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Abstract 

Estimation of incremental oil recovered in a successful enhanced oil recovery (EOR) project has always 

been done over the years using already established formulae, undermining  substantially some inherent 
challenges. To address some of these posed shortcomings, however, necessitates the need  to model 
the EOR curve. 
This research paper presents the  formulation and application of a highly sophisticated numerical model to 
model the incremental oil recovery  curve in order to obtain improved values of the incremental oil 
recovered . Rate-time curves from laboratory data  for surfactant and polymer flooding were used. The 

methodology used was cubic spline numerical modeling. "OUR" algorithm was used as the solution method 

to tridiagonal system of equations formed. Different and continuous equations were derived for each 
interval between successive data points (knots)  and then joined together piecewise to form the composite 
equation to represent the EOR process. The incremental oil recovered was then obtained by applying 
the cubic spline to quadrature (numerical integration). 
The results showed that the incremental oil obtained by the cubic spline model was 2.7% and 5.6% 
more than that obtained by the trapezoidal rule in the  surfactant and polymer flooding respectively. The 

trapezoidal rule would always give less amount of the incremental oil because the exactitude of its 
results is dependent on the linearity of the function being approximated. This suggests that the cubic 
spline model gives  better results.  

Key Words: Cubic interpolant formulation; Cubic spline; Equation of curvature; First derivative; Incremental oil 
recovered; Linear or Natural Spline Boundary Condition; piecewise curve; Second derivative and Tridiagonal system 
of equations. 
 

1. Introduction 

A universal technical measure of the success of an EOR project is the amount of incremental 

oil recovered [1-2].  Over the years, ways by which this is inferred ranged from graphical 

procedures  to highly sophisticated numerical models. One of the former, the decline curves 

method and one of the later, often the trapezoidal rule. Both pose challenges of inaccuracy 

in shifting [3-4] and approximation of the integral under a curve with that under a straight 

line segment [5] respectively. These  substantially undermine the exactitude of the amount 

of the incremental oil obtained by both methods, and to which less attention has been paid 

over the years . However, the application of cubic spline numerical modeling concept significantly 

addresses some of these posed issues.  

Spline concept by different authors of several literatures were studied. None actually worked 

on the application of the concept on recovery mechanism but some did on other engineering 

disciplines. However, a brief review of the concept is encapsulated below. 

A spline is simply a curve. In mathematics, it's a special function defined piecewise by 

polynomials [6-9]. In computer science, the term spline refers to a piecewise polynomial curve [6].  

The solution was to place metal weights (called knots) at the control points, and bend a 

tin metal or wooden beam (a spline) trough the weights. A piecewise polynomial function 



𝑓(𝑥) is obtained by dividing the independent variable  𝑥 into contiguous intervals and repre-

senting the function in each interval by a separate or different and continuous polynomial. 

These  polynomials are then joined together at the interval endpoints (knots) in such a way 

that a certain degree of smoothness of the resulting or composite function is guaranteed [6].  

Cubic spline is a spline constructed of piecewise third-order polynomials which pass through a 
set of 𝑛 control data points (𝑥1, 𝑦1), (𝑥2, 𝑦2),....... (𝑥𝑛 , 𝑦𝑛)[6]. That is, the cubic spline function 

approximations are composite approximations. In the mathematical approach to the deter-
mination of the spline function approximation through the 𝑛 data points. 𝑥𝑖 are the nodes of 

the approximations and the corresponding points  𝑦𝑖 , where the contiguous curves meet are 

called the knots of the approximation [7]. Its application to quadrature involves the use of 

integral function approximations [12]. 

In the application of cubic spline numerical modelling on recovery mechanism, our objective is  

to get better results of the incremental oil recovered in the EOR project by modelling the curve 

of the incremental oil recovered. However, the details of the procedure for obtaining the expe-

rimental  data as well as the plotted graph used were not included in the research. Additionally, 

although there are several solution methods to tridiagonal system of equations but "OUR" 

algorithm was used in the  modelling.  

