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Abstract 

Wax deposition is a critical issue during the process of oil production in the petroleum industry. Hence, 

it is possible to enhance the quality and efficiency of oil production by using accurate and reliable 
models for estimation of wax deposition. This study highlights the application of radial basis function 

network optimized by genetic algorithm (GA-RBF) for pre-diction of wax deposition in oil systems based 

on literature data. The obtained results show that the proposed GA-RBF model is accurate and effective 
for prediction of target wax deposition data. In addition, the results of this work are compared with the 

results of CSA-LSSVM and multisolid thermodynamic models. The comparisons reveal that GA-RBF 

model presents more accurate results and outperforms other models for estimations of wax deposition. 

Keywords: Wax; Genetic Algorithm (GA); Radial Basis Function (RBF); Multisolid thermos-dynamic model; Depo-

sition. 

 

1. Introduction 

Wax deposition is one of the main unsolved challenges in flow assurance of pipelines and 
production equipment in the petroleum industry that can reduce oil production efficiency. It 
can result in blocking of wellbores, transportation pipelines, production equipment, and even 
reservoir rock and can significantly effect field economy, because of increasing operational 

and remedial costs in addition to the decrease of production rate [1-4]. In order to predict this 
solid deposition, an accurate, reliable, and well-detailed wax deposition and precipitation 
management program is needed, which can result in reducing of wax problems and remedial 
costs during oil production and transportation. In addition, prediction of deposited wax amount 
and temperatures of wax appearance (WAT) and wax disappearance (WDT), which has a great 

importance and value in designing of production processes can be achieved using a reliable 
and accurate model [2]. Therefore, the need for an appropriate model, which correctly predicts 
the amount of wax deposition, is clearly justified. 

One of the frequently used thermodynamic models was developed by Burger et al. [5] in 
which dissolved the crude oil in a solvent mixture (ether/acetone) is cooled to 253K; in 

following it is filtrated at this temperature. The total amount of wax that can be deposited 
could be acceptably represented by this method [5]. Multisolid phase (MS) model is one of the 
most used thermodynamic methods in the literature [4,6]. Assuming each phase as a pure 
component, which does not mix with other phases of solid is one of the considerations of this 
model pre-sented by Lira-Galeana et al. [6]. Determination of wax deposition potential of three 
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waxy crude oils in a laminar flow of pipeline system was investigated by Valinejad and 
Solaimany Nazar [7]. They evaluated the impacts of important operation factors like inlet 
temperature of the crude oil, crude oil flow rate, and wax content, etc. by applying Taguchi 
experimental design approach [8]. Their obtained results indicate that more precipitated solid 
wax is caused with waxy crude oil containing higher wax content during transportation [7]. A 

novel method for modeling of wax deposition in fluid flow was developed by Akbarzadeh and 
Zougari [3]. Several possible mechanisms in the process of wax deposition were considered by 
them among which, particle diffusion/deposition was recognized as the main factor in deposits 
formation under actual transport conditions [4]. 

Determination yield stress of waxy oil gel created under quiescent and shear conditions was 

investigated by Bai and Zhang [9] using vane method [10]. Their results show that by increasing 
the average carbon number of wax, yield stresses dramatically decrease irrespective to quiescent 
or shear conditions [9]. An empirical model for prediction of wax precipitation in production 
systems was proposed by Kelechukwu et al. [11]. An acceptable prediction ability of this model 
compared with laboratory evaluation was exhibited.  

Nevertheless, agreement of the predicted conditions of wax formation by thermodynamic 
models with experimental data is not excellent, and these predicted data and the wax preci-
pitated amount are generally under- or overestimated [1]. On the other hand, in addition to 
special apparatus, expensive, challenging, and time-consuming procedures are required to 
perform experimental measurements. Accordingly, developing an accurate, reliable, and rapid 
method, which can resolve aforementioned thermodynamic models’ problems and experi-

mental measurements issues, is necessary. Some intelligent tools such as Fuzzy Logic (FL), 
Genetic Algorithm (GA), Artificial Neural Networks (ANNs), and Support Vector Machine (SVM) 
that are strongly reliable and powerful tools for data analysis and interpretation could be 
utilized to predict regression and assortment problems [12-25]. In this work, a radial basis function 
network optimized by genetic algorithm (GA-RBF) was developed for estimation of wax depo-

sition in oil systems. In addition, the developed model was compared with other literature 
models. Results reveal that the developed model is accurate for estimation of wax deposi-tion 
and also is superior to other literature correlations. 

