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Abstract 

Predicting the behaviour of oil reservoirs depends crucially on the reliability of their numerical 

models. However, the latter have great uncertainties that push petroleum engineer to validate 
them periodically by the commonly known process of “History Matching (HM)’’. In practice, engi-

neers perform this process manually, which is difficult and tedious. In this article, we aim to assist 

and accelerate this process using the Evolution Strategy algorithm implemented on Petrel RE soft-
ware. We are evaluating for the first time the effectiveness of such an algorithm on a real numer-

ical model. The latter is composed of nine production wells under a natural depletion regime with 

a historical production data of 6 years. For this, we have followed four steps, starting from the 
definition of an objective function, passing by sensitivity and uncertainty analysis on the model 

properties and finishing with the optimization process. As a result, the Algorithm was found to 

successfully match the historical production data of both the field and the wells and in a shorter 
time compared to the traditional method. 

Keywords: Numerical Model; Manual History Matching; Assisted History Matching; Evolution Strategy; Optimization. 

 

1. Introduction  

Optimizing the development of an oilfield (number of wells, well type, well location, and 
design operations, etc.) requires predicting its behavior under different scenarios, this is only 

possible using numerical models which represent the in-situ properties/conditions and can 
reproduce its historical production. Several disciplines (geology, geophysics, petrophysics, en-
gineering, etc.) interact to build these numerical models by describing the best estimates of 
reservoir properties such as porosity, permeability, saturation, etc. Once a model is built, it 
can be used to predict the reservoir performance under different development strategies. 

However, a question is always raised: are these properties reliable? To answer this question, 
a simulation of the behavior of the model for a historical period of production is needed. The 
simulated results (flow rates, pressures, etc.) are in this case compared to the actual data 
(i.e., measured flow rates and pressures). However, and unless the engineer is very lucky, 
the initial model will never reproduce the behavior of the reservoir for the historical period. 

The estimated properties have always a great uncertainty especially in areas where the engi-
neers have a lack of knowledge (i.e., deep in the reservoir). Therefore, it is necessary to adjust 
these uncertain properties, so the simulated results and production data are matched to a 
sufficient degree. This process is called: History Matching (HM). 

The HM is an important step in the simulation studies. It allows validating and improving 

the numerical model and understanding the various phenomena of the reservoir. In practice, 
the engineer does it manually: he changes iteratively one uncertain parameter at a time and 
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then simulates and evaluates the reduction in the mismatch. This makes the HM process very 
difficult and time consuming, first because of the multitude uncertainties in the properties of 
thousands of cells, or even millions of them. Secondly, because of the qualitative evaluations 
of the mismatch made by the engineer. To overcome these difficulties; the idea is to quantify 
the existing mismatch in an objective function, and then seeking the adequate values of the 

reservoir properties for which the objective function is minimal. This makes the history match-
ing a nonlinear, multidimensional and a very complex optimization problem. To solve such a 
problem, a powerful optimization tool is thus necessary: this methodology is called Assisted 
History Matching (AHM). In our study, we will apply the Evolution Strategy algorithm in order 
to assist the process of HM. 

The Evolution Strategy (ES) is a stochastic research optimization algorithm based on the 
population and which uses mathematical operators inspired by the Darwinian evolution theory 
such as mutation, recombination, and selection. It belongs to the family of metaheuristics 
Evolutionary Algorithms. 

2. Overview of the History Matching 

The HM process, as shown in Figure 1, was defined in the literature as “the process of 

changing the uncertain properties of the reservoir model until the simulated results for a his-
torical period are "fit" with production data [1]”.  

In other words, it is the adjustment of the reservoir model using production history to 
reproduce the observed behavior [3]. The purpose is to determine the description of the res-
ervoir (initial spatial distribution of properties) that minimizes the difference between the observed 

data and the results predicted by the simulator. Matheron was the first to make the initial 
approaches in the field of HM [4]. Later, Deutsch applied the HM in the oil reservoir models [5]. 
In recent years, the interest for matching the numerical models of oil reservoirs has increased, 
and this was expressed by the increase in the annual number of publications related to the HM, 
published in SPE (Society of Petroleum Engineers) and presented in Figure 2. 