2. Models Formulation  

To apply cubic spline numerical modelling on recovery mechanism procedurally entails 

derivations based on first-order langrage interpolating  polynomials, calculus of finite 

differences, use of solution method to tridiagonal system of equations and application to 

quadrature [9-10].  

Mathematical requirements to be satisfied by a cubic spline function [7]: 

1. Each curve through the contiguous points  is a cubic. 

2. The composite curve over the entire interval  𝑥1 and  𝑥𝑛must interpolate the data by 

passing through each knot. 

3. The curve itself and the first and second derivatives of the composite curve must be 
continuous at the nodes 𝑥𝑖. 

4. Conditions must be prescribed at the end points 𝑥1and 𝑥𝑛 of the interval, depending on 

whether the data points indicate that beyond these points the extrapolation curve is required 

to approach a straight line or a parabola, or exhibit some other behavior such as periodicity 

over the interval 𝑥1 ≤ 𝑥 ≤ 𝑥𝑛.  

2.1 Cubic interpolant formulation 

A cubic spline is one that spans 𝑛 knots. Denoting 𝑓𝑖,𝑖+1(𝑥) as the cubic polynomial that 

spans the interval between knots 𝑖 and 𝑖 + 1, we note that the spline is a piecewise cubic 

curve, assembled together to form the  𝑛 − 1 cubics 𝑓1,2 (𝑥),  𝑓2,3(𝑥), … … , 𝑓𝑛−1,𝑛(𝑥), all of which 

have different coefficients. 

Using Lagrange's two-point interpolation, the second derivative which is a linear function 

can be expressed as:  

𝑓′′ (𝑥) = (
𝑥𝑖+1−𝑥

𝑥𝑖+1−𝑥𝑖
) 𝑓′′(𝑥𝑖) + (

𝑥−𝑥𝑖

𝑥𝑖+1−𝑥𝑖
) 𝑓′′(𝑥𝑖+1)              𝑓𝑜𝑟 𝑥𝑖 ≤ 𝑥 ≤   𝑥𝑖+1           (2.1) 

And denoting the second derivative of the knot at 𝑖 by 𝑘𝑖 and with the condition of its 

continuity, it's required that: 

𝑓𝑖−1,1
′′ (𝑥𝑖) = 𝑓𝑖+1,1

′′ (𝑥𝑖) = 𝑘𝑖                                                                                                          (2.2) 

Integrating twince with respect to 𝑥 and with the condition that 𝑓(𝑥) is required to pass 

through (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1) gives:  

𝑓𝑖,𝑖+1(𝑥) =
𝑘𝑖

6
[

(𝑥−𝑥𝑖+1)3

𝑥𝑖−𝑥𝑖+1
− (𝑥 − 𝑥𝑖+1)(𝑥𝑖 − 𝑥𝑖+𝑖)] −

𝑘𝑖+1

6
[

(𝑥−𝑥𝑖)3

𝑥𝑖−𝑥𝑖+1
− (𝑥 − 𝑥𝑖)(𝑥𝑖 − 𝑥𝑖+𝑖)] +

𝑦𝑖(𝑥−𝑥𝑖+1)−𝑦𝑖+1(𝑥−𝑥𝑖)

𝑥𝑖−𝑥𝑖+1
  (2.3) 
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Consequet upon this, there must be some formulations to determine the second derivatives 
(𝑘𝑖) at the interior knots. This leads to the yet unused condition of continuity of the first deri-

vative with which the equations of curvatures are formulated. 

2.2 Equations of curvatures  

Here, we note that the second derivatives (𝑘𝑖) of the spline at the interior knots are found 

from the slop continuity conditions: 

𝑓𝑖,𝑖−1
′ (𝑥𝑖) = 𝑓𝑖,𝑖+1

′ (𝑥𝑖)          𝑖 = 1, 2, 3, … … . , 𝑛 − 1                                             (2.4) 

Applying the conditions given by Eq.(2.4) in Eq.(2.3) gives the following simultaneous 

equations: 

