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Abstract 
The petroleum industry is becoming increasingly concerned with sand production, which is common in 
the Niger Delta and presents technical, operational, and financial difficulties. Literature has devoted a 
lot of time to the creation of sanding prediction tools and efficient management techniques. However, 
the majority of the published theoretical models have been supported by data from other petroleum 
regions than the Niger Delta or evidence from laboratories. An easy-to-use machine learning model 
was created that takes into account the idea of dimensionless quantities related to sanding.  The 
parameters taken into consideration included Reynold’s Number, Loading factor, Gas-Liquid Ratio and 
water-cut. An equation for predicting sand production rate is the output from this work. Model 
validation was carried out on the developed model and the deviation was less than 5% demonstrating 
the validity of the proposed model. The developed model, when compared to existing models, forecasts 
superior outcomes, particularly when the boost factor and GLR are very high. The study has a wide range 
of practical implications, including reservoir management, general well completion design, and field 
development plans and economics. 
Keywords: Sand production rate; Response surface methodology; Reynold's number; Loading factor; Water cut, 
Gas liquid ratio. 

1. Introduction

A significant proportion of the world’s oil and gas reserves is contained in weakly consoli-
dated sand stone reservoirs and hence is prone to sand production [1]. Sand produced has no 
commercial value. Not only does formation sand clog wells and lower recovery rates, but it 
also erodes equipment and collects in surface containers. The most common way to control 
formation sand is to either reduce production rate or employ a variety of different methods, 
both of which are expensive. Due to the above stated challenges, sand production is a major 
issue during oil and gas production especially in Pliocene, younger tertiary basins and even in 
more compact formations worldwide. Material degradation is a key process leading to sanding. 
However, these approaches have limitations as they can only predict catastrophic sand failure 
while neglecting the continuous changes and post failure characterization of the formation and 
the volume of the sand. Real-time, effective sand management is necessary because of the 
financial, operational, and safety ramifications of sand failures [2]. Passive preventive tactics 
and sand control measures are the two basic categories into which sand management tech-
niques have been divided [3]. However, some researchers had earlier emphasized that creating 
a whole sand management strategy necessitates assessment of the formation strength, stress 
characterisation, failure modelling, sand exclusion studies, sand rate and size prediction, and 
utilization of field sand rate data [4]. The accurate assessment of the quantity and size of the 
produced sand is arguably the biggest problem in the sand management chain. This is neces-
sary to ensure proper sand control facility design and to keep erosion limits for chokes and 
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pipes within acceptable bounds. Theoretical models, laboratory experiments, and field obser-
vations are techniques for forecasting sanding rates. Theoretical models based on several sand 
failure processes have been published in which [5–7] are a few examples. An analytical model 
for forecasting the start of sanding from Canadian heavy oil sands was created in 1994 by 
Geilikman et al. [8]. In 1996 van der Hoek et al. drew on the theoretical and experimental 
research of Geilikman et al. [8] to arrive at their own conclusions [9]. Neural network technol-
ogy was proposed and applied for modelling sand production [10]. In fact, other researchers 
developed a number of additional models for predicting the commencement of sand [1,11]. The 
majority of modern models, however, have relied on geo-mechanical concepts to forecast 
sand output after the initial onset.  

Sand production has been found to occur in moderately consolidated and poorly cemented 
sandstones. A lot of Empirical, Analytical and Numerical Models for Predicting sand production 
rate is made available in the literature. A disadvantage of these Models is that they require 
humongous rock mechanical data as an input data which are not readily available in practical 
field. Additionally, these models call for laborious calculations that are impractical when 
prompt sand control choices are required. The difficulty to access the field input data is the 
major challenge in carrying out this project. This work developed an easy to use model that 
can be used to predict sand production rate from oil wells in the Niger Delta. 