2. Radial basis function neural network (RBF-NN) 

ANNs gain their performance from the behavior of biological neurons [26]. The learning steps 

of these networks are done through iterative processes. The structure of these networks 
consists of parallel layers and interconnected units; hence, formulation of physical and 
mathematical relationships is not required [27-28]. The most important feature of neural 
networks is their ability for processing a large amount of data and their efficiency and capa-
bility to extend the results. ANNs are parallel distributed systems that consist of specific 

neurons as processing units. These units are located in layer(s) and transfer information 
between themselves by certain connections. Multi-layer Perceptron (MLP) and Radial Basis 
Function (RBF) networks are two well-known types of ANNs. Both models are the same in 
application because both of them are utilized for pattern recognition and nonlinear prediction. 
However, there are notable differences in their structure. RBF networks have several advan-

tages over MLP networks such as the simple and fixed three layer structure, which brings them 
to be easier to design compared to MLP networks. They could react effectively to input noise; 
they also are capable to learn instantly and are able to effectively extend the results [29]. The 
high capability of RBF networks for generalization of results leads to their ability to figure out 
the patterns of testing data, which are not utilized in training process [30].  

In modeling with RBF, the model tries to define a function f(x) to be able to accurately fit 

a N-dimensional data set, which contains a D-dimensional input vector such as 

[ :1,2,..., ]p p
iX X N  to its corresponding output vector, t p (i.e., 

p p(X ) tf 1,...,p D  ). In 

RBFNs every data points have a basis function shown by 
( )px x 

 that (.)  represents a 
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non-linear function. Next, by defining appropriate weight terms (w), the behavior and 
predictions of the network become close to the patterns, which exists in the data points. The 
weight terms appear in the fitting process by a mathematical formulation such as: 

q

1

(x ) ( ) t



  
N

q q p
p

p

f w x x                                      (1) 

Taking into account this equation for all data points, it is possible to represent above 

equation in matrix form as W t   in which 
p{t }t   and 

p{w }W . Using matrix inversion 

techniques, the above equation is solvable by taking the form 
1 tW  . Although there are 

various reports about the fact that certain features of function f(x) is independent to the RBFs 

( ( )r ); however, one of the most useful and well-known types of RBFs is the Gaussian 

function formulated as follows: 
2

2
(r) exp( )

2



 

r
                                     (2) 

where r>0 is the position of a data point x relative to a center c and the parameter 

evaluates the smooth behavior of function f(x). More details about RBF networks are available 

in the literature [21,31-32]. 

3. Genetic algorithm 

The GA is a stochastic technique which originates based on Darwin’s theory which states 
that in a population the better and fitter members and individuals have more chance to be 
survived [33-34]. This algorithm uses three basic operators in its optimization process. The 

name of these operators are selection, cross-over, and mutation [35]. The optimization process 
of GA to gain and characterize the best solution for a problem under consideration is controlled 
by using a cost function such as the Mean Square Error (MSE) between experimental data and 
model outcomes. The most important feature of GA is that it is free of derivative which means 
that stochastic and iterative searching nature of GA and its dynamic fitness evaluating 

performance introduces it as a powerful and robust optimization algorithm. This algorithm has 
a good capability for processing and dealing with non-continuous, non-differentiable, and 
nonlinear cost functions [34]. More details about this algorithm and its performance are 
available in the open literature [36-40]. 

4. Data acquisition 

Table 1. Statistical parameters of the input and output 

parameters. 