𝑘𝑖−1(𝑥𝑖−1 − 𝑥𝑖) + 2𝑘𝑖(𝑥𝑖−1 − 𝑥𝑖+1) + 𝑘𝑖+1(𝑥𝑖 − 𝑥𝑖+1) = 6 [
𝑦𝑖−1−𝑦𝑖

𝑥𝑖−1−𝑥𝑖
−

𝑦𝑖−𝑦𝑖+1

𝑥𝑖−𝑥𝑖+1
]   𝑖 = 2, 3, … 𝑛 − 1      (2.5) 

But if the data are evenly spaced at interval (ℎ), then we can write: 

ℎ = 𝑥𝑖−1 − 𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖+1                                                                                      (2.6) 

Then, Eq. (2.5) becomes: 

𝑘𝑖−1 + 4𝑘𝑖 + 𝑘𝑖+1 =
6

ℎ2
[𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1]       𝑖 = 2, 3, … . . , 𝑛 − 1                                 (2.7) 

Eq. (2.7) is a set of 𝑛 − 2 linear simultaneous equations for the 𝑛 derivatives (𝑘𝑖), and when 

these are known, the spline function approximation formed by the set of functions in Eq.(2.5) 
defined over the consecutive intervals 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 can be constructed. It is crucial to the 

practical use of splines that this system of equations being nonsigunar,and that an extremely 

efficient algorithm be available to solve it. 
As the of values of 𝑘1 and 𝑘𝑛 cannot be found from the condition that 𝑓′(𝑥) is continuous 

across the nodes 𝑥1 and 𝑥𝑛, these values must be specified as additional conditions. 

The choice of values for 𝑘1 and 𝑘𝑛 prescribed as end conditions must be made intuitively, 

based on the way the data points indicate the interpulated curve is most likely to behave (be 
extrapolated) beyond the end points of the interval  𝑥1 ≤ 𝑥 ≤ 𝑥𝑛. Three typical choices are the 

natral or linear spline end condition, the parabolic spline end condition and periodic spline end 

conditions [6]. We used linear boundary condition in this research.  

2.3 End or Boundary conditions 

1. Natural or linear spline end conditions .This choice of end condition involves setting. 

𝑘1 = 𝑘𝑛 = 0.                                                                                                                (2.8.) 

2. Parabolic Spline end conditions. This choice of end condition involves setting. 

𝑘1 = 𝑘2  and  𝑘𝑛−1 = 𝑘𝑛.                                                                                                          (2.9) 

3. Periodic Spline end conditions. This choice of end condition involves setting 

𝑓(𝑥1) = 𝑓(𝑥𝑛−1)  and  𝑓′(𝑥𝑛) = 𝑓′(𝑥2).                                                                              (2.10) 

2.4 "OUR" Algorithm 

"OUR" Algorithm is an extremely efficient solution method to tridiagonal system of equations 

whose formulations are as follows: 

−𝐴𝑖𝐾𝑖−1 + 𝐵𝑖𝐾𝑖 − 𝐶𝑖𝐾𝑖+1 = 𝐷𝑖       𝑖 = 2, 3, … . , 𝑛 − 1                                         (2.11) 

Eq. (2.11) is the general form of the set of linear simultaneous equations formed by Eq 
(2.7), where  𝐴𝑖, 𝐵𝑖  and 𝐶𝑖  are the coefficients of the second derivatives at the knots and Di 

equals the right hand side of the equation. 

Setting   ∝ (2) = 𝐵(2)   and  𝑆(2) = 𝐷(2)                                                                            (2.12) 

From   𝐼 = 3  𝑡𝑜 𝑀,    Where  𝑀  is the last interior position vector. We can write:  

∝ (𝐼) = 𝐵(𝐼) −
𝐴(𝐼)

∝(𝐼−1)
× 𝐶(𝐼 − 1)                                                                         (2.13) 

and 

A. Mamudu, O. Olalekan/Petroleum&Coal 57(3) 225-233, 2015 227



𝑆(𝐼) = 𝐷(𝐼) +
𝐴(𝐼)

∝(𝐼−1)
× 𝑆(𝐼 − 1)                                                                              (2.14) 

For the second derivatives 𝑘𝑖, at the last interior knot, we have: 