2. Literature review 

Using geomechanics and fluid flow, Chin & Ramos [12] developed a sand production model 
to measure volume of sand output throughout the declination phase, the early drawdown 
phase and bean-up phase. Their proposed model was then tested by carrying out comparison 
with the data from full-scale laboratory perforation sanding tests and the simulated model 
from the proposed model. They came to the conclusion that flowrate, producing time, oil vis-
cosity and rock strength were the key factors that regulate volumetric sand production. The 
primary issue with oil and gas fields that produce from elastic sediments is the control of 
formation sand [3]. Sand Sediments produced during the younger Tertiary eras are usually 
problematic, and we expect sand production problems in wells that are not consolidated when 
completion is about to be done. In older formations, Poor completion and production tech-
niques consequently reduce in-situ rock strength and lead to sand failure [3]. The most funda-
mental elements of sand production were described as rate of fluid production, fluctuating in-
situ stresses and strength of the formation. It is important to note that methods of predicting 
sand production include laboratory mechanical rock testing, analogy, production tests, well 
log analysis and laboratory tests. The paper came to the conclusion that the data needed to 
predict propensity of sanding as rock dynamic elastic constants, formation intrinsic strength, 
production test data and log data. Various methodologies have been proposed and are docu-
mented in the literature to assess the conditions of petroleum reservoirs with respect to onset 
sand production [13]. 

Sand production can be anticipated when product of Shear modulus (G) and bulk modulus 
(Kb) known as elastic constants is less than 8E11 [3]. It is important to note that this value 
8E11 is known as the threshold value below which sand production will occur. The elastic 
constants are derived from density and acoustic logs. Since sanding can only take place or 
sand can only be formed after the formation fracture or have failed. Stein and Hilchie [14] 
ignored the influence of other factors that affect sand output while correlating sand production 
from the reservoir with production rate. Operational characteristics that affect sand output, 
such as flowrate, bean-up pattern, and drawdown, are deemed to be overly numerous and 
vary from field to field. Unreliable predictions of sand production may emerge from using only 
a small subset of these characteristics and extrapolating the findings from one field to another. 
According to Willson et al. [15] , while determining the basic strength of a formation, U, the 
collapse pressure of a thick-walled cylinder test was utilized. The authors also noted that the 
largest effective tangential stress should be less than the formation’s effective strength, U, 
adjacent to the hole in order to prevent sand production. Some researchers recommended 
making a wide range of analytical and numerical sanding onset prediction models available in 
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literatures [16]. These models call for enormous input parameters related to rock mechanics 
that are infrequently present in field practice and necessitate laborious computations, such as 
those required by finite element models, which are impractical in situations requiring quick 
sand control decisions. To calculate the critical drawdown and flow rate at which sand for-
mation commences, they constructed a straightforward and user-friendly mechanistic sanding 
onset prediction model. 

According to Walton et al. [17], sandstone formations are used to drill and produce a sizable 
portion of the world's oil and gas wells. The in-situ stress and subsequent changes brought on 
by activities associated to petroleum, such as drilling and production, are what determine the 
mechanical rigidity and strength of these sandstone formations. The formation failure or 
breakdown that results when the mechanical strength is exceeded may cause wellbore insta-
bility and, as a result, sand production. Han et al. [18] laid emphasis on sand prediction and 
management and stated that they were placed mainly on the unconsolidated and poorly ce-
mented sandstones thereby creating corresponding failure models, because of their high ten-
dency to produce sand while neglecting more compact formations. These formations however, 
have been seen to fail at some point, producing sand in the course of getting the crude oil to 
the surface, hence, causing adverse problems that are very costly to remedy. For Niger-Delta 
formations subject to open-hole completions, Adeyanju & Oyekunle [19] developed a geo-me-
chanical model for a coupled reservoir that can be utilized to forecast volumetric sand produc-
tion and related wellbore stability. The model is based on mixture theory, and for each of the 
relevant phases-solid matrix, fluidized solid, oil, water and gas phase- mechanics and laws of 
conservation equations are developed. Results indicate that flow velocity, confining pressure, 
pressure drawdown, and fluid viscosity have a significant impact on how much sand is produced. 

