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Abstract 

In this work, an optimization approach is proposed to increase the research octane number (RON) of 
a commercial scale light naphtha isomerization unit. To represent the isomerization plant, an adaptive 
nuero-fuzzy inference system (ANFIS) is developed. The input layer of the network includes days on 
stream, temperature of the deisopentanizer condenser, light naphtha feed flowrate, inlet temperature 
of the isomerization reactor, hydrogen to hydrocarbon molar ratio, flow rate of n-hexane recycle, and 
temperatures of the de-pentanizer, de-isohexanizer and de-isopentanizer reboilers. The output 

variable of ANFIS is the RON of the product (i.e.  isomerate). At first, it is confirmed that by using the 
Gaussian membership function, the model is capable of predicting the RON of isomerate with the 
AAD% of 0.913, confirming the reliability of the ANFIS model. Then, the actual RON of isomerate is 
boosted by manipulating the significant variables of the plant i.e. temperatures of de-isopentanizer 
condenser and reboiler, inlet temperature of the isomerization reactor, hydrogen to hydrocarbon molar 
ratio, and temperatures of the depentanizer and deisohexanizer reboilers. During 280 days of study 
and considering all operational constraints, results confirm that the optimized decision variables can 

increase the RON of isomerate close to the designed value (about 86) which is the main concern of the 
target isomerization plant. 

Keywords: Isomerization; Light Naphtha; Adaptive Neuro-fuzzy Inference System (ANFIS); Optimization; 
Research Octane Number (RON). 

1. Introduction

Due to limitations on olefins, benzene and aromatic contents of motor fuel gasoline, crude

oil refineries are enhanced with stringent environmental policies. Therefore, refineries need a 

process with the ability of substituting aromatic and olefin components with other species, and 

following Euro-4 and Euro-5 standards. The light naphtha isomerization unit in a refinery is a 

simple and cost-effective process that upgrades the research octane number (RON) of light 

naphtha, and also simultaneously reduces benzene and aromatic content by saturating these 

fractions [1]. In a typical isomerization process, hydrogen and light naphtha, mainly including 

straight chain (normal) paraffinic hydrocarbons (nP), are fed from the top of a fixed-bed cat-

alytic reactor, and move downward throughout the bed, and the catalyst normally used in this 

process is platinum on chlorinated alumina or zeolite-based catalysts in the form of beads or 

as extrudate [2]. The RON increase in an isomerization unit is significant that determines the 

quality of the product. Typically, an isomerization unit can boost RON of light naphtha from 

70 to 84. 

For any refining and petrochemical process, optimal operation is desired to guarantee the 

quality of product and profitability of the plant, and therefore using process models is una-

voidable [3]. Furthermore, a reliable model provides a theoretical foundation for the investi-

gation, implementation of automatic control, and scaling up of the process [4]. In this respect, 

many studies have been accomplished to model the reactor of the light naphtha isomerization 
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process using first principal (kinetic-based) modeling approach [5-10]. However, to develop a 

robust and comprehensive kinetic-based model for an industrial scale isomerization plant, the 

complexity of light naphtha mixture makes it significantly difficult to describe its kinetic rate 

at a molecular level. Moreover, for predicting the RON of the gasoline for a real light naphtha 

isomerization unit, a plant-wide model is needed in which all process equipment including 

heaters, distillation columns, separation vessels and recycle pumps are considered. Modern 

day rigorous simulators such as Aspen plus or Hysys from Aspen Technology do not have such 

restrictive limits on the total number of components, but this approach increases the calcula-

tion time, and characterization of the streams and subsequent reports become unnecessarily 

sophisticated [11]. 

On the other hand, soft computing methods such as artificial neural networks (ANN) and fuzzy 

logic were widely applied for modeling, controlling and optimizing catalytic processes [12-25]. 