 

 

Fig.1. General History Matching process [2] Fig.2. Annual number of publications related to the History 

Matching, published in the SPE papers and conferences [6] 

2.1. Manual history matching  

The Manual History Matching (MHM) is a "trial and error" process: the engineer runs the 

simulation model for a historical period and compares the simulated results with measured 
data [7]. Once the results are compared, the engineer changes the reservoir properties itera-
tively and one by one trying to improve the calibration of the model  

In general, MHM proceeds through three stages [8]: 
 Pressure match phase. 

 Saturation match phase. 
 Productivity Index (PI) match phase. 
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Sadly, the MHM consumes up to 40 of the time during a numerical simulation study, 
which is even higher than the time needed to build the model as shown in Figure 3. 

  

Fig.3 Time consumed by the MHM during a nu-
merical simulation study 

Fig. 4. 50 year of History Matching 1960-2010 

2.2. Assisted history matching  

The Assisted History Matching (AHM) consists in quantifying the offset (mismatch or misfit) 
between the observed data and simulated results in an Objective Function called the "error 
function". This function is then minimized by finding the optimal values of reservoir properties 
using coded optimization algorithms [7]. Therefore, this process converts the HM to an opti-
mization problem. 

Over than 40 successful AHM projects were conducted worldwide by the service company 
MEPO (Multipurpose Environment for Parallel Optimization) [11]. The time needed for numerical 
models with over than 600 properties and 1000 wells varied between 1 week to 9 months, 
according to the cluster’s CPU time.  

3. Evolution Strategy Algorithm (ES) 

Throughout history, several optimization algorithms were used to reduce the time of the 
HM. Most of these algorithms are metaheuristics stochastic algorithms. Figure 4 shows the 
different algorithms used in the HM since the sixties until now [2]. 

The ES was chosen in this case because of its flexibility (resolution of direct or inverse 
problems, minimizing or maximizing problems) and its ability to find the global optimum. It is 

a population-based research optimization algorithm that employs operators inspired from the 
Darwinian evolution theory such as selection, mutation, recombination and it belongs to the 
family of metaheuristics of Evolutionary Algorithms [9]. The algorithm was first proposed by 
Ingo Rechenberg in 1965 at Berlin Technical University, Germany. The method was then deve-
loped during the late sixties, mainly through the work of Rechenberg et al. on designing opti-

mal aerodynamic profiles with the minimal friction with the air [10]. A general algorithm of the 
SE may be noted by (μ/ρ,+λ)-ES, where : 
 μ: the parents population. 
 ρ: Parents that will be combined to produce children. 
 λ: the children population. 
 , :  « comma » selection. 

 + : « plus » selection. 
Figure 5 summarizes the steps of the ES Algorithm. 

An application example of this algorithm is shown in Figure 6 [12] where the number of 
individuals of the parents and the children population is fixed at 8. 
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Fig. 5. Representative diagram of the principle of 

the Evolution Strategy Algorithm [11] 

Fig. 6. Application example of the Evolution 

Strategy Algorithm [12] 

To avoid the stagnation of the algorithm in local optimums, recombination and mutation 

operators allow better exploitation and exploration of the research space. The exploration, 
provided by the mutation, is to discover new areas in the research space. While exploitation 
ensured by recombination, is to benefit from the best individuals to achieve better individuals 
(Models). One should point out that a compromise between these two operators is needed to 

prevent the exploration-exploitation dilemma explained as follow: "Too exploitation results in 
convergence to a local optimum known as premature convergence, while too exploration leads 
to the non-convergence of the algorithm". 