Today's oil and gas sector relies on conventional sand prediction methods that are based 
on field observation, laboratory sand prediction trials, and theoretical or numerical modelling [20]. 
A link between sand production and operational field characteristics is typically attempted 
using methodologies based on field observation and experience. These correlations and mod-
els are often developed using a small sample from a large collection of variables that may 
have an impact on the production of sand. Azadbakht et al. [21] developed a numerical model 
that can predict the volumetric sand production rate in injector wells based on the hypothesis 
that sand production in injector wells is primarily related to the back-flow and cross-flow gen-
erated during shut-in as well as water-hammer pressure pulsing in wellbore as a result of 
rapid flow rate changes. Their model for explaining the parameters necessary for sanding 
initiation and propagation included a given set of criteria employing geomechanics principles 
and fundamental physics of sand formation. The numerical model considered the impacts of 
water weakening effect, cross-flow effect and rock strength on the sanding behaviour of in-
jectors. Okereke et al. [22] accounted for gas-liquid ratio, Reynold’s number, loading factor and 
water cut as the intrinsic parameters that affect sanding potential. They came to a conclusion 
that the proposed model gave a more accurate result when validated with boost factor that is 
the GLR considered to be significantly high. Every reservoir is considered to have a peculiar 
sand production rate correlation indices which represents its tendency to produce sand. Un-
derstanding a formation's mechanical strength is essential for predicting sand production and 
recommending sand control completion [23]. Since cores aren't always available, the model 
provided a method to measure rock strength without being restricted by core testing. They 
conducted triaxial and hydrostatic testing to establish the failure envelope. The study's find-
ings showed that a single normalized failure envelope exists and that, with knowledge of the 
critical pressure, it can be used to characterize the failure envelope for a sandstone formation. 
There is a correlation between the critical pressure and compressional wave speed (at equiv-
alent depths of burial). Other researchers carried out research on sand output forecasting in 
gas wells [7]. The suggested technology was evaluated on 13 fields along the US Gulf Coast, 
and it has since been widely used throughout the world by the now-defunct Arco. The rock's 
strength was assessed using core testing and log correlations, and the results were contrasted. 
The prediction procedure is distinct from the popular log-based sand prediction methodology. 
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3. Methodology 

The data used for this work was obtained from literature [22] while an experimental design 
software was used to develop the model. The intrinsic parameters that affect sanding potential 
are gas-liquid ratio, water cut, loading factor and Reynolds number which are the input data 
to the model being developed in this work. The responses obtained from the field which is 
defined is the sand production rate is the output variable. 

3.1. Reynold’s number (Re) 

Since Reynold’s Number is a function of reservoir parameters such as size, density, perfo-
ration number, permeability, viscosity and flow rate per perforation, ,it is of great importance 
to consider that as a key parameter that influence sanding. Reynold’s Number helps to define flow 
patterns in different fluid flow situations. Reynold’s number can be evaluated using equation 1. 

𝑅𝑅𝑒𝑒 = 131735 ∗ 10−6 ∗
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

µ
 (1) 

where β, the non-Darcy flow coefficient is given by equation 2 

𝐾𝐾 =
265 ∗ 10−10

𝐾𝐾^12
 (2) 

where K= permeability in millidarcy (MD); β = non-Darcy flow coefficient ( ft-I); ρ = density 
( Lb/ft^3); v = velocity of the fluid crossing the lateral perforation (inches/seconds); µ = fluid 
viscosity (cP). 

3.2. Loading factor (LF) 

Loading factor which is defined as the state stress acting on a perforation borehole or tun-
nel. Loading factor is function of in-situ stresses, well trajectory, reservoir pressure, drawdown 
and depletion, Thick wall cylinder strength (TWC). TWC is defined as the fundamental strength 
of the formation. Loading factor can be evaluated using the equation 3 and the parameter F 
in equation 3 can be evaluated using equation 4. 

𝐿𝐿𝐿𝐿 =
3𝑆𝑆𝐻𝐻 − 𝑆𝑆𝑉𝑉 − 2𝑃𝑃𝑤𝑤𝑤𝑤 − 𝐿𝐿(𝑃𝑃𝑅𝑅 − 𝑃𝑃𝑤𝑤𝑤𝑤)

3.1(𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠)
 (3) 

F=(1−2𝑣𝑣)(𝐶𝐶𝑏𝑏−𝐶𝐶𝑟𝑟)
(1−𝑣𝑣)𝐶𝐶𝑏𝑏

 (4) 
where 𝑆𝑆𝐻𝐻 = 𝑆𝑆𝑉𝑉 = total stresses on a plane perpendicular to the axis of wellbore; 𝑃𝑃𝑅𝑅 = reservior 
pressure (Psia); 𝑃𝑃𝑤𝑤𝑤𝑤 = wellbore flowing pressure (Psia); F= poro-elastic constant; V= Poisson’s 
ratio; 𝑇𝑇𝑏𝑏 = 𝑇𝑇𝑟𝑟 = bulk and grain rock compressibility; 𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠= thick walled-cylinder strength. 