𝐾(𝑀) =
𝑆(𝑀)

∝(𝑀)
                                                                                                                  (2.15) 

But for  𝐽 = 𝑀 − 1  𝑡𝑜  1, we have: 

𝐾(𝐽) =
𝑆(𝐽)+𝐶(𝐽)×𝐾(𝐽+1)

∝(𝐽)
                                                                                       (2.16) 

where 𝐴(𝐼), 𝐵(𝐼), 𝐶(𝐽), 𝐷(𝐼) and  𝑆(𝐼) are "OUR" algorithm parameters, 𝐼 and 𝐽 are position 

vectors, 𝑀 is the last position vector and 𝐾 is the second derivative. 

3. Applications 

To apply the formulated models, there must be recovery profile either from laboratory or 

field data. And these are given in Table 3.1 and 3.2. 

Table 3.1 Surfactant flooding data 

Time 
Sec x 60 

Oil recovered 
m3x 1.10-6 

Water/surfactant 

collected, 
m3x 1.10-6 

Total 
m3x 1.10-6 

PV, 

Surfactant 
injected 

Cumulative oil 

recovered 
% OOOP 

4:00 0.7 7.9  8.6 1.690955 63.46667 
8:00 1 8.1 9.1 1.919598 66.13333 
12:00 0.6 8.2 8.8 2.140704 67.73333 

16:00 0.4 8.2 8.6 2.356784 68.8 
TOTAL 2.7     

Table 3.2 Polymer flooding data 

Time 
Sec x 60 

Oil recovered 
m3x 1.10-6 

Water/polymer 
collected, 
m3x 1.10-6 

Total 
m3x 1.10-6 

PV, 
polymer 
injected 

Cumulative oil 
recovered 
% OOOP 

4:00 0.2 8.4 8.6 2.572864 69.33333 
8:00 0.3 8.7 9.0 2.798995 70.13333 

12:00 0.3 8.7 9.0 3.025126 70.93333 
16:00 2.8 6.0 8.8 3.246231 78.4 
20:00 1.8 6.5 8.3 3.454774 83.2 
24:00 0.4 8.6 9.0 3.680905 84.26667 
28:00 0.2 8.4 8.6 3.896985 84.8 
TOTAL   6.0   

The tabulated data in Table 3.1 and 3.2 were obtained from laboratory experiments for 

surfactant and polymer flooding. The graphical depiction of the recovery profile on which our 

model was applied is given in Fiq 3.1.  

 

Fig 3.1 Incremental oil recovery curve from laboratory data. 
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Appliying the cubic spline numerical model, we firstly identified the EOR curve, the incremental 

oil recovery curve ,the boundries, chosed the boundary conditions, determined the second 

derivatives at the interior knots and modeled the curve. With the models, we determined the 

cumulative oil recovered per interval and joined them piecewise to obtain the cumulative oil 

recovered during the process by applying them to quadrature (numerical integration). That 

is, Each cubic is integrated per its interval of validity to obtain the amount of cumulative oil 

recovered per interval. And upon this, that of the composite function was obtained. We then 

obtained the incremental oil recovered by subtracting the integral under the curve of the 

projected decline from the integral under the corresponding incremental oil recovery curve. 

A brief analytical approach of the procedure is shown below.  

The models are: 

𝑓𝑖,𝑖+1(𝑡) =
𝑘𝑖

6
[
(𝑡 − 𝑡𝑖+1)3

𝑡𝑖 − 𝑡𝑖+1

− (𝑡 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+1)] −
𝑘𝑖+1

6
[
(𝑡 − 𝑡𝑖)

3

𝑡𝑖 − 𝑡𝑖+1

− (𝑡 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖+1)]

+
𝑞𝑖(𝑡 − 𝑡𝑖+1) − 𝑞𝑖+1(𝑡 − 𝑡𝑖)

𝑡𝑖 − 𝑡𝑖+1

                                                                     (3.1) 

Eq. (3.1) (𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑛𝑡) is the cubic that spans each interval between two knots. Where 𝑞  

and 𝑡 are recovery rate and time repectively. 