4. Case of application 

4.1. Reservoir description 

 

Fig. 7 General View of the reservoir 

The Agaba reservoir is a sandstone reser-
voir which began production in January 2008 

with 9 wells (A001, A002, P002A, P003A, 
P003C, P004A, P005A, and P005B). The res-
ervoir (Figure 9) is a highly faulted oil res-
ervoir with a gas cap. It has 4 main faults 
that divide the reservoir into 5 fault blocks. 
In some areas, the throw of the fault is so 

large that there is no sand-to-sand juxta-
position between the fault blocks. Geolo-
gists confirmed that fault 1 does not extend 
completely between fault block 3 and fault 
block 4. The geologist and geophysicists 

also agreed that there is very large aquifer 
connected to the sides of the reservoir and that the uncertainty in the connection between the 
aquifer and the reservoir is directly related to the connection angle. 

4.2. Problematic 

The initial simulation of the numerical model (i.e., initial model) has shown (Figure 8) a 

huge mismatch between simulated and measured field and wells data over the 6 years for the 
water flow rate (WPR), the oil flow rate (PRO) and the gas flow rate (GPR). 

4.3. Numerical model control mode 

Each numerical model must have a control mode. This concept involves using the observed 
data of any parameter (oil flow rate, gas flow rate, water flow rate, reservoir pressure, reser-

voir volume) as initialization for calculating the results of the other parameters. For this, we 
have chosen the observed data of oil production as the control mode. The reasons for this 
choice were first the reliability of the observed oil production data compared to water or gas 
and secondly to reduce the number of parameters to match to only two parameters (water 
and gas). The simulator, in this mode, must reproduce the observed data of the oil and will 
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calculate the flow of the other phases (gas and water) according to their mobility ratios. Con-
sequently, as shown in Figure 9, the simulated results and observed for oil production were 
perfectly superposed. While the mismatch in the production of gas and water were persisted.  

  

 

 

 
Fig. 8. Field cumulative observed production of 

water (a), oil (b) and gas (c) [11] 

 

← 

 

  

 

 

 
Fig. 9. Field cumulative production of water (a), 

oil (b), gas (c) in the oil control mode [11] 

 

← 

 

4.4. Assisted history matching 

In order to implement an Assisted History Matching process in Petrel RE, we have followed four 
steps: 
  

a b 

c 

a b 

c 

68



Petroleum and Coal 

                          Pet Coal (2019); 61(1): 64-73 
ISSN 1337-7027 an open access journal 

4.4.1. Definition of the objective function 

The general objective function expresses the overall mismatch that should be minimized. 

It is defined by the following expression:  

𝐹 = ∑ ∑ 𝑤𝐼𝐼𝑄 𝑤𝑄𝑚(𝐼, 𝑄)                   (1) 

where: m(I, Q): the mismatch for the quantity Q in the well number I; wI: weight on the well 
(higher values are assigned to wells with higher mismatch); wQ: weight on the quantity (higher 
values are assigned to quantities with higher mismatch). 

The general objective function given by equation (1) is the sum of the partial objective functions. 

The latter quantifies the mismatch for each quantity Q as shown in the following expression: 

𝐹𝑄 = 𝑤𝑄 ∑ 𝑤𝐼𝐼 𝑚(𝐼,𝑄)                    (2) 
In our case, we have two partial objective functions: one for water production rate and the 

other for gas production rate.  
The observed results should be first inserted in the software, and four parameters should 

be defined:  
- The measurement error “E”: used to normalize the mismatch of each quantity, so the partial 

objective functions can be summed. 
- The weight on the well “wI”: higher values are assigned to wells with a higher mismatch. 
- The weight on the quantity “wQ” higher values are assigned to quantities with a higher mismatch. 

- The weight on time “wK”: higher values are assigned to times with higher mismatch. 
The chosen parameters for this case are resumed in Table.1. 