It is good to note the following conditions; 
1. when Loading factor is less than 1, the formation hasn’t failed 
2. when Loading factor is greater than 1, the formation has failed and subsequently, sand 

may be produced. 

3.3. Water-cut (WC) 

The percentage of water generated in a well relative to all liquids produced is known as the 
"water-cut." Oil and water mix as they flow out the well and the field fills with water. Water 
cut refers to how much water is present in these wells. It is important to keep in mind that 
water cut increases the likelihood of sand formation, which is based on perforation strength 
and sanding depends on the mineralogical constitution of the sandstone and extent of residual 
water saturation. Water cut boosts sand production; hence its impact was taken into consid-
eration when this work's model was being developed. Water cut can be calculated using the 
equation 5. 

WC= 
𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑟𝑟 𝑠𝑠𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 )

𝑤𝑤𝑤𝑤𝑤𝑤𝑒𝑒𝑟𝑟 𝑠𝑠𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 )+𝑝𝑝𝑜𝑜𝑜𝑜 𝑠𝑠𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚 )∗100%
 (5) 
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3.4. Gas-liquid-ratio (GLR) 

The ratio of a volume of gas to a volume of liquid at the same pressure and temperature is 
known as the gas-liquid ratio. This is very important for characterizing the behaviour of a 
reservoir. High GLR predicts better SPR results. GLR can be calculated using equation 6 

GLR= 
𝐺𝐺𝑤𝑤𝑠𝑠 𝑃𝑃𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 )

𝐺𝐺𝑤𝑤𝑠𝑠 𝑠𝑠𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 )+𝐿𝐿𝑜𝑜𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝 𝑃𝑃𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝
 (6) 

where Liquid produced= water produced + oil produced             (7) 

4. Methods 

4.1. Model development data set 

The data used for this work as discussed in section 3.2 above comprises of input parameters 
and an output parameter. The input parameter comprises of water cut, gas liquid ratio, Reyn-
olds number and loading factor. The output parameter which is Sand production Rate (SPR) 
considered as measured in pounds per month (lb/month) was generated using the mathemat-
ical model equation as developed by Okereke et.al. [22] which is dependent of the parameters 
listed above. The input and output data set used for this machine learning model can be 
summarized in Tables 1 and 2 respectively. 

Table 1. Summary of Input data set used for model development. 

Input parameters Mean Median Mode Max Min No of counts 
RE 0.064032 0.0191 0.0161 0.36845 0.0018 72 
LF 1.6567 1.715 1.45 2.54 0.54 72 
WC 0.4 0.41 0.33 0.905 -0.165 72 
GLR 3081.833 442 107 22504 -7340 72 

Table 2. Summary of output data used for model development. 

Output parameter Mean Median Mode Max. Min. No of counts 
(bbl/month) 1116.819 86.488 --------- 7839.3 0.801 72 

The input and output data were obtained from the research work conducted by Okereke et al. 
[22] for three different wells with the data being merged to produce a single model which can 
work for the 3 wells. This was done due to the non- availability of real field data. The equation 
was inserted into an excel data sheet with the corresponding input data and then the output 
data set was generated. The equations according to Okereke et al. [22] are shown in Equations 
8, 9, and 10 for OMD64/D1, OMD64/D2, and OMF65/D3 respectively. 
𝑄𝑄𝑠𝑠𝑤𝑤𝑠𝑠𝑝𝑝 = 7938.66 ∗ 𝑅𝑅𝑒𝑒0.8957 ∗ 𝐿𝐿𝐿𝐿 ∗ exp (0.5657𝑤𝑤 + 1.22𝐸𝐸 − 05𝐺𝐺) for OMD 64/D1 (8) 
𝑄𝑄𝑠𝑠𝑤𝑤𝑠𝑠𝑝𝑝 = 196.12 ∗ 𝑅𝑅𝑒𝑒1.2771 ∗ 𝐿𝐿𝐿𝐿 ∗ exp (6.8081𝑤𝑤 + 3.28𝐸𝐸 − 05𝐺𝐺)   for OMD 64/D2 (9) 
𝑄𝑄𝑠𝑠𝑤𝑤𝑠𝑠𝑝𝑝 = 912.78 ∗ 𝑅𝑅𝑒𝑒1.015 ∗ 𝐿𝐿𝐿𝐿 ∗ exp (0.1407𝑤𝑤 + 5.27𝐸𝐸 − 04𝐺𝐺)    For OMD 65/D3 (10) 