These intelligent systems are quick, accurate, and cheap methods for extracting the underly-

ing dependency of a set of input/output data [26]. ANN is an information-processing paradigm 

that is inspired by the way the biological nervous system, such as the brain, processes infor-

mation [27]. Additionally, a fuzzy model is a system description with fuzzy quantities which are 

expressed in terms of fuzzy numbers or fuzzy sets [28]. However, these methods have several 

limitations resulting from possibly getting trapped in a local minimum, the choice of model 

architecture and difficult to design and adjust automatically [29]. But, with a combination be-

tween ANN and Fuzzy logic rules, a model can be obtained that inherit the advantages of both 

methods [30]. In this respect, ANFIS (adaptive neuro-fuzzy inference system) is a kind of ANN 

based on Takagi–Sugeno fuzzy inference systemin which both ANN and Fuzzy models com-

plement each other. ANFIS represents a useful neural network approach for the solution of 

function approximation problems, and it has been successfully applied to model different 

chemical engineering processes [31-35].  

In what follows, an industrial scale isomerization unit is studied. The main concern in this 

plant is the RON of the isomerization gasoline (called isomerate) which is lower than the de-

signed value (about 86). To overcome this problem, at first an ANFIS model is trained and 

validated for predicting RON of isomerate by using actual data collected from the plant during 

days on stream. Then, the significant decision variables of this commercial scale unit are ma-

nipulated such that the RON of gasoline can meet the desired value. Based on our knowledge, 

there is no report for applying ANFIS for modeling and optimizing an industrial scale light 

naphtha isomerization plant. 

2. Process description 

The target isomerization plant has the capacity of 8,500 BPSD of light naphtha (mostly 

contains pentanes and hexanes) which is received from upstream naphtha hydrotreating unit. 

The plant should increase the RON of the light naphtha (about 86) to meet the new gasoline 

specifications (high octane, sulfur-free, aromatic-free and olefins-free).  

To perform the isomerization process, feed (contains 9.83 mole% of isopentane) enters the 

deisopentanizer tower (see Fig. 1) where iC5 is separated, and sent to the isomerate pool 

(with the purity of 98.3 mole %). The balance of the feed is sent to the isomerization reactor, 

and H2 is added to reactor feed to encourage the desired reactions and minimize the coke 

formation on the catalyst. After passing through the reactor (loaded with 54000 kg of a com-

mercial Pt/zeolite catalyst at operating pressure of 26 bar), the stream enters a H2 separation 

unit where H2 is removed and recycled to the reactor. Then, the output stream is sent to a 

stabilizer tower that eliminates light hydrocarbons (mostly C1 to C4) formed during the isom-

erization reactions. These compounds are consumed as the fuel gas in the refinery. The prod-

uct stream from the bottom of the stabilizer tower is fed to a C5/C6 depentanizer column 

where C5 species are separated and recycled to the de-isopentanizer, and heavier components 

are sent to de-isohexanizer column. In this tower, iC6 is separated and recycled to the reactor 

whilst heavier components leave the bottom of the de-isohexanizer, and are sent to the iso-

merate pool. 
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Figure 1. Block flow diagram of the light naphtha isomerization plant 

3. Model formulation and optimization 

The success in developing a reliable and robust artificial network strongly depends on the 

choice of process variables involved, as well as the available sets of data and the domain used 

for training purposes [36]. Therefore, it is essential to include all significant variables, affecting 

the RON of product (i.e. isomerate) in the input layer of the ANFIS model. According to Fig.1, 

momentous input variables of the ANFIS consist of days on stream (DOS), temperature of the 

deisopentanizer condenser (TconiC5), temperature of the de-isopentanizer reboiler (TrebiC5), 

light naphtha feed flowrate (Fin), inlet temperature of the isomerization reactor (TiR), hydro-

gen to hydrocarbon molar ratio (H2Oil), flow rate of n-C6 recycle (RC6), temperature of the 

de-pentanizer reboiler (TrebC5) and temperature of the de-isohexanizer reboiler (TrebiC6). 

The output variable of ANFIS is the RON of the isomerate. 

To create the ANFIS, Matlab-fuzzy logic toolbox version 2013 (Mathworks, Inc.) and ANFIS 

syntax are used. This syntax is the major training routine for Sugeno-type fuzzy inference 

systems. ANFIS uses a hybrid learning algorithm to identify parameters of Sugeno-type fuzzy 

systems. It applies a combination of the least-squares and back propagation gradient descent 

methods for training membership parameters of fuzzy inference system to emulate a given 

training data set.  