It should be noted that the values of 𝑘𝑖 are determined using "OUR" algorithm. However, 

any other solution method to tridiagonal system of equations is applicable. 

The cumulative oil recovered per interval is given by: 

∫ 𝑓𝑖,𝑖+1(𝑡)
𝑡𝑖+1

𝑡𝑖

𝑑𝑡 = ∫ (
𝑘𝑖

6
[
(𝑡 − 𝑡𝑖+1)3

𝑡𝑖 − 𝑡𝑖+1

− (𝑡 − 𝑡𝑖+1)(𝑡𝑖 − 𝑡𝑖+1)] −
𝑘𝑖+1

6
[
(𝑡 − 𝑡𝑖)

3

𝑡𝑖 − 𝑡𝑖+1

− (𝑡 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖+1)]
𝑡𝑖+1

𝑡𝑖

+
𝑞𝑖(𝑡 − 𝑡𝑖+1) − 𝑞𝑖+1(𝑡 − 𝑡𝑖)

𝑡𝑖 − 𝑡𝑖+1

) 𝑑𝑡                                                              (3.2) 

𝑇ℎ𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑜𝑖𝑙 = 𝑁𝑝(𝑎) − 𝑁𝑝(𝑏) − ∫ 𝑓
𝑏

𝑎

(𝑥)𝑑𝑥                                                        (3.3)   

where 𝑁𝑝(𝑎) is the cumulative oil produced (𝑖𝑛 𝑚3)  at the lower limit, 𝑁𝑝(𝑏)  is the cumulative 

oil produced (𝑖𝑛 𝑚3) at the upper limit, 𝑎 is the lower limit (𝑖𝑛 𝑠𝑒𝑐𝑠), 𝑏 is the upper limit (𝑖𝑛 𝑠𝑒𝑐𝑠) 
and 𝑓(𝑥) is the equation of the projected decline. 

3.1 Surfactant flooding process 

For the surfactant flooding process as shown in Fig 3.1, we have.  

Setting 𝑘1 = 𝑘4 = 0 for linear or natural boundary contion, the cubic spline or composite 

function is given by:  

𝑆(𝑡) = −
𝑘2

6
[
(𝑡 − 𝑡1)3

𝑡1 − 𝑡2

− (𝑡 − 𝑡1)(𝑡1 − 𝑡2)] +
𝑞1(𝑡 − 𝑡2) − 𝑞2(𝑡 − 𝑡1)

𝑡1 − 𝑡2

+  
𝑘2

6
[
(𝑡 − 𝑡3)3

𝑡1 − 𝑡3

− (𝑡 − 𝑡3)(𝑡2 − 𝑡3)]

−
𝑘3

6
[
(𝑡 − 𝑡2)3

𝑡2 − 𝑡3

− (𝑡 − 𝑡2)(𝑡2 − 𝑡3)] +
𝑞2(𝑡 − 𝑡3) − 𝑞3(𝑡 − 𝑡2)

𝑡2 − 𝑡3

 

+
𝑘3

6
[
(𝑡 − 𝑡4)3

𝑡3 − 𝑡4

− (𝑡 − 𝑡4)(𝑡3 − 𝑡4)]

+
𝑞3(𝑡 − 𝑡4) − 𝑞4(𝑡 − 𝑡3)

𝑡3 − 𝑡4

                                                                     (3.4) 

The cumulative oil recoverd during the process is given by: 
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𝑁𝑝(2640) − 𝑁𝑝(1920)

= ∫ (−
𝑘2

6
[
(𝑡 − 𝑡1)3

𝑡1 − 𝑡2

− (𝑡 − 𝑡1)(𝑡1 − 𝑡2)] +
𝑞1(𝑡 − 𝑡2) − 𝑞2(𝑡 − 𝑡1)