This equation was merged together to develop a single machine learning model that can 
predict sand production rate measured in bbl/month for the wells. This data set was modelled 
using Design Expert Software which makes use of response surface model (RSM) as the modelling 
tool. The features of this software shall be discussed in section 4.2.1. 

4.2. Model development environment 

In this project work, the SPR model was developed using the Design Expert software which 
works based on response surface method. The model developed using this software is a data 
driven cubic model which can predict sand production rate. This section can be summarised 
in this 2 sub-heading. 1. Introduction to machine learning; 2. Design Expert Software; 3. 
Response Surface Model (RSM). 

4.2.1. Design of experiment (design expert) 

A statistical software program used exclusively for experiment design is called Design-Ex-
pert (DOE). This provides characterisation, screening, optimization, comparison tests, mixture 
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designs, robust parameter, and combined designs. Up to 50 factors can be screened using the 
test matrices provided by Design-Expert. The fact that design-expert offers analysis of vari-
ance (ANOVA) has statistical significance. Additionally, it offers graphical tools that show how 
each component affects the intended results and subsequently highlight anomalies in the data 
set. This offers a wide range of graphical and analytical techniques for model interpretation 
and fitting. There are 5 stages of methodology of Design of Experiment which includes: a. 
planning; b. screening; c. optimization; d. robustness testing; e. verification. 

4.2.2. Response surface method/model (RSM) 

A mathematical and statistical tool used for designing, optimizing, and upgrading the pro-
cess is the response surface model or response surface method. When a number of independ-
ent factors, often referred to as predictor variables, have an impact on the dependent variable 
or response, this is crucial to the analysis of the issue. RSM is employed to strengthen a 
process in the face of unpredictable noise and even pursue numerous objectives. Additionally, 
it is employed to meet predetermined goals, lessen process variability, and maximize or minimize 
responses. The purpose of response surface modelling is summarised as follows:1. Analyse 
and rectify process problems and weak points; 2. Find optimal or improved settings; 3. Robust 
the process or product against the external influence. 

4.2.3. Model validation 

Due to the fact that models cannot be trusted, it is of great importance to carry out model 
validation. In the course of this project work, model validation was done using 2 method: 1. 
Error analysis; 2. Cross plots. 

4.2.4. Error analysis 

By isolating, observing, and diagnosing inaccurate machine learning predictions, error anal-
ysis helps us to identify where the model performs well and poorly. In this work, the error 
analysis was done using the following method: a. Mean absolute error (MAE);b.  Mean square 
error (MSE); c. Root mean square error (RMSE); d. Coefficient of determination score (R2 score). 
Mean absolute error 

MAE is a measure of errors between paired observations expressing same phenomenon. It 
is the amount of error that exist in a measurement, which shows the difference between true 
value and predicted values. Eqn. (11) shows the mathematical equation for MAE. 

𝑀𝑀𝐴𝐴𝐸𝐸 =  
∑ |𝑦𝑦𝑜𝑜 − 𝑥𝑥𝑜𝑜|𝑠𝑠
𝑜𝑜=1

𝑛𝑛
 (11) 

where, 𝑀𝑀𝐴𝐴𝐸𝐸 = mean absolute error, 𝑦𝑦𝑜𝑜  = predicted value, 𝑥𝑥𝑜𝑜  = true value, 𝑛𝑛 = total No. of data 
points. 
Mean square error 

MSE measures the average of the squares of the errors, i.e. it measures the average of the 
squares of the errors. It accounts for the amount of error in mathematical and statistical 
models, it basic mathematical principle is shown in eqn. (12). 

