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Abstract 

Enhanced oil recovery acquires sustained attention due to the continued consumption of fossil fuels. 
The traditional EOR techniques involve chemical, thermal and miscible flooding. On the other hand, 

biotechnology, including proteins, enzymes, and other microbial products applied only on a lab scale, 

not on the industrial scale, so great interest should be paid for these agents in the upcoming days. 
Proteins and enzymes may act to alter wettability and influence the capillary forces in the oil/brine 

system so can improve the oil recovery factor. This article summarizes the applicability of proteins and 

their enzyme-constituting unit as a flooding agent in the field of enhanced oil recovery (EOR). 

Keywords: Proteins; Enhanced oil recovery, Enzymes; Sandpack flooding. 

 

1. Introduction  

Enhanced oil recovery (EOR) defined as any procedure comprises the inoculation of external 
agents into the reservoir to recover some of the remaining oil after conventional treatment 
processes [1]. Improved oil recovery through different technologies involving: thermal meth-
ods (in-situ combustion, steam injection), chemical methods (polymers, surfactants, solvents, 
alkali), microbial, and miscible gaseous injection increased progressively [2-5] owing to deple-
tion of oil reservoirs, and increased global energy demand, in addition to poor recovered oil 

amount by primary and secondary methods [6-12]. On the microscopic scale, the capillary force 
subjects a certain oil amount estimated to be 1/3 of the reserve to be left behind after water 
flooding [13]. Oil production occurs through three distinct phases [1, 14-16] as follow; 1) pri-
mary recovery which recovers 12-15% OOIP through utilizing reservoir energy to relocate 
the oil [7]; 2) secondary recovery which recover 10-15% OOIP via injection of water and 

gas to enhance crude oil mobility and fluidability [7];  3) tertiary recovery which involves 
the injection of the external agent into the reservoir to retrieve some of the trapped oil. One 
of the recent EOR techniques is the microbial-enhanced oil recovery (MEOR) that firstly pre-
sented in 1926 by Beckman, and further preliminary studies on MEOR generated until 1940. 
After that, Zobell introduced and elucidated MEOR technologies and patented a MEOR tech-

nique [17]. In 1954, the first MEOR field trial generated through the Lisbon field, Union County, 
Arkansas, USA, followed by several field-trials as reported by Geetha et al. [5]. MEOR is one 
of the promising tertiary recovery techniques in the future owing to its simple implementation, 
environmentally friendly, large potential and better applicability [5, 18, 19]. There are numerous 
microorganisms in the reservoir bio-flora, which regarded as probable creators of lipase-es-

terase and urease enzymes. Investigation of the microbial municipal in petroleum reservoirs 
is vital for MEOR as the competence of these approaches rest on how original microbes re-
spond to the oil well ecological aspects like temperatures, pressure, and pH [20]. MEOR tech-
nology utilizes the microbial activities of microorganisms (either indigenous or injected in the 
reservoir) and their metabolites to emulsify the oil, reduce oil/brine interfacial tension, in ad-
dition to oil solubility and hydrocarbons disintegration to form minor oils droplets [21] and 

hence mobilize entrapped oil [18, 22]. The microbial metabolites may be biosurfactants, biopol-
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ymers, enzymes/or protein, solvents, acids, biogases (carbon dioxide, methane, and hydro-
gen) [23-26]. Microbial biopolymers applied in EOR for controlling mobility ratio and improving 
the sweeping efficacy of water flood by discriminating plowing of high permeable districts [27-29]. 
Proteins and/or enzymes-EOR (EEOR) characterized by ecological benefits as a green chem-
istry agent in the industrial processes. Proteins are complex macromolecules possess high 

molecular weight and high interfacial activity as they hang at the interfaces to generate high 
viscoelastic coatings with high surface activity [30-31], consequently employed as emulsifying 
agents in food, pharmaceutical or chemical industries, and enhanced oil recovery (EOR) in oil 
reservoirs [32]. Moreover, the protein retains about ~80-95% of their functionality even under 
harsh reservoir conditions [33]. Protein functionality defined as the rate of catalyzing of a 