Parameter Minimum Maximum Average 

Wax deposition (wt%) 0 13 3.14 

T (K) 230 314.15 272.66 

Specific gravity 0.872 0.963 0.918 

C1-C3 (%) 0.218 2.127 1.315 

C4−C7 (%) 3.057 30.952 18.476 

C8−C15 (%) 33.468 49.791 44.495 

C16−C22 (%) 16.029 57.335 29.005 

C23−C29 (%) 0 10 2.811 

C30+ (%) 0 13.23 3.538 
 

In order to develop a reliable intel-

ligent model, it is important to use 
reliable and valid data [41-49]. The data 
utilized should cover a wide range of 
variables. Hence, a data bank of 87 
data points was collected from 

several published works and used in 
the present study [50-52]. The wax de-
position was considered to be a fun-
ction of nine parameters which 
reveal the thermodynamic features 

of corresponding oil systems. These 
parameters are the mole percentages 
of C1-C3, C4−C7, C8−C15, C16−C22, 

C23−C29, and C30+ components, temperature (T/K), and specific gravity. The details of the input 
and output parameters are listed in Table 1. 
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5. Results and discussion 

5.1. Model development 

The first normalization of data points between -1 and 1 was carried out using the following 
equation: 

2 1Min
Normal

Max Min

x x
x

x x


  


                   (3) 

 
Then, to construct a reliable model for estimation of experimental solubility data, the 

gathered databank was randomly classified into two train and test data sets. The training data 
is essential for the construction of the initial structure of model, and the test data is utilized 

to evaluate the generalization ability and accuracy of the model in the estimation of unseen 
data (test data). To develop an RBF model, it is important to evaluate the tuned and optimized 
values of two para-meters corresponding to the structure of RBF model. The names of these 
parameters are Spread and Maximum Number of Neurons (MNN). It is of great importance to 
optimize these parameters because of their notable impact on the modeling ability of  the 

model. Genetic Algo-rithm as a well-known optimization algorithm was used to optimize the 
values of Spread and MNN. 

In the process of using GA for determining the optimum values of Spread and MNN, at first 
stage, a population size of 50 was constructed to tune the Spread and MNN values by GA. 
Next, the MSE value between target data and model outcomes was used as a cost function to 

sort the population and construction of new population. In the next step, the operators of GA 
including cross-over and mutation were applied to evaluate the optimum values of Spread and 
MNN. The MSE algorithm was controlled within the convergence of criterion of the model to 
optimum values as it is represented in Figure 1. The obtained values for Spread and MNN were 
36 and 1.686, respectively. 

 
 

Figure 1. Convergence process of GA-RBF model to 
the optimum values of spread and MNN 

Figure 2. Estimated wax deposition values against 
experimental data 

5.2. Evaluation of the model 

Both graphical and statistical approaches were used to check the applicability and accuracy 
of the proposed model. For graphical validation, first, the regression plot is used. Figure 2 

represents the regression plot of the GA-RBF method. The horizontal and vertical axes show 
the experimental and estimated values for wax deposition. The closer estimations to the target 
values lead to the aggregation of data points around the 45° line. As it is represented in Figure 
2, both train and test data points are in a good degree of accuracy. 
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Another plot is the relative deviation plot of the model predictions. Figure 3 depicts the 
relative error deviation for the GA-RBF model. As it is clear, in the case of exclusion of 6 data 
points the maximum absolute relative deviation for GA-RBF is less than 0.4. To provide a 
proper view about the precision of the proposed model, the outcomes of  the model and 
experimental values are simultaneously plotted in Figure 4. As it is clear, the esti-mated values 

are of excellent consistency with the experimental data.  

 
Figure 3. Relative deviations of the GA-RBF model against target wax deposition values 

 

 

 
Figure 4. Co-representation of experimental and estimated wax deposition values versus index of 
data points 
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In case of statistical validation of the model, four statistical parameters of correlation factor 

(R2), Average Absolute Relative Deviation (AARD), Standard Deviation (STD), and Root Mean 
Squared Error (RMSE) were used (Equations (4)-(7)). The mathematical representation of 
these parameters is as below: 

2
Pr

2 1

2
Pr

1

( ( ) ( ))

1

( ( ) )

N

ed Exp

i
N
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i i
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                  (7) 

The calculated values for the train, test, and total phases are summarized in Table 2. The 
values of 0.99504, 11.33, 0.28, and 0.21 for respective R2, AARD, STD, and RMSE for the 
total dataset show the reliability and ability of the developed GA-RBF model to reproduce the 
wax deposition values. 