𝑀𝑀𝑆𝑆𝐸𝐸 =  
1
𝑛𝑛

 ��𝑌𝑌𝑜𝑜 −  Ŷ𝑜𝑜�
2

𝑠𝑠

𝑜𝑜=1

 (12) 

where, 𝑀𝑀𝑆𝑆𝐸𝐸 = mean square error, 𝑛𝑛 = total No. of data points, 𝑌𝑌𝑜𝑜 = true or observed values, 
Ŷ𝑜𝑜 = predicted values. 
Root mean square error  

This is the square root of the mean of the square of all of the error. It is considered an 
excellent general purpose error metric for numerical predictions. It is a frequently used meas-
ure of the differences between values predicted by the model and values observed. It is given 
by the formula in eqn. 13. 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 =  �
∑ (𝑦𝑦𝑜𝑜 − ŷ𝑜𝑜)2𝑁𝑁
𝑜𝑜=1   

𝑁𝑁
 (13) 
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where;𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = root mean square error, 𝑛𝑛 = total No. of data points, 𝑌𝑌𝑜𝑜 = true or observed 
values, Ŷ𝑜𝑜 = predicted values     
Coefficient of determination score 

This is known as the R-Squared score. It is the proportion of the variation in the dependent 
variable that is predicted from the independent variable. Best possible score is 1.00 and it can 
be negative (since some models can be arbitrarily worse). It can be represented by the formula 
in eqn. 3.9d 

𝑅𝑅2 = 1 −  
𝑅𝑅𝑆𝑆𝑆𝑆
𝑇𝑇𝑆𝑆𝑆𝑆

 (14) 

where; 𝑅𝑅2 = coefficient of determination, 𝑅𝑅𝑆𝑆𝑆𝑆 = sum of squares residuals, 𝑇𝑇𝑆𝑆𝑆𝑆 = total sum of 
squares. 

5. Results and discussion 

5.1. Results 

A summary of the results from this work are presented in tables and plots. The results are 
grouped as 1. Machine learning model developed; 2. Comparison of predicted vs actual model; 
3. Effects of input parameters on predicted SPR; 4. Statistical results;5. Results from error 
analysis carried out;6. Cross plots.  

5.1.1. Machine learning model developed 

The developed model is a function of Reynold’s number, loading factor, gas-liquid ratio and 
water-cut as shown in Equation 1.  

 𝑄𝑄𝑠𝑠𝑤𝑤𝑠𝑠𝑝𝑝 = F(LF, RE, GLR, WC) (15) 
The developed SPR model is given by equation 2 

 𝑄𝑄𝑠𝑠𝑤𝑤𝑠𝑠𝑝𝑝 = 379.939 + −9,416.62 ∗  𝑅𝑅𝑅𝑅 +  −480.763 ∗  𝐿𝐿𝐿𝐿 +  −997.747 ∗  𝑇𝑇𝑇𝑇 +  0.00235646 
∗  𝐺𝐺𝐿𝐿𝑅𝑅 +  12,765 ∗  𝑅𝑅𝑅𝑅 ∗ 𝐿𝐿𝐿𝐿 +  16,959.7 ∗  𝑅𝑅𝑅𝑅 ∗ 𝑇𝑇𝑇𝑇 +  929.591 ∗  𝐿𝐿𝐿𝐿
∗ 𝑇𝑇𝑇𝑇                                                          

(16) 

where 𝑄𝑄𝑠𝑠𝑤𝑤𝑠𝑠𝑝𝑝 = sand production rate in bbl/month, Re= Reynold’s number, LF= loading factor, 
WC = water cut, GLR= gas liquid ratio in scf/bbl. 

5.1.2. Comparison of predicted SPR vs actual SPR 

 
 

 

Figure 1. Plot of predicted SPR vs actual SPR. Figure 2. Normal probability plot of the residuals, 

The percentage or rate of deviation of the predicted SPR from the actual SPR is provided in 
the appendix section of this work. The good thing to note is that the average deviation of the 

138



Petroleum and Coal 

                          Pet Coal (2024); 66(1): 132-143 
ISSN 1337-7027 an open access journal 

residual is 2.27 which is a good result. The plot of predicted vs actual SPR is shown in Figure 1. 
From the Figure 1 you will notice that the points are close to the fitted line with narrow confi-
dence bands which is an indication of a good fit. This means that the residuals are i.e the 
difference between the actual and the predicted values isn’t of much significant value. This 
can be better illustrated using the normal probability plot of the residuals as shown in the 
Figure 2. From Figure 2, the normal probability plot of the residuals is approximately linear 
thereby supporting the fact or condition that the error terms are normally distributed. The 
straight diagonal line here shows a normally distributed data. 