chemical reaction, uncoupling of biochemical processes, lowering of interfacial tension, or low-
ering of critical micelle concentration [33]. Feng et al. [34] reported that a recovery factor of 5-
10% could be achieved at reservoir temperature 50 to 80 °C on lab scale using modified enzyme 
solution at 10% salinity. In the protein architectural arrangement, hydrophilic moieties face 
the aqueous phase while the hydrophobic moieties face the oil phase. Protein amphipathic 
molecules made up of hydrophobic and hydrophilic moieties that form a micelle [31]. Protein 

foam employed as a substitute foaming candidate for EOR processing owing to their higher 
steadiness [31]. Enzymes are naturally occurring biological moieties created by biological cells 
to serve as a catalytic agent for many biochemical responses and consist of amino acid units 
that wrinkle and form three-dimensional architecture [35] as shown in Figure 1.  

 

Figure 1. 3D structure of the enzyme 

Enzymes serve to lower the reaction activation energy and accelerate the reaction rate. 

Enzymatic hydrolysis is a bioconversion process in which the enzyme can convert cellulose to 
glucose. Moreover, the enzyme acts on lipoprotein and hydrolyze it to simple lipid and protein 
moieties, thus render oil accessible for extraction [36]. Enzymes applied on an industrial scale, 
including detergents, textile, and food industry, as well as the oil industry [3]. Enzymes exhibit 
exceptional superficial action, owing to the presence of hydrophobic and hydrophilic moieties [37].  

Enzymes are familiar candidates in petroleum engineering applications, including pre-treat-
ment of biopolymers, gel infringement, sulfur removal, and acid production [38]. Summary of 
enzymatic field applications and types of enzymes commonly used in enhanced oil recovery 
are reported elsewhere [37]. Recently, enhanced oil recovery by biological agents such as en-
zymes and biopolymers acquire incremental focus since they are environmentally friendly and 

surface-active agents. They serve to 1) alter rock wettability towards more water-wet state 
by formation of protein film on the rock surface [39], this protein film consists of hydrophilic 
amino and carboxylic groups (-NH2 & -COOH) groups which bind through hydrogen bonding 
to water molecules and render a water wet surface; 2) reduce either of oil viscosity or inter-
facial tension through emulsification [40], since they consist of hydrophilic and lipophilic moie-

ties in the same structure, so exhibit amphipathic structure which can be micellized at the 
interfaces and reduce surface tension; 3) and remove high molecular weight paraffin’s through 
breaking of ester and double bond [41], as it contains terminal amino group (-NH2) which can 
initiate the double bond through aza Michael addition reaction and form highly reactive propagating 
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radical accessible for further addition reaction. Generally, the enzyme consists of two amino 
acids linked by peptide bond and linked to the hydrophobic side chain as illustrated in Figure 2. 

 

 

Figure 2. Chemical and amphiphilic structure of the enzyme 

Enzymes like esterases, lipases, carbohydrases, proteases, and oxidoreductases may be 

applied as wettability modifying agents in carboniferous petroleum reservoirs [37]. Figure 3 
summarizes the different roles of enzymes in EOR. Generally, the advantages of microbially 
enhanced oil recovery (MEOR) conclude two main aspects 
1. Low cost, as microbial outcrops generated from cheap, regenerated resources [42]. Moreo-

ver, it does not consume large energy amounts like thermal processes, nor depend on the 

oil price as chemical processes [26, 29]. 
2. The injected agents have lower toxicity, highly biodegradable and compatible with a wide 

range of temperature and pH [28]. 