Table 1. Objective function parameters 

Quantity Measurement 

error 
“E” 

Weight on the 

well  
wI 

Weight on the 

quantity 
wQ 

Weight on the 

time 
wK 

Gas production rate (GPR) 10 MSCF/d 1 1 1 

Water production rate (WPR) 5 STB/d 1 1 1 

Errors on the gas and water flow rates are relatively high (10 MSCF/d and 5 STB/d) because 

of the technical and operational conditions such as the gauging conditions, three-phase flow 
metering, and the back allocation. In addition, these flow rates are not  measured periodically 
as in the case of the oil. On the other hand, we have chosen to fix the weight of different 
parameters to 1, since the mismatch was observed for all quantities and for all the wells and 
we are looking to match them all.  

After defining the objective function, an estimated value for the base case was obtained by 

running the first simulation. The results are summarized in Table.2. A value of “803.35” was 
obtained, and we will try to minimize it. 

Table 2. Objective function of the base case 

Base case Objective1 Objective1_WPR Objective1_GPR 

HM 803.35 454.73 348.61 

 100% 56.60% 43.40% 

4.4.2. Sensitivity analysis 

The purpose of a sensitivity analysis is the identification of the properties, which strongly 
influence the simulated results of the model. In this analysis, known also under the term “One 
Variable at One Time”, one of the model properties is varied while keeping all the other vari-
ables constant. This process is then repeated for each uncertain property. The uncertain prop-
erties and their intervals are fixed by the engineer based on his analysis on the first simulation 

results. For this case, we have chosen the following properties: 
- Faults Transmissibility (Fault1, 2, 3, 4, 5): FTM1 [0 ; 1], FTM2 [0 ; 1], FTM3 [0 ; 1], FTM4 

[0 ; 1], FTM5 [0 ; 1]. 
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- Cells Transmissibility (X, Y, Z): MULTX [0.5; 2], MULTY [0.5; 2], MULTZ [0.5; 2]. 
- Aquifers contact angle (North/ South): AOF_N [1; 360], AOF_S [1; 360]. 
- Outer radii of (North/ South) aquifers: Ext_Rad_N [5000; 100000], Ext_Rad_S [5000; 

100000]. 
- Pore volume: PV [0.5; 1.5]. 

 
Fig.10. Tornado plot of the sensitivity study [11] 

The results of the sensitivity analysis 
are visualized using a Tornado plot as 
shown in Figure 10, in this plot the effect 

of each property, on the objective func-
tion, is represented by a bar. As can be 
seen in this figure: Pore volume, South 
Aquifer contact angle, Cells Transmissi-
bility in the X direction, Fault 5 Trans-

missibility, Fault 1 Transmissibility, Cells 
Transmissibility in the Y and Z direc-
tions, Fault 2 Transmissibility and Fault 3 
Transmissibility, are the most influencing 
properties. 

4.4.3. Uncertainty analysis 

This step involves samples from each sensitive property within the defined research space 

which are combined and simulated in a random way and then the objective function for the 
resulted models is evaluated. The samples are chosen using a numerical sampler to try to 
cover all the research space of each property. 

A stochastic sampler "Monte Carlo" with the Latin-hypercube method was selected to 
choose a random 300 sample from each property. This will allow a better exploration of the 

research space and will provide us with a set of cases to initialize the optimization algorithm 
afterwards. The properties and their corresponding intervals that were selected for this 
analysis are:  
- Faults Transmissibility (Fault1, 2, 3, 5): FTM1 [0 ; 1], FTM2 [0 ; 1], FTM3 [0 ; 1], FTM5 

[0 ; 1]. 

- Cells Transmissibility (X, Y, Z): MULTX [0.5; 2], MULTY [0.5; 2], MULTZ [0.5; 2]. 
- (North/ South) Aquifer contact angle: AOF_N [1; 360], AOF_S [1; 360]. 
- Pore volume: PV [0.5; 1.5]. 

The properties “north aquifer outer radii, south aquifer outer radii, Fault 4 transmissibility” 
were not selected at this level, because of their neglected effect on the simulation results as 

shown by the tornado plot. However, the north aquifer contact angle was selected despite its 
minimal effect as we have estimated that it can still affect the simulation results. The simula-
tion was then executed, where 300 numerical model were obtained. The results of the uncer-
tainty analysis for four cases (randomly chosen among 300 cases) are presented in Table 3. 