5.1.3. Effects of input parameters on predicted SPR 

This section summarises the effects of Re, LF, GLR and WC on predicted SPR and the results 
are presented in Figure 3. 

 
Figure 3. Effect of Re, LF, WC, and GLR on sand production rate. 

Effect of water cut on predicted SPR 

This is presented in the bottom left picture of Figure 3 which illustrates how water-cut 
affects the predicted sand production rate. The response of water-cut thus determined show 
that the sand production rate increases with water cut for all values of loading factor and Gas 
liquid ratio. The cross-like lines in the plot indicates factors with multiple interactions during 
the modelling. 

Effect of GLR on predicted SPR 
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It can be deduced that GLR increases with increasing water-cut and vice versa (Bottom 
right). In order to avoid sanding, the Gas-liquid ratio should be kept fairly low.  However, 
Models predicts more accurately when GLR is relatively high. The GLR versus SPR trend shows 
that GLR is directly proportional to SPR as such means that SPR increases as GLR increases. 

Effect of Reynolds number on predicted SPR 

As a standard, it can be deduced that for values of Re<0.1, sanding occurs. This indicates 
that sand production rate is dominated by the loading factor in this case. The top left picture 
of Figure 3 shows the effect of increasing or decreasing Reynold’s number on sand production rate. 

Effect of loading factor on predicted SPR 

As earlier stated, LF>1 indicates propensity of the reservoir to produce sand. Loading factor 
increases with depth and this increase initiates sand production. This is better described in the 
Figure 3 (top left picture). 

5.1.4. Statistical results 

This section covers for the statistical analysis carried out on the developed model to account 
for errors. This comprises of ANOVA and fit statistics. 

Analysis of variance (ANOVA) 

ANOVA is a statistical technique that isolates observed variance data into various compo-
nents for use in further or additional tests. This seeks to learn more about how the dependent 
and independent variables are related. 

Table 3. Analysis of variance on developed model. 

Source Sum of 
squares df Mean Square F-Value P-Value  

Model 2.932E+08 10 2.932E+07 243.57 <0.0001 significant 
A-Re 9.175E+06 1 9.175E+06 76.22 <0.0001  
B-LF 4.130E+06 1 4.130E+06 34.30 <0.0001  
C-WC 3.410E+06 1 3.410E+06 28.32 <0.0001  
D-GLR 2.825E+05 1 2.825E+05 2.35 0.1307  
AB 4.755E+06 1 4.755E+06 39.50 <0.0001  
AC 3.917E+06 1 3.917E+06 32.54 <0.0001  
AD 2.496E+05 1 2.496E+05 2.07 0.1550  
BC 3.466E+05 1 3.466E+05 2.86 0.0958  
BD 3178.55 1 3178.55 0.0264 0.8715  
CD 91955.11 1 91955.11 0.7639 0.3855  
Residual 7.343E+06 61 1.204E+05    
Cor Total 3.005E+08 71     

The following can be summarized from Table 3:  
a. The Model F-value of 243.57 implies the model is significant. This is the ratio of explained 

variance to unexplained variance. There is only a 0.01% chance that an F-value this large 
could occur due to noise. 

b. P-values less than 0.0500 indicate model terms are significant. P value describes how 
likely the data would have occurred under the null hypothesis of the statistical test. In this 
case A, B, C, AB, AC are significant model terms. 

c. Values greater than 0.1000 indicate the model terms are not significant. If there are many 
insignificant model terms (not counting those required to support hierarchy), model reduc-
tion may improve your model. 

Fit Statistics 

This covers for the mean, standard deviation, coefficient of variance, and adequate preci-
sion of the developed model.  The statistics is provided in Table 2 
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Table 4. Fit statistics of developed model. 