 

Figure 3. Schematic illustration of enzymes role in EOR 

2. Structure and function of enzymes  

Enzymes are spherical proteins consist of amino acids that contain -NH2 and -COOH groups [3]. 
Reactions carried out on the enzyme active site. Enzyme activity affected by temperature, 
chemical environment, the substrate, and activators concentration. Enzymes catalyze chemi-
cal reactions through binding of the substrate to the enzyme active sites. The substrate/en-

zyme linkage results in the disturbance of electronic charge around the substrate and for-
mation of the products that separated from the enzyme surface to stimulate the enzyme for 
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another trip. The active site has a sole geometric figure that is corresponding to the geometric 
figure of a substrate moiety. Consequently, enzymes react with a rare number of similar com-
pounds. There are two concepts that pronounce the binding of enzymes and substrates. The 
first concept is the lock and key theory, and the second concept is the induced fitting model, 
which is a modification of the lock and key model that first hypothesized in 1894 by Emil 

Fischer [43]. In this model, the enzyme act as a lock and the substrate act as a key as shown 
in Figure 4. Only the correctly sized key (substrate) fits into the keyhole (active site) of the 
lock (enzyme). 

 
 

Figure 4. General mechanism of enzymes (Lock and key theory) [3] 

3. Application of enzymes in the petroleum industry through MEOR 

Enzymes may be considered as a promised EOR candidates since they are produced micro-

bial, ecologically friendly, surface-active materials, even at tremendously low doses [41]. They 
serve to improve the oil recovery factor through the following aspects; 1) Enzymes can initiate 
alteration of wettability and capillary forces at the liquid/solid interface [41] through catalytic 
cleavage of ester bonds in the crude oil and produce acidic moieties which in turn contribute 
to increase the repulsive electrostatic forces and alter the communication at the interfaces [3]; 
2) Enzymes able to change the fluids interactions by promoting the breakdown of the oil com-

ponents [44]. For example, hydrolase enzymes catalyze bond breaking between molecules into 
(I) smaller molecules with enhanced water solubility and reduced interfacial action (ii) more 
polar molecules, including acid and alcohol. These compositional alterations may affect wet-
tability and interfacial tension; 3) Enzymes can adsorb onto interfaces. The portentous nature 
of the enzymes permits the changes in the interaction energy between crude oil, brine, and 

rock; 4) Decreasing the interfacial tension (IFT) and the oil viscosity [41]. The application of 
enzymes in the petroleum industry had been reported recently. In March 2004, enzymes were 
implemented on Shengli oil field, China. Enhanced production was continued for six months 
with 10,961 bbl. of additional oil. Similar behavior was detected in Baise oil field, China [34]. 
Most of the published scientific reports have used enzymes in the form of commercial mix-

tures. In such mixtures, enzymes are usually present in combination with stabilizers and sur-
factants as stated in Apollo GreenZyme™ Material Safety Data Sheet [45]. Although lipases 
have been reported as effective EOR enzymes, some authors stated about protein and enzyme 
application in the field of the oil industry as follow;  

Kohler et al. [46] relate enzymes to enhance xanthan gums Injectivity. They reported that 

enzymes could destroy the bacterial cells and improve the flow behavior of xanthan gum so-
lutions. Harris and McKay,1998 [38] reported some implementation of enzymes in the oil in-
dustry. The applications comprised biopolymers treatment; gel breakage through drilling in 
order to disturb filter cake construction, water shut-off and sand consolidation [3]. Beverung 
et al., 1999 [47] accomplished IFT detection between heptane and spherical proteins solutions 
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and stated a reduction in IFT by addition of enzyme to the solution. They clarified it by tran-
sition arrangement in the spherical protein particle that allows noteworthy proteins unfolding 
at the oil/water boundary. Nemati and Voordouw, [48] have utilized an enzyme to adapt porous 
media permeation. They exhibited that enzymes promote the creation of CaCO3 is an effective 
substitute for plummeting porous media permeation. The consequences of their work desig-

nate that growth in enzyme doses enhances the amount of CaCO3 precipitation and directed 
to an important reduction in permeability. Feng et al., [45] described the use of interfacial 
active enzymes from hydrolases class to improve oil production on laboratory and pilot scale 
as reported elsewhere [3]. They accomplished experiments to observe the modified enzyme 
compatibility with the oil type, salinity, and temperature. After that, core displacement runs 

were generated. They established that at optimum circumstances, recovery increased by 
16.9% on average with decreased water production and increased oil recovery. Samuel et al. 
[49] reported the usage of the enzyme to eliminate formation impairment that convinced by 
the drilling fluids. Armstrong et al., [50] use enzymes as breakers for highly viscous fluids such 
as guar gum and solid proppants in hydraulic fracturing, where the enzyme reduces the fluid’s 
viscosity by disintegrating the polymer chain and permits the proppant fluid to settle down 