𝑡1 − 𝑡2

)
2160

1920

𝑑𝑡

+ ∫ ( 
𝑘2

6
[
(𝑡 − 𝑡3)3

𝑡1 − 𝑡3

− (𝑡 − 𝑡3)(𝑡2 − 𝑡3)] −
𝑘3

6
[
(𝑡 − 𝑡2)3

𝑡2 − 𝑡3

− (𝑡 − 𝑡2)(𝑡2 − 𝑡3)]
2400

2160

+
𝑞2(𝑡 − 𝑡3) − 𝑞3(𝑡 − 𝑡2)

𝑡2 − 𝑡3

) 𝑑𝑡

+ ∫ (
𝑘3

6
[
(𝑡 − 𝑡4)3

𝑡3 − 𝑡4

− (𝑡 − 𝑡4)(𝑡3 − 𝑡4)]
2640

2400

+
𝑞3(𝑡 − 𝑡4) − 𝑞4(𝑡 − 𝑡3)

𝑡3 − 𝑡4

   ) 𝑑𝑡                                                   (3.5) 

Finally, 

𝑇ℎ𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑜𝑖𝑙 = 𝑁𝑝(2640) − 𝑁𝑝(1920) − ∫ 23.589𝑥−1.468
2640

1920

𝑑𝑥      (3.6)       

                                                = 7.4 × 10−6𝑚3  

3.2 Polymer flooding process 

For the polymer flooding process as shown in Fig 3.1, we have:  

Setting 𝑘1 = 𝑘5 = 0 for linear or natural boundary contion, the cubic spline or composite 

function is given by:  

𝑆(𝑡) = −
𝑘2

6
[
(𝑡 − 𝑡1)3

𝑡1 − 𝑡2

− (𝑡 − 𝑡1)(𝑡1 − 𝑡2)] +
𝑞1(𝑡 − 𝑡2) − 𝑞2(𝑡 − 𝑡1)

𝑡1 − 𝑡2

+  
𝑘2

6
[
(𝑡 − 𝑡3)3

𝑡1 − 𝑡3

− (𝑡 − 𝑡3)(𝑡2 − 𝑡3)]

−
𝑘3

6
[
(𝑡 − 𝑡2)3

𝑡2 − 𝑡3

− (𝑡 − 𝑡2)(𝑡2 − 𝑡3)] +
𝑞2(𝑡 − 𝑡3) − 𝑞3(𝑡 − 𝑡2)

𝑡2 − 𝑡3

 

+
𝑘3

6
[
(𝑡 − 𝑡4)3

𝑡3 − 𝑡4

− (𝑡 − 𝑡4)(𝑡3 − 𝑡4)] −
𝑘4

6
[
(𝑡 − 𝑡3)3

𝑡3 − 𝑡4

− (𝑡 − 𝑡3)(𝑡3 − 𝑡4)]

+
𝑞3(𝑡 − 𝑡4) − 𝑞4(𝑡 − 𝑡3)

𝑡3 − 𝑡4

+ +
𝑘4

6
[
(𝑡 − 𝑡5)3

𝑡4 − 𝑡5

− (𝑡 − 𝑡5)(𝑡4 − 𝑡5)]

+
𝑞4(𝑡 − 𝑡5) − 𝑞5(𝑡 − 𝑡4)

𝑡4 − 𝑡5

                                                                       (3.7) 

The cumulative oil recoverd during the process is given by: 
𝑁𝑝(4320) − 𝑁𝑝(3360)

= ∫ (−
𝑘2

6
[
(𝑡 − 𝑡1)3

𝑡1 − 𝑡2

− (𝑡 − 𝑡1)(𝑡1 − 𝑡2)] +
𝑞1(𝑡 − 𝑡2) − 𝑞2(𝑡 − 𝑡1)

𝑡1 − 𝑡2

)
3600

3360

𝑑𝑡

+ ∫ ( 
𝑘2

6
[
(𝑡 − 𝑡3)3

𝑡2 − 𝑡3

− (𝑡 − 𝑡3)(𝑡2 − 𝑡3)] −
𝑘3

6
[
(𝑡 − 𝑡2)3

𝑡2 − 𝑡3

− (𝑡 − 𝑡2)(𝑡2 − 𝑡3)]
3840

3600

+
𝑞2(𝑡 − 𝑡3) − 𝑞3(𝑡 − 𝑡2)