Table 2. The statistical parameters of the GA-RBF model for estimation of wax deposition 

Data set R2 AARD% STD RMSE N 

Train data 0.9972 7.55 0.16 0.17 70 

Test data 0.9791 26.90 0.51 0.34 17 

Total data 0.9950 11.33 0.28 0.21 87 

At this point of the study, the GA-RBF model is put into comparison with the previously 
published models. Kamari et al. [53] developed a CSA-LSSVM model for estimation of wax 
deposition using the same data bank as this study. Moreover, Lira-Galena et al. [6] developed 

a multisolid model for prediction of wax deposition using just data points related to oils 12 and 
15 among all of the data points used in the present work. The multisolid model is explained 
in detail in Appendix A. First, the results of the GA-RBF model and the multisolid model 
proposed by Lira-Galena et al. [6] for oils 12 and 15 were compared as it is depicted in Figure 
5 by plotting experimental and estimated wax deposition values against temperature for both 

models.  

  
Figure 5. Comparison between the GA-RBF model and the multisolid model for estimation of wax 

deposi-tion values: (a) Oil 12, (b) Oil 15. 
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It is clear from this figure that the results of the GA-RBF model are accurate and more 

reliable than the multisolid model due to higher overlap between experimental values and the 
GA-RBF model results especially in the case of oil 15. 

The comparison between the results of the GA-RBF model and the CSA-LSSVM model 
developed by Kamari et al. [53] is carried out by plotting the values of R2, AARD, RMSE, and 

STD values of three methods at different phases of train, test, and total data points. These 
plots are depicted in Figure 6. It is clear from this figure that GA-RBF model outperforms this 
model thanks to higher values of R2 and lower values of AARD, RMSE, and STD. 

  

  
Figure 6. Comparison between results of the GA-RBF model and the CSA-LSSVM model: (a) R2, (b) 
AARD, (c) RMSE, and (d) STD. 

6. Conclusion 

In this work, a GA-RBF model was developed for estimation of wax deposition in oil systems. 
The purpose of using genetic algorithm was to evaluate the optimum parameters related to 

the structure of RBF model and achieving the most accurate performance of the model. The 
outcomes of the model were put into comparison with experimental data by various statistical 
and graphical approaches to check the accuracy of the proposed GA-RBF model. Results reveal 
that the model is accurate and is capable to reproduce the target wax deposition values with 
the lowest possible error. The outcomes of the developed model were also compared with two 
literature models on wax deposition, and it is concluded that the GA-RBF model represents 

better results compared to other models. Results of this study could be used in areas where 
accurate predictions of wax deposition are necessary.  
  

(a) (B) 

(c) (d) 
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Appendix A. Multisolid thermodynamic model 

This model assumes that when vapor-liquid-solid equilibrium exists in a system, the 

fugacities of a component such as component i in vapor, liquid, and solid phases are identical 
and the stability condition is valid. This leads to N vapor-liquid and Ns liquid-solid isofugasity 
equations as below: 

1 2 1 1 2 1( , , , ,..., ) ( , , , ,..., ) 0;  1,2,...,v l

i N i Nf P T y y y f P T x x x i N   
 

(A.1) 

1 2 1 ,( , , , ,..., ) ( , ) 0;  ( ) 1,...,l s

i N i pure sf P T x x x f P T i N N N     
 

(A.2) 

In addition, for non-precipitating components there are a number of N-1 material balance 
equations as below: 

1 0;  1,..., ( )
sN

jl vl l l

i i i i i s

j

S V V
z x K x f i N N

F F F

 
       

 


 

(A.3) 

For precipitating components including pure solid phases, a number of Ns-1 equations are 
valid as follows: 

1 0;  ( ) 1,..., ( 1) ( 1)
sN

jl vl l l

i i i i i s s

j

S V V
z x K x f i N N N N

F F F

 
          

 


 

(A.4) 

where 

( , , )

( , , )

l l
vl i
i v

i

T P x
K

T P y






 

(A.5) 

,( , , ) ( , ) 0;  1,...,l s

i j pure if T P z f T P i N  
 

(A.6) 

In the above equations fi
l represents the liquid fugacity of the i-th component, fi

v is the 
vapor fugacity of the i-th component, T and P represent temperature and pressure, respect-

tively, and the notations x, y, z, and s are related to respective mole percents of liquid, vapor, 
feed, and solid phases. It is possible to determine the onset of wax formations and the wax 
deposition value by simultaneously solving the above equations.  
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