into the crack and facilitate fluid flow ability back to the wells. Nasiri et al. [51] reported that 
lipase and esterase are the most effective enzymes for rock wettability alteration on carbonate 
rock. Rajaram et al. [36] reported that enzymes enhance oil lipopolysaccharides, lipoproteins 
hydrolysis, rendering ease extraction and consequently improve oil recovery. Khusainova et 
al. [41] reported enhanced oil recovery by Genzyme injection using Berea sandstone cores. 

Five pore volumes (PV) of enzyme solutions were injected along with the core samples after 
water flooding. Moreover, they studied the mechanism of various enzymes, including ester-
ase/lipases, carbohydrases, proteases and oxidoreductases, along with two commercial blends 
on wettability alteration through contact angle measurements and adhesion behavior tests. 
They concluded that the applied enzymes have the capability to separate oil from the surface, 

at extreme lower enzyme concentration. Esterase/lipases greatly alter the wettability and re-
duce oil adhesion at concentrations of 0.1%. Yela et al., [7] recorded a recovery factor of 
12%OOIP by using bio-surfactants generated from transmembrane proteins. Samin et al., [31] 

stated that protein foaming could be applied for EOR processing. Aurepatipan et al., [20] stated 
the probability of conducting an in-situ EOR methodology by means of a combination of en-

zyme enhanced oil recovery (EEOR) and microbial enhanced oil recovery (MEOR) approaches, 
in the presence of lipase-esterase producing Bacillus licheniformis isolate.  

4. Surfactants and bio-surfactants in EOR  

Chemical surfactants are amphiphilic surface-active moieties, hanged to both oil/water in-
terfaces as they consist of a hydrophilic head and hydrophobic tail [5, 52] as exposed in Figure 5.  

 

Figure 5. Surfactant skeletal structure (http://conf.sej.org/pollution-environmental-health/, 2011) 

Surfactants are utilized for hydrocarbons bioremediation and microbial lysis [21]. They are 
classified based on ionic charge, polarizability, and molecular size. Surfactants widely imple-
mented in petroleum field as EOR agent [5, 53] in order to; 
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A. Decrease interfacial tension between the entrapped oil and inoculated aqueous phase to 
ultra-low values reaches 0.001mNm-1 thus increase the capillary number (Nc) and in-
crease recovery factor [54]. 

B. Altering rock wettability to water-wet, so increase the brine imbibition amounts. 
C. Modify polymeric systems criteria for various applications [55]. 

D. Surfactants utilized in oil recovery for particle diffusion, emulsion steadiness, foam crea-
tion, reservoir wetness, and several other applications [56]. 

E. The promising surfactant characterized by low slug adsorption and longitudinal steadiness 
at reservoir environment as well as suitable compatibility towards the reservoir hardness, 
including divalent cations (Ca2+ and Mg2+ ions). 

On the other hand, MEOR is recently generated through biosurfactants. Biosurfactants ap-
plication in microbially improved oil recovery depends on their steadiness in at severe reservoir 
environment [57]. They are amphiphilic complexes entails of hydrophilic polar moiety as oligo 
or monosaccharide and proteins as well as polysaccharides or peptides, and the hydrophobic 
moiety has unsaturated, saturated fatty alcohols or hydroxylated fatty acids [21]. Owing to 
their amphipathic nature, biosurfactants can increase the surface area of hydrophobic sub-

stance, change the property of the microorganisms cell surface [21], reduce the interfacial 
tension between brine and petroleum, and hence reduce the capillary forces that entrap the 
oil in rock pores [29, 58, 59]. Biosurfactants are  heterogeneous group of surface active molecules [58] 
produced by microorganisms and possess unique benefits over traditional surfactants includ-
ing; lower critical micelle concentration (CMC), can be synthesized from renewable origins, 

high biodegradation rates, active under hard environmental conditions, worthy foaming fea-
tures, high discrimination in severe conditions, minute toxicity, acceptable production eco-
nomics and biological acceptability [21, 60-62]. Biosurfactants are extensively utilized in different 
applications, as reported by Karlapudi et al., [21] including cosmetics, industries of chemicals, 
food, pharmaceutics, cultivation, domestics and microbially enhanced oil recovery (MEOR) [63]. 