In this study, the type of membership functions used for developing light naphtha isomer-

ization model is selected from all supported types in Matlab. To train the neuro-fuzzy model, 

two fuzzy rules are chosen from the ANFIS toolbox, and the process is stopped whenever the 

designated epoch number (20) is ended. Then, to evaluate the accuracy of the model, the 

absolute average deviation (AAD%) between the experimental and simulated data is reported 

as follows: 
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𝐴𝐴𝐷% =

∑ √(𝑋𝑛
𝑒𝑥𝑝𝑛

𝑚𝑜𝑑 𝑒𝑙2

𝑋𝑛
𝑒𝑥𝑝2

𝑁𝑡∑
𝑛=1

𝑁𝑡
                   (1) 

where X, Nt are the RON and number of data points, respectively; superscripts 𝑒𝑥𝑝and model 

show the experimental data and the simulated values by the model, respectively. 

In the target plant, the main concern is the deviation of the RON from the designed value 

(about 86). According to monitoring data obtained from the isomerization plant, the momen-

tous variables that affect the RON of the isomerate product are: 1. temperature of the de-

isopentanizer condenser, 2. temperature of the de-isopentanizer reboiler, 3. inlet temperature 

of the isomerization reactor, 4. hydrogen to hydrocarbon molar ratio, 5.temperature of the 

de-pentanizer reboiler and the temperature of the de-isohexanizer reboiler. Due to some op-

erational problems in the hydrotreating plant installed at the upstream of isomerization plant 

and lack of storage tank, increasing or decreasing the flow rate of light naphtha feed is im-

possible. Moreover, the recycle flow rate cannot be changed due to the limitations in de-

isohexanizer column. Therefore, light naphtha feed flowrate (Fin) and flow rate of n-C6 recycle 

(RC6) are not considered as the manipulated variables for the optimization program. Hence, 

the objective function is expressed as follows: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐴𝑏𝑠(𝑅𝑂𝑁 − 86)               (2) 

Subject to: 

[
 
 
 
 
 
 
𝑎𝑏𝑠(𝑇𝑐𝑜𝑛𝑖𝐶5𝑜𝑝𝑡 − 𝑇𝑐𝑜𝑛𝑖𝐶5𝑎𝑐𝑡) ≤ 2∘𝐶   (𝑎)

𝑎𝑏𝑠(𝑇𝑟𝑒𝑏𝑖𝐶5𝑜𝑝𝑡 − 𝑇𝑟𝑒𝑏𝑖𝐶5𝑎𝑐𝑡) ≤ 2∘𝐶 (𝑏)

𝑎𝑏𝑠(𝑇𝑟𝑒𝑏𝐶5𝑜𝑝𝑡 − 𝑇𝑟𝑒𝑏𝐶5𝑎𝑐𝑡) ≤ 2∘𝐶     (𝑐)

𝑎𝑏𝑠(𝑇𝑟𝑒𝑏𝑖𝐶6𝑜𝑝𝑡 − 𝑇𝑟𝑒𝑏𝑖𝐶6𝑎𝑐𝑡) ≤ 2∘𝐶     (𝑑)

𝑎𝑏𝑠(𝑇𝑖𝑅5𝑜𝑝𝑡 − 𝑇𝑖𝑅5𝑎𝑐𝑡) ≤ 2∘𝐶       ⥂ (𝑒)

0.98 × 𝐻2𝑂𝑖𝑙𝑎𝑐𝑡𝑢𝑎𝑙 ≤ 𝐻2𝑂𝑖𝑙𝑜𝑝𝑡 ≤ 1.02 × 𝐻2𝑂𝑖𝑙𝑎𝑐𝑡𝑢𝑎𝑙 (𝑓)]
 
 
 
 
 
 

     (3) 

 

where superscripts act and opt show actual and optimized input variables of the target isomeri-

zation plant, respectively.  

It should be noted that because of some restrictions in the temperatures of re-boilers and 

condensers, they have to be changed by only 2°C within the actual value. Thus, constraints 

3(a) to 3(d) are considered. Moreover, due to the low capacity of hydrogen compressor and 

lack of hydrogen make up, H2Oil can be manipulated by only 2% of actual value (constraint 3f).  