𝑡2 − 𝑡3

) 𝑑𝑡

+ ∫ ( 
𝑘3

6
[
(𝑡 − 𝑡4)3

𝑡3 − 𝑡4

− (𝑡 − 𝑡4)(𝑡3 − 𝑡4)] −
𝑘4

6
[
(𝑡 − 𝑡3)3

𝑡3 − 𝑡4

− (𝑡 − 𝑡3)(𝑡3 − 𝑡4)]
4080

3840

+
𝑞2(𝑡 − 𝑡3) − 𝑞3(𝑡 − 𝑡2)

𝑡3 − 𝑡4

) 𝑑𝑡 ∫ (
𝑘4

6
[
(𝑡 − 𝑡5)3

𝑡4 − 𝑡5

− (𝑡 − 𝑡5)(𝑡4 − 𝑡5)]
4320

4080

+
𝑞4(𝑡 − 𝑡5) − 𝑞5(𝑡 − 𝑡4)

𝑡4 − 𝑡5

   ) 𝑑𝑡                                                  (3.8) 

Finally, 

𝑇ℎ𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑜𝑖𝑙 = 𝑁𝑝(4320) − 𝑁𝑝(3360) − ∫ 23.589𝑥−1.4684320

3360
𝑑𝑥                  (3.9)      

                                        = 21.3439 × 10−6𝑚3  
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4. Results and discussion 

Figure 4.1 shows that the incremental oil obtained by the cubic spline model is 2.7% and 

5.6% more than that obtained by the trapezoidal rule in the surfactant and polymer flooding 

respectively. This suggests that the incremental oil recovered by the trapezoidal rule is always 

less than the actual amount because the curve is approximated with straight line segments 

and therefore does not reflect the actual success of the the EOR project. Since this is a bit 

misleading, the use of cubic spline numerical model is highly encouraged.  

 

Fig 4.1 Comparison between the results of the cubic spline model and  those of the trapezoidal rule. 

Based on observations, it's noted that the EOR process defines a function whose equation 

is unknown, but only understood behaviourally from the plotted graph. Since the cubic spline 

model represents this function equation wise and the area under rate-time plot is the amount, 

The model gives better result of the incremental oil if well applied. 

Figure 1.1 clearly defines incremental oil. Imagine a field, reservoir or well whose oil rate 

is declining from A to B. At B, an EOR project is initiated and if successful, the rate should show 

a deviation from the projected decline at some point after B. Incremental oil is the difference 

between what was actually recovered, B to D, and what would have been recovered had the 

proccess not been initiated, B to C [1].  

As simple as the concept of cubic spline is, EOR is difficult to determine in practice. There 

are several reasons for this[1]. 

1. Combined (comingled) production from EOR and non EOR well. Such production makes it 

difficult to allocate the EOR-produced oil to the EOR project. Comingling occurs when, as is 

usually the case, the EOR is phased into a field undergoing other types of recovery.  

2. Oil from other sourses. Usually the EOR project has experienced substatial well cleanup or 

other improvements before startup. The oil produced as a result of such treatment  is not 

easily differentiated from the EOR oil. The hypothetically projected curve must be accurately 

estimated. But since it did not occur, there is no way of accessing this accuracy.  

3. Inaccurate estimate of hypothetical declines 

Figure 3.1 shows the behaviour of the data. Where Eq (4.1) defines the curve of the projected 

decline. 

𝑦 = 23.589𝑥−1.468                                                                                                    (4.1) 

This shows that after 1320 seconds there was the need to initiate the EOR proccess. However, 

the effect began at about 1920 seconds and ended at 2640 seconds, therefore, the boundaries 

were taken as such. And natural end conditions were assumed. That is the second derivatives 

at the end knots are zero. This represents the surfactant flooding proccess.  The second is 

polymer flooding, it occures between 3480 and 4320 seconds, and the same spline end 
conditions were applied. The choice of values for 𝑘1  and 𝑘𝑛  prescribed as end conditions 

must be made intuitively, based on the way the data points indicate the interpulated curve is 
most likely to behave (be extrapolated) beyond the end points of the interval  𝑥1 ≤ 𝑥 ≤ 𝑥𝑛. 
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Three typical choices are the natral or linear spline end condition, the parabolic spline end 

condition and periodic spline end conditions [6]. 