traditional biosurfactants for MEOR fit to the rhamnolipids group, which are glycolipid-type, 
produced by Pseudomonas species [64]; they are manufactured as a combination of complexes 
comprising one or two rhamnose assemblies associated to one or two 3-hydroxy fatty acids 
of different chain intervals. The blends of these groups produce a large number of rhamnolipid 
congeners [65]. Numerous biosurfactants, particularly lipopeptides created by Bacillus strains, 

diminishes the IFT between oil and the aqueous interfaces, so mobilize residual hydrocarbons 
[18, 29, 66-68]. Stimulations of biomass growth and biosurfactant production can be achieved 
through the addition of nitrate, which could be used for respiration by nitrate-reducing micro-
organisms [69]. Such stimulation results in the disintegration of heavy oil portions in-situ, 
decreases the capillary forces that entrap the oil into the reservoir, and declines oil viscosity, 

therefore endorsing its movement and increase oil recovery [70]. Owing to biosurfactant chem-
ical nature, they are classified as glycolipids, lipoproteins, lipopeptides, fatty acids, phospho-
lipids, natural lipids, polymeric microbial surfactants and particulate biosurfactants [5, 23, 71-73]. 
Among them, lipopeptides are the most common and well-organized biosurfactant with high 
surface activity, emulsion creating capability and stabilizing, wetness, anti-adhesive and anti-
microbial activity. Surfactin, a cyclic lipopeptide biosurfactant produced by different strains of 

Bacillus subtilis. It is a multipurpose bioactive particle applied in inhibition of fibrin clot crea-
tion, enhanced oil recovery to mobilize the entrapped oil [23], bioremediation applications [74]. 
These surfactin properties reveal its probable commercial uses [75]. Biosurfactant injection in 
enhanced oil recovery involves [7,22,76]; 
1) Ex-situ injection: Biosurfactant and other microbial products, including biosurfactants, bi-

opolymers, biogases, biomass, and biosolvent were produced outside by aerobic fermen-
tation and then injected into oil reservoirs as a slug trailed by water displacement or dis-
solved directly in the injected water [18]. 

2) In-situ injection: Biosurfactant-producing bacteria and their nutrients were injected into 
oil reservoirs, followed by a shut-in phase where the biosurfactant was in-situ created in 

the oil reservoirs to improve oil recovery. nutrients comprise syrup, corn steep liquor, 
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glucose, sucrose, nitrate salts [5]. It can be considered more advantageous for MEOR ap-
plications [77]. However, the oxygen-depleted circumstances in oil reservoirs can ad-
versely affect biosurfactant production [77]. Consequently, anaerobic microorganisms can 
yield in-situ biosurfactants [18,78]. 
Comparing to the ex-situ application, production of in-situ biosurfactant is more beneficial 

for MEOR use, such as low cost and simple employment [22]. On the other hand, oil reservoirs 
microbial flora will be more adaptive and more competitive for nutrients to stably grow and 
metabolize. Since oil reservoirs suffer from oxygen-deficiency [79]. Therefore, anaerobic bio-
surfactants producing bacteria are promised candidates for in-situ MEOR processes [18]. 

4.1. Characteristics of biosurfactants 

Biosurfactants are a better alternative to conventional surfactants in EOR owing to the 
following aspects; 
1. Biosurfactants have advanced surface action with extraordinary adapting to numerous en-

vironmental conditions, and their properties remain stable under extreme physicochemi-
cal circumstances [21]. 

2. Ecological friendly, minor poisonousness, biodegradability, environmental adequacy, and 

do not lose physicochemical criteria at severe temperatures, salinity, and pH [75]. 
3. Biosurfactants able to emulsify and decrease the crude oil viscosity; thus it is reasonable 

for enhanced oil recovery processing [75,80]. 
4. Biosurfactants create diverse complexes with metals and remove heavy metals that cause 

different biological disorders [81]. 