Although, there are many numerical methods proposed to perform an optimization prob-

lem, in this research the genetic algorithm (GA) is chosen to optimize the target light naphtha 

isomerization plant. GA is a part of soft computing science that deals with exploring the search 

space, selecting the best solution, and working for global optimization [37]. GA operates on a 

population of potential solutions, using the principle of survival of the fittest to produce suc-

cessively better solutions to a problem, and it has advantages over the other traditional opti-

mization methods. In particular, GAs can deal with discrete optimum design problems, do not 

need derivatives of objective functions, and also have the capability of identifying global opti-

mal values.  

Thus, by combining neuro-fuzzy network with GA optimization method, advantages of both 

approaches are utilized to produce a robust and fast methodology. To minimize the objective 

function (Eq. 2), the genetic algorithm function ('ga') of Matlab 2013a is applied. 

4. Results and discussions 

For the target isomerization plant, the input vector consists of DOS, TconiC5, TrebiC5, Fin, 

TiR, H2Oil, RC6, TrebC5 and TrebiC6. The output variable of ANFIS is the RON of the isomer-

ate. To train the ANFIS, 43 data points were chosen, and 8 unseen ones were remained for 

validating the model.  

910



Petroleum and Coal 

                         Pet Coal (2020); 62(3): 907-916 
ISSN 1337-7027 an open access journal 

In Table 1, the AAD% of trained data versus the experimental values is presented. As seen, 

trials with different membership functions indicate that the Gaussian function is the most 

suitable membership for simulating the RON of isomerate, but its accuracy should be evalu-

ated in predicting step. 

Table 1 AAD% of different membership function for training and prediction RON by ANFIS 

 Training (%) Predicting (%) 

Sigmoid shape 8.30×10-4 4.708 
Bell shape 6.21×10-5 1.182 
Gaussian shape 2.68×10-5 0.913 
Trapezoidal shape 1.08×10-4 3.334 

Π shape 2.17×10-4 7.310 
Triangular shape 3.95×10-4 0.916 

After training the system with ANFIS syntax, the input layer of unseen data is fed to the 

trained ANFIS model, and output variable (i.e. RON of isomerate) is predicted by using Evalfis 

syntax. The AAD% of the predicted values versus the experimental ones is presented in Table 

1. It is confirmed that the developed ANFIS with Gaussian membership function is reliable 

enough (AAD%<0.92%) to be applied for predicting the RON of isomerate as the object of the 

isomeration process. To have a better justification, a comparison between the trained and 

predicted data points against actual values is presented in Fig. 2. As observed, the ANFIS 

model can reliably predict the RON of isomerization product.  

 

 

Figure 2. Comparing trained and predicted RON of the isomerate against actual data 

After validating the isomerization ANFIS model, it is now ready to be used for maximizing 

the RON of isomerate. Therefore, the optimized operating conditions of the process, including 

temperature of the de-isopentanizer condenser (TconiC5), temperature of the de-isopenta-

nizer reboiler (TrebiC5), inlet temperature of the isomerization reactor (TiR), hydrogen to 

hydrocarbon molar ratio (H2Oil), temperature of the de-pentanizer reboiler (TrebC5) and the 

temperature of the de-isohexanizer reboiler (TrebiC6), are calculated for all 53 data points. 

For each case, the optimized decision variables subject to the process constraints (Eq. 3) are 

obtained to maximize the RON of product (Eq. 2). 

Plot in Fig. 3 show the comparison between the actual RON of isomerate and the corre-

sponding value after applying the optimal operating conditions versus DOS. From this plot, it 

is obvious that the RON of product is considerably improved for the optimized cases such that 

for most points it can meet the desired value (i.e. 86). Consequently, the main concern of the 
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plant which is producing the gasoline below the market requirement is considerably mitigated. 

As seen, for some points, the RON of product has not increased to the desired value. It is 

supposed that for these points, the RON of light naphtha feed received from naphtha splitter 

in naphtha hydrotreater unit is lower than the expected value (about 73), and therefore the 

RON of product cannot meet the desired value.   