Table 3. Uncertainty analysis results 

Case HM_206 HM_344 HM_272 HM_224 

$PV 1.18 1.14 0.53 0.54 
$MULTZ 2.48 0.78 0.86 0.98 
$MULTY 1.77 0.57 1.76 1.68 
$MULTX 0.92 2.25 1.82 1.06 
$FTM5 0.87 0.49 0.34 0.25 
$FTM3 0.47 0.03 0.54 0.81 
$FTM2 0.49 0.54 0.97 0.28 
$FTM1 0.00 0.48 0.68 0.49 
$AoF_S 93.66 115.78 116.74 75.03 
$AoF_N 272.33 255.51 185.08 320.32 
$Objective1 416.80 530.82 2 624.78 3 247.80 
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From this table, one can see clearly that the Monte Carlo sampler has succeeded in explor-
ing the research space by finding some interesting cases: the first two cases had an objective 
function value below the base case (803.35), and the other two unfavorable cases had an 
objective function value above the base case. 

4.4.4. Optimization  

It is the heart of this study. the Evolution Strategy Algorithm is employed to generate nu-
merical models with the lowest objective functions and which can match the observed data. 
First of all, we had to define the algorithm parameters (listed in table 4) in order to adapt the 
algorithm to our problem. This was done by running some trial tests. The chosen parameter 
values were summarized below (Table 4). 

Table 4. Evolution strategy algorithm parameters for the optimization process 

Parameter Value Parameter Value 

Maximum iterations 600 Required improvement  5% 

Number of children 20 Improvement window 1 generation 

Number of parents 10 Destabilization factor  2 
Retain in population yes Random seed 1 

Mutation standard deviation 0.1 Previous cases Uncertainty cases 

Parents par enfant 2   

The algorithm was then executed. The time needed to simulate all the 600 models was less 
than 12 hours thanks to the great capacity of the employed computer equipped with 5 CPUs. 

The results of the four best case obtained after the optimization was presented in Table 5. 

Table 5. Best optimization results 

Case 
$Obj1 
WPR 

$Obj1 
GPR 

$Obj1 
% of reduction 

HM938 102.392 220.425 322.817 60% 

HM702 95.579 232.093 327.672 59% 

HM751 92.994 236.824 329.818 59% 
HM739 96.663 243.400 340.063 58% 

According to Table 5, a total reduction of the objective function has reached up to 60% 
compared to the initial value (803.35) which is very remarkable for an HM process. Further-

more, three other cases reached up to 58% and 59% of reduction. Therefore, one can con-
clude that the optimization has provided several candidate models that can reflect the actual 
properties of the reservoir. Figure 11 and Figure 12 show the match obtained after the opti-
mization at the field scale and for some wells (P003B, P004A and P005A) respectively. A 
perfect match was obtained for the water rate at both the field and well scale and for gas rate 
at the well scale. While the gas rate at the field scale had a less satisfactory match.   

  
Fig. 11. Optimization results of the field [11]. 
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(a)      

(b)     

(c)      

Fig.12. Optimization results at the P3B (a), P4A (b), P5A (c) wells [11] 

5. Conclusion 

The History Matching (HM) had always required a lot of experience in reservoir engineering 
and the phenomena governing the reservoir and was always considered as an Art more than 

as a science; however, evolutionary algorithms can help in this task. In this study, a numerical 
model with 9 wells and two quantities (water and gas) with up to 13 uncertain properties 
needed for history matching. The task appeared impossible using the Manuel HM. Neverthe-
less, An Assisted HM using the Evolution Strategy Algorithm succeeded in matching it in less 
than 12 hours. At least four matched models were obtained with up to 60% reduction in the 

objective function. The success of the Evolution Strategy Algorithm in assisting the process of 
History Matching will certainly promote the use of such algorithms in other complex optimiza-
tion problems in the oil industry.  
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