5. Biosurfactants accumulate at the oil/water interface and reduce interfacial tension, so im-
plemented in tertiary oil recovery [63]. 
Several reports stated a successfully implemented uses related to petroleum activities, in-

cluding (MEOR, tank scrubbing, increasing the oil flow-assurance), ecological bioremediation, 
pharmacological and cosmetic applications, food, and beverages, as antimicrobial mediators, 

cleaning and domestic applications, as stated elsewhere [5]. A list of synthetic biosurfactants 
application and approaches used to enhance the biosurfactant production finances, as well as 
patents granted on the biosurfactants application and microbes related to MEOR, are reported 
elsewhere [5]. The successfully implemented MEOR projects are summarized in these reports 
stated by Geetha et al. and Youssef et al. [5,67,68,82]. These manuscripts illustrate the applica-

bility and cost saving related to the incremental oil recovery per barrel. The biosurfactant 
application relies on oil-spreading effectiveness, interfacial tension activity [5,59]. Numerous 
low-priced substitutes are stated for biosurfactant production, including molasses, starch, and 
dairy waste, waste of vegetable oil industry, as well as agriculture and lignocellulosic wastes 
[5,83]. Biosurfactants enhance oil recovery through wettability alteration, decreasing surface 

and interfacial tensions at oil/water interfaces [5]. Consequently, in the subsequent section, 
we will give a brief note on porous media wettability. 

5. Wettability of the porous media  

Wettability well-defined as the favored affinity of the substrate towards the aqueous or oil 
phases or defined as the affinity of the wetting fluid to extend on or spread over a solid sub-
strate in the presence of other non-wetting fluid [41]. Reservoir wettability greatly affects en-

hanced oil recovery procedures [84]. Wettability acquire incremental interest for the last 60 
years owing to its effects on capillary pressure, which is the driving force for the spontaneous 
imbibition process[85], relative permeability, electrical properties, water cut production, water 
flood behavior, initial water saturation (Swi), residual oil saturation (Sor), mineralogy of the 
rock, surfactant/polymer adsorption, formation conditions such as pH and salinity, oil and 

water composition, reservoir temperature and simulated tertiary recovery [86,87]. Historically, 
all petroleum sandstone and carbonate reservoirs proposed to be water-wetness. This philos-
ophy relies on the fact that all porous rocks are fashioned during sediment deposition through 
an aqueous phase; moreover, sedimentary rocks are mainly water-wet. However, a handful 
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of studies had suggested that sandstone reservoirs vary from water-wet to oil-wet [88]. This 
can be attributed to; 
A.  In high saline environments, clay particles lining the pores of sandstone reservoirs are 

extremely hydrophobic, resulting in oil wetness properties in sandstone reservoirs [89]. 
B. Under hard reservoir conditions, the chemical structure of sandstone altered and develops 

molecular interaction with the oil and hence become oil wet. This wettability alteration dur-
ing oil migration into the reservoir [90] can be explained on the basis of, when oil first 
invades the rock pores which is covered by a thick water film, the water films rupture as a 
critical capillary pressure increased, resulting in direct contact of the crude oil with the pore 
wall. Surface-active agents in the crude oil accumulate on the rock surface, converting it 

to more oil-wet.   
C. Although sandstone is anticipated to be water wet [41], Treiber et al. [91] stated that sand-

stone rocks do not possess a uniform wettability condition and have mixed wettability [92] 
due to adsorption of organics from petroleum crudes, thus creating various wettability de-
grees.  
There is a consensus in the petroleum industry that favorably recovered oil through water-

wet cores is higher than oil-wet ones [93]. This can be attributed to oil displacement increasing 
owing to imbibition and other interactions occurring in the reservoir [94].  

5.1. Wettability evaluation 

Different quantitative and qualitative methods had been proposed for wettability measure-
ment. The most common and universal quantitative method on laboratory and industrial scales 

for characterizing wettability of crude oil/brine/rock systems (COBR-system) is contact angle 
measurement [41]. On the other hand, one of the widely used qualitative methods is two-
phase separation [95]. 