Standard deviation 346.96 Adjusted 𝑅𝑅2 0.9716 
Mean 1116.82 Predicted 𝑅𝑅2 0.9679 
C.V % 31.07 Adequate Precision 63.6447 
𝑅𝑅2 0.9756   

The predicted R² of 0.9679 is in reasonable agreement with the adjusted R² of 0.9716; i.e. 
the difference is less than 0.2. Adequate precision measures the signal to noise ratio. A ratio 
greater than 4 is desirable.  In this work, an adequacy in precision of 63.645 was obtained 
indicating an adequate signal and can be used to navigate the design space. 

5.1.5. Model validation (error analysis) 

Table 5 summarises the values gotten when error analysis was carried out on the devel-
oped. The percentage error plots are shown in the appendix section of this work. The statistical 
error metrics which includes mean square error, mean absolute error and root square error. 
From the table and plots, it is observed that the model has minimal error since the R² value 
is high. This simply confirms and concludes the fact that the developed model is reliable and 
can be deployed. 

Table 5. Error analysis result. 

Mean absolute error 0.453 Score 0.9756 
Mean square error 1.035 Adjusted  score 0.9716 
Root mean square error 1.017 Adequate precision 63.6447 

6. Conclusion 

The petroleum industry is becoming increasingly concerned with sand production, which is 
common in the Niger Delta and presents technical, operational, and financial difficulties. Literature 
has devoted a lot of time to the creation of sanding prediction tools and efficient management 
techniques. However, the majority of the published theoretical models have been supported 
by data from other petroleum regions than the Niger Delta or evidence from laboratories. Data 
analytics has gained a more relevance in the oil and gas industry recently as the industry 
seeks to analytically use data for optimal productivity and reduction of cost/time management 
purposes. As data is growing in this industry, the ability of the industry to use these data 
alongside intelligent models to solve problems is a very important and as well useful predicting 
sand production rate. In reservoir engineering and other disciplines in the oil and gas industry, 
history matching is often done and futuristic predictions are made towards the prediction of 
either the optimal production rate or the oil in place in a particular reserve. Same is applied 
in the use of intelligent models to make predictions towards the propensity of a reservoir to 
produce sand or not with respect to existing dataset recorded. 

A machine learning model for estimating the rate of sand production in Niger Delta oil fields 
was developed. The developed model is very reliable since the average deviation of the resid-
ual is 2.27 which is fair enough. The proposed model's predictions will help in the planning of 
capital investments connected to sanding, such as delaying the installation of sand control 
mechanisms, digging disposal wells, and increasing the capacity of sand handling facilities. 

The minimal deviation between the observed SPR and predicted SPR is an indicator that 
gas-liquid ratio, water cut, loading factor and Reynold’s number plays a very important role in 
predicting sanding tendencies especially in loosely packed sedimentary basins like Niger-Delta. 

SPR Models tends to predict accurately when the GLR is significantly high. It can be deduced 
that the input parameters vary directly to the rate of sand production. Hereby, any slight 
increase in any of the parameter will cause an increase in the rate of produced sand. To this 
effect, the parameters should be kept as low as possible. Unconsolidated formations are more 
likely to produce sand due to the fact that they are loosely arranged and unstratified. 
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7. Recommendation 

For better results, it is recommended that the developed SPR model should be validated 
using additional data from diverse depositional conditions throughout the Niger Delta. Future 
research should take into account the variable rock mechanical characteristics of the examined 
reservoir. The major challenge from this work is the need for humongous data set which is 
not readily available for practical use. It is recommended that petrophysical data are made 
available in literatures in order to ease future predictions. 
From the results, it is evident that machine learning models can be used for the predictions of 
sand production rate. Although, these models have not been deployed in real time predictions, 
as such more research can be done in this regard and deployment executed in nearest future 
for sand production prediction. 

Nomenclature 

ANOVA  Analysis of variance 
CV  Coefficient of variance 
GLR  Gas liquid ratio 
KB  Bulk modulus 
LF  Loading factor 
LB/M  Pounds per month 
RE  Reynold’s number 
RSM  Response surface model 
SPR  Sand production rate 
MAE  Mean absolute error 
MSE  Mean square error 
RMSE  Root mean square error 
PPTB  Pounds per thousand barrels 
TWC  Thick wall cylinder 
UCS  Uniaxial compressive strength 
SCF/BBL  Standard cubic feet/ barrels 
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