshND=

(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1)∗(𝑁𝑁𝐷𝐷𝑁𝑁−𝑁𝑁𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷1)−( 𝐷𝐷𝐷𝐷𝐷𝐷−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1)∗(𝑁𝑁𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷2−𝑁𝑁𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷1)
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1)∗(𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁−𝑁𝑁𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷1)−(𝐷𝐷𝐷𝐷𝐷𝐷𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁−𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1)∗(𝑁𝑁𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷2−𝑁𝑁𝐷𝐷𝑁𝑁𝐷𝐷𝐷𝐷1)

;        (ii) 

where DenCl1 & NeuCl1 and DenCl2 & NeuCl2 are the density and neutron values for the two 
ends of the clean line. 
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3.3. Porosity  

The porosity computation was done with density and neutron porosity logs, and it was 
calibrated with the overburden corrected core porosity.   

Porosity (ø) = (ø𝑁𝑁+
2 ∅𝐷𝐷

2

2
)^2 …                      (iii) 

3.4. Water saturation   

The ratio of water volume by pore to water flow was calculated using the dual water satu-
ration formula. The dual water approach was chosen because the Turonian reservoir is char-
acterized by stacked shaly and sand formations. Two water resistivities were considered, the 
water occupied in the pore space and the water bounded to the shale.  

Dual Water = ( 1
𝐺𝐺𝑡𝑡

=  ø𝑡𝑡𝑚𝑚𝑚𝑚 𝑆𝑆𝑤𝑤𝑡𝑡𝐷𝐷𝑚𝑚[ 1
𝐺𝐺𝑤𝑤𝑤𝑤

+ 𝑆𝑆𝑤𝑤𝑤𝑤
𝑆𝑆𝑤𝑤𝑡𝑡

� 1
𝐺𝐺𝑤𝑤𝑤𝑤

− 1
𝐺𝐺𝑤𝑤𝑤𝑤

�] )             (iv) 

where  øt = total porosity,  Rt = formation resistivity,  Swb = water bound saturation, mo =  formation re-
sistivity factor, no=saturation exponent, Rwb= apparent resistivity of water bound in clay 

The density–neutron porosity was used as the porosity input. Rw was obtained iteratively 
by apparent method in wells with clear water leg coupled with Pickett plot (deep resistivity 
versus porosity).  
Rw=PHIT2*Rt.                          (v) 

3.5. Irreducible water saturation (Swirr) 

Buckles’ means of calculating irreducible water saturation from core data was adopted. The 
first task was to determine Buckles’ constant from special core analysis in a clean pay zone. 
Therefore, KBUCKL (Buckles’ constant) equaled the product of effective porosity (PHIE) and 
water saturation (Sw) from core data of each zone [19]. 
Swirr = 𝐾𝐾𝐾𝐾𝐾𝐾𝐷𝐷𝐾𝐾𝐾𝐾

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗(1−𝑉𝑉𝑉𝑉ℎ)
…                       (vi) 

3.6. Permeability, (K) 

Permeability curves were computed for the four selected empirical formulae (i.e., Timur [11], 
Tixier [9], Wyllie & Rose [10] and Coates & Dumanoir [12]). Core permeability and porosity 
values were also used. The core permeability was adjusted to accommodate the overburden 
pressure at all wells. A plot of the corrected core permeability overburden versus corrected 
core porosity overburden was done. The regression line from the plot was analyzed to obtain 
using an exponential equation. The resultant equation line was then used to formulate a per-
meability log using the already measured total porosity as a key reference.  

3.7. Multilinear regression method  

Multilinear Regression module was used to predict the permeability resultant curve from a 
number of curves (GR, RHOB, PHIE, SW), using a least square regression routine. This routine 
estimated the best permeability curve which fits the input curves. After performing the multi-
ple regression analyses, a supervised evaluation of the obtained permeability curve (equation) 
was performed using the determining coefficient (R2). The R2 which was 65 % makes the 
predicted regression equation helpful in predicting the Y (permeability) value.    

3.8. Empirical models’ comparative study  

Empirical models encapsulate the relationship that exit among porosity, irreducible water 
saturation, and/or saturation exponent cementation factor in estimating formation permeabil-
ity. The following highlights some established empirical relationships used.  