5.1.1. Quantitative assessment 

Wettability is a surface phenomenon regulating the position, movement, and circulation of 

the reservoir fluids and defined as the contact angle that arises at the intersection between 
two immiscible fluid phases and the rock surface. One of the applied tec hniques in the petro-
leum industry is the static sessile drop technique [96]. As shown in Figure 6a-d, the contact 
angle represented by the angle between the tangent to the droplet at the three-phase line 
and the solid surface, where contact angle (θ) measured through the aqueous phase. Wetta-

bility can be quantified by contact angle value [86] such that;  
A) If the contact angle is between 0 and 60 to 750, the surface is preferentially water-wet [i.e., 

total hydrophilicity (zero hydrophobicity)]. 
B)  If the contact angle is between 180 and 105 to 1200, the surface is preferentially oil wet 

[i.e., total hydrophobicity (zero hydrophilicity)]. 

C) If the contact angle is between 60 to 750and 105 to 1200, neither fluid preferentially wets 
the solid (i.e., intermediate wettability).  

D) Fractional and mixed wettability [41] where some pores and throats are water wet while 
others are oil wet [95]. 
Quantitative assessment of wettability carried out by contact angle measurement through 

a static sessile drop technique. The contact angle determined by optically monitoring the angle 

of the liquid/solid or the liquid/liquid/solid interface. The measurement technique based on 
projected or photographed images in which contact angle measured in the water phase can 
be calculated from the mathematical analysis of image dimensions through measuring the 
angle formed between the tangents to both the rock surface and the oil droplet. The precision 
obtained when evaluating the contact angle through this method was within ±1° [97-98]. The 

accuracy of contact angle measurement depends on surface contamination, and requires care-
fulness to obtain precise values and carried out as follow; 
A. The wettability tests were done on a spherical, evacuated core plate, then saturated with 

synthetic brine for a day.  
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B. After removing from the brine solution, the core plate was aged with crude oil for 24 hours 
at a raised temperature to compensate for long geological periods, so the core plate become 
oil-wet. After that, the core plate was water flooded with a brine solution. 

C. The core plate was hanged vertically in the flooding/brine solution at simulated reservoir 
temperature.  An oil drop was hanged on the bottom of the core plate with the help of a 

needle bent into the shape of a “J” so the drop could “hang” upward. The contact angle was 
observed for a period of two days by imaging the drop attached to the plate. 

  

Figure 6a. Totally Water-wet (oil is non-wetting) θ=0° Figure 6b. Totally Oil-wet (oil is spreading) θ=180° 

  

Figure 6c. Partial wetting; 0° < θ < 90° Figure 6d. Neutral wetting; θ = 90° 

Figure 6. The contact angle (θ) as measured through the water phase  

5.1.2. Qualitative assessment 

Qualitative assessment of wettability carried out through Two-phase separation test, where 
the test carried out as follow;   
1. Add 0.2 gm of crushed sandstone material in a 50 mL vial.  
2. Add the flooded solutions to the crushed material, then add 20 mL of paraffin oil.  

3. Prepare a blank sample by adding 20 cc brine solution to 20 cc of paraffin oil. 
4. Shake the three vials, then left to settle.  
5. The quantity of sandstone material dipped in each phase displays a qualitative sign of wet-

tability (i.e., If all crushed material is oil-wet, it will settle in the oil phase, if it is water-
wet, it will sink into the aqueous phase [89].  

6. Conclusion 

Retrieving trapped oil after primary and secondary techniques through microbially en-
hanced oil recovery should acquire increased spotlight in the upcoming days, especially some 
studies reported a promised recovery factor by applying this technique. Moreover, these tech-
nologies are economically and environmentally sustainable. In the nearest future, MEOR will 

acquire incremental application in the field of the oil industry. Since the first field-scale in 
1954, numerous literature have been reported concerning the mechanisms of enhancing oil 
recovery. Proteins, enzymes, and biosurfactants are the most applied nutrients in the field of 
microbial-EOR 
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