Eq (3.4) is the interpolant that spans the surfactant flooding proccess and it spans between 

four knots (𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠), two interior and two end knots (𝑘1 = 𝑘4 = 0), and it gives a total 

inrecmental oil of  7.4 × 10−6𝑚3. While in the polymer flooding procces, Eq (3.7) is the inter-

polant, and it spans five knots  (𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠), three interior and two end knots (𝑘1 = 𝑘5 = 0). 
And it gives a total inrecmental oil of  21.3439 × 10−6𝑚3.  

Eq (2.7) shows that It is crucial to the practical use of splines that this system of equations 

being nonsigunar,and that an extremely efficient algorithm be available to solve it. When 

applied, It reveals that the value of the second derivative at each interior knot depends on 

the curvature of the function. 

5. Conclusion 

The main goal of this study is to devise a means by which better results of the incremental oil 

recovered in any successful EOR project  are obtainable. Based on the procedure involved 

and the results obtained, the following conclusions were drawn: 

1. Though the model is a highly sophisticated numerical model, however, it gives a more 

reliable value of the incremental oil. 

2. The amount of incremental oil recovered by the cubic spline model is always more than 

that obtained by the trapezoidal rule. 

3. The distinction between the results obtained by the cubic spline model and that of the 

trapezoidal rule might represent the error incurred in trpezoidal rule if the boundary con-

ditions are properly applied. 

4. The difference between the integral under the incremental oil recovery curve and the integral 

under the corresponding curve of the projected decline represents the incremental oil. 

5. The value of the second derivative at each interior knot depends on the curvature of the 

function. 

Symbols used 

𝐴𝑖 [−] Coefficient of the second derivative 
𝐴(𝐼) [−] "OUR" algorithm parameter 
𝐵𝑖  [−] Coefficient of the second derivative 
𝐵(𝐼)  [−] "OUR" algorithm parameter 
𝐶𝑖   [−]  Coefficient of the second derivative 
𝐶(𝐼)  [−]  "OUR" algorithm parameter 
𝐷𝑖  [−] Coefficient of the second derivative 
𝐷(𝐼)  [−]  "OUR" algorithm parameter 
𝐸𝑂𝑅  [−]  Enhanced oil recovery 
𝑓𝑖,𝑖+1(𝑥) and 𝑓𝑖,𝑖−1(𝑥)  [−]  Interpolant or cubic 

𝑓𝑖,𝑖+1
′ (𝑥)  [−]  First derivative 

𝑓𝑖,𝑖+1
′′ (𝑥)  [−]  Second derivative 

ℎ [𝑀]  Height 
𝑖 , 𝐼 and 𝐽  [−]  Position vector 
𝐼𝑂𝑅  [𝑀3]  Incremental oil recovered 
𝐾  or 𝑘𝑖  [−]  Second derivative 
𝑘𝑛 [−]  Second derivative at the last or end knot 
𝑘1  [−]  Second derivative at the first or end knot 
𝑀  [−]  Position vector 
𝑁𝑃  [𝑀3]  Cumulative oil produced 
𝑞  [𝑀3

𝑆𝐸𝐶⁄ ] Recovery rate 

𝑆(𝐼) and 𝑆(𝐽)  [−]  "OUR" algorithm parametrs 
𝑆(𝑡)  [−]  Spline function 
𝑡  [𝑆𝐸𝐶] Time 
𝑥  [−]  Independent variable 
𝑥𝑖   [−] Node 
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𝑥1 [−] end or first node 
𝑥𝑛  [−]  end or last node 
𝑦  [−] dependent variable 
𝑦𝑖  [−]  knot 
𝑦1  [−]  end or first knot 
𝑦𝑛  [−]  end or last knot 
∝ (𝐼)  [−]  "OUR" algorithm parameter 
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