3.8.1. Timur’s model  

This model was developed by Timur [11]. Timur chose this equation based on the highest 
correlation coefficient and the lowest standard deviation. Thus, Timur [11] equation takes the 
form: 
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K= 8581* ɸ
4.4

𝑆𝑆𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤
2 ,…                         (vii) 

where ɸ is porosity and Swirr is irreducible water saturation  

3.8.2. Coates and Dumanoir model  

Coates and Dumanoir, [12] proposed the permeability calculated as: 

K0.5 = 100 ɸ
2 (1−𝑆𝑆𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤)
𝑆𝑆𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤

……                       (viii)  

Concerning the irreducible water saturation of the formation used, this formula satisfies the 
assumption that zero porosity equals zero permeability when water saturation is 100%  

3.8.3. Wyllie and Rose model  

Wyllie and Rose [10] is a modification of the Kozeny- Carman model that considers the 
specific area’s irreducible water saturation. The conventional means of direct calculation spe-
cific area is difficult to compute so the pore size was used instead. Pore size controls the 
irreducible water saturation [20].  

K= (100 ɸ𝟐𝟐.𝟐𝟐𝟐𝟐

(𝑺𝑺𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 )   
)2. …                        (ix) 

3.8.4. Tixier model  

Tixier [9] developed a simplified model upon the work of Wyllie and Rose [10], this equa-
tion was developed to create a continuous permeability log curve. The calculated permeabil-
ity values from this Tixier equation is an average for the zone which corresponds to the re-
sistivity gradient of the formation [6].   

K0.5 = 250 ɸ𝟑𝟑

𝑺𝑺𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘
……                         (x) 

4. Results and discussions 

The results obtained and the interpretation made across the well that encountered the 
Turonian reservoir based on available data set used for this study will be discussed in this 
section. 

4.1. Porosity estimation 

The conformable overlap of the estimated porosity curve on the core porosity values con-
firms the validity of the estimated porosity from well logs (Fig. 3). This allow the porosity 
curve fit to be used in the estimation of the four empirical models in the study. 

 
Fig. 3. Porosity curve overlain with corresponding dotted core porosity for Well 3 
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4.2. Core porosity – permeability cross plot 

The permeability values were inferred and predicted from core porosity and permeability 
relationships. A relatively good trend was observed from the porosity (on a linear scale) 
against permeability (on a logarithmic scale) cross plot. The regression equation from each 
cored well used predicted a good continuous permeability curve as shown in Fig. 4. 

 
Fig. 4. The predicted permeability curve from core porosity and permeability cross plot for well 4 using 
the relation; 0.240858*EXP (38.75701*PHIT), where R2= 0.8045  

4.3. Comparison of empirical models in the various wells  

Results obtained from the various wells after comparison suggested that, three out of the 
four empirical models were not suitable to predict permeability values for the Enyenra Tu-
ronian reservoirs. However, the Timur [11], is most suitable since it predicted permeability 
values closest to the core permeability values. Furthermore, permeability curves that were 
computed from porosity -permeability core correlation had a better match for the core results. 
Thus, it can be relied upon during permeability calculations for wells that are cored as shown 
in Table 2. The study also adopted the standard error means of comparing the empirical re-
sults. The larger the error margin, the less relevant the predicted value is to the actual data 
and vice versa. Table 2 gives the summary of the statistical calculations of standard error 
margin to core permeability- (empirical methods) 

Table 1. Summary of permeability curves calibration with core.  

Well name Permeability type 
 Poro-Perm Timur Tixier Coates&Du-

manoir 
Wyllie a Rose 

Well 1      
Well 2      
Well 3      
Well 4      

 
Excellent Very good Good Fair Average 
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Table 2. Standard error margin to core permeability 

Standard error Timur Tixier Coates&Dumanoir Wyllie&Rose 
MAD 286.1082 317.2955 298.536662 333.0404438 
MSE 290 055.9 295 434.9 301 112.18 302 450.2868 
RMSE 538.5684 543.5393 548.736895 302 450.2868 

where MAD is the mean average deviation; MSE is the mean squared error and RMSE is the root mean 
squared error 

4.4. Multilinear regression analysis (MLR) 

The Multilinear Regression analysis allowed the prediction of a resultant curve from a num-
ber of curves, using a least square regression routine. This routine estimated the best perme-
ability curve which fits the input curves (Fig. 5). The MLR equation carved out is; 
10^ (11.80*Log (PHIT)+0.21*Log (SW)-21.72*Log (RHOB) - 0.38* Log (GR)) .  (xi) 
where PHIT is total porosity; SW is water saturation; RHOB is density and GR is gamma ray.  

The MLR equation predicted permeability curves that conform with the cored permeability 
values for the known cored four wells, thus this confirms the applicability to predict the per-
meability values across the Enyenra Turonian reservoir.  
 

 
Fig. 5. Permeability curve estimated from the Multilinear Regression equation overlain with core per-
meability for Well 4 
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In this study, it can be seen from Table 3 that the density log is the most critical curve and 
thus contributed to most to the model generated. The closer the normalized coefficient is to 
1, the more important that variable is and the closer the coefficient is to 0, the lower effective 
the variable is.   

Table 3. Coefficients for the Multilinear regression analysis and their input variables with MLR Coeffi-
cient (R2= 0.65) 

Input variable Normalised coefficient 
Constant 0.3968 
Gama ray (GR) 0.0040 
Bulk density (DENS) 0.4206 
Neutron (NEUT) 0.0125 
Total porosity 0.0376 
Water saturation 0.0282 

4.5. Lithofacies prediction and description  

The SOM method applied showed that the lithofacies inferred from the logs could be com-
pared and linked to cored lithology. Five (5) lithofacies were predicted (Fig. 6 and 7). The 
facies predicted were grouped together at various depths and depositional environment. A 
comparison with core indicated that; lithofacies 1 and 2 predictions corresponded to sandstone 
and silty sandstone lithofacies respectively. These sandstones were deposited in a fairway – 
probably a submarine channel system, thus high permeability values were recorded for both 
core and predicted permeability curves. Lithofacies 3 predicted argillaceous sands while litho-
facies 4 predicted interbedded mudstone and silty claystone, as lithofacies 5 was observed in 
some interval as claystone. Although Lithofacies 3 predicted sand package, the permeability 
values were low because the sands were intercalated with clay and mud, thus reducing the 
pore throat diameter, this is consistent with Dicus [21]. It is also important to note that litho-
facies 4 and 5 had low permeability values which probably serve as seals for the Turonian 
reservoirs. The depositional environment in the study area is described as a submarine chan-
nel system with coarse sandy filling, which gradually declined into a more structured turbidite.  

 
Fig. 6. SOM lithofacies correlated to core lithology. (Yellow colour siltstone, Green- mudstone and Brown-
claystone) -Well 1 
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Fig. 7. SOM lithofacies correlated to core lithology (Fuchsia colour- argillaceous sandstone and Grey- 
sandstone)- Well 4 

5. Conclusion  

The predictive permeability model written and proposed for use across the Enyenra Tu-
ronian reservoirs, is the transform obtained from the Multilinear Regression equation. For 
Wells that are cored, the transform obtained from porosity- permeability cross-plots can be 
used to predict the permeability values. The Timur Model was selected as the best among the 
four empirical models to predict permeability in the study area due to its close predictive ability 
and low MSE percentage when compared to the core permeability data. The SOM predicted 
five (5) lithofacies. These lithofacies when compared to core samples showed that, lithofacies 
1 and 2 corresponded to sandstone and silty sandstone respectively. Lithofacies 3 was argil-
laceous sandstone, lithofacies 4 was the interbedded mudstone (silty claystone) and lithofacies 
5 was observed in an interval as claystone.  The sedimentological and depositional character-
istics of the predicted lithofacies conform to both core and calculated permeability values. 
However, the claystone, mudstone and the argillaceous sandstones had a relatively low per-
meability while the clean sandstones had high permeability. A further study to upscale this 
proposed permeability model and to test the practicability of the model in the neighbouring 
fields of the Tano Basin should be pursued. 
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