 

Figure 3. Comparison of the maximized (○) and actual (◆) RON of the target isomerization plant  

Figs. 4 and 5 present the temperature of the condenser and reboiler of de-isopentanizer 

column in real mode and after optimization. As seen, the optimizer proposes the lower tem-

peratures for the reboiler and condenser of this tower. It can be concluded that by reducing 

the condenser temperature, the purity of iso-pentane (RON=90.3) leaving the condenser in-

creases as close as to the designed value (about 98.3 vol %), resulting in increasing RON of 

isomerate that leaves the pool (see Fig. 1).  On the other hand, decreasing the reboiler tem-

perature reduces the entry of normal pentane (RON=62) to the top of de-isopentanizer column 

in consequence with improving the RON of the final product.  

 
Figure 4. Comparison of the optimum (○) and actual (◆) de-isopentanizer condenser vs. DOS 
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Figure 5. Comparison of the optimum (○) and actual (◆) temperature of de-isopentanizer reboiler vs. DOS 

Fig. 6 shows that increasing the temperature of the isomerization reactor increases the 

RON of product. It is supposed that increasing this temperature promotes the conversion of 

normal to iso-C5/C6, and therefore the RON of isomerate significantly enhances. It should be 

mentioned that increasing this variable can accelerate the hydrocracking of heavy hydrocar-

bons (with high RON) to the compounds such as methyl pentanes, n-hexane and n-pentane 

and gaseous products, and conversely, decreases the RON of product. Thus, increasing the 

RON of isomerate by increasing the temperature should be meticulously carried out during 

days on stream (Constraint 3e) based on the program proposed by the catalyst manufacturer 

to compensate the deactivation of catalyst. 

 

Figure 6. Comparison of the optimum (○) and actual (◆) isomerization reactor (TiR) vs. DOS 

In Fig.7, the actual H2Oil of the isomerization plant is compared to the optimized values 

versus DOS. From this figure, it can be concluded that for all cases, the optimized H2Oil is a 

little higher than the real condition. Therefore, to provide the optimal point, this variable 

should be raised to reach the optimum RON. Furthermore, at high hydrogen partial pressure, 

less coke formation takes place on the catalyst surface; however, it should not be switched to 

higher values due to preventing from reactant dilution, and decreasing RON of isomerate. It 

seems than considering constraint (3f) can satisfy this condition. 
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Figure 7. Comparison of the optimum (○) and actual (◆) hydrogen to hydrocarbon molar ratio vs. DOS 

The relevant optimal temperatures for de-pentanizer and de-isohexanizer reboilers in com-

parison to the actual ones are presented in plots of Fig. 8 and Fig. 9, respectively. From Fig. 

8, it is clear that excessive reboiler temperature of de-pentanizer can transfer heavy com-

pounds with high octane number to the top of the tower, and recycle them to the beginning 

of the process; therefore, the RON of isomerate reduces. But, a reverse situation exists for 

the de-isohexanizer column where a side stream from tray No.16 (mainly consisting nC6) is 

recycled to the reactor. This stream is combined with iso-pentane stream separated from light 

naphtha in de-isopentanizer column (see Fig.1). As seen in Fig. 9, by working at lower tem-

peratures than the optimum temperature in the reboiler of de-isohexanizer column, the recy-

cle rate of n-hexane decreases; therefore, this compound enters into the product, and RON of 

isomerate decreases. 

 
Figure 8. Comparison of the optimum (○) and actual (◆) temperature of the de-pentanizer reboiler vs. DOS 
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Figure 9. Comparison of the optimum (○) and actual (◆) temperature of de-isohexanizer reboiler vs. DOS 

5. Conclusion 

In this research, by using ANFIS and genetic algorithm, the RON of an industrial scale light 

naphtha isomerization plant increased to meet the designed value (86). Reliability of the model 

was validated by comparing its predictions with actual values obtained during 280 days of 

operation. It was concluded that the Gaussian membership function was the most appropriate 

option to simulate the RON of the target isomerization plant such that it could predict the RON 

of isomerate with the AAD% of 0.913.  

After validating ANFIS, the decision variables of the process including temperatures of con-

denser and reboiler of de-isopentanizer column, inlet temperature of the isomerization reactor, 

hydrogen to hydrocarbon molar ratio, and temperatures of the de-pentanizer and de-isohex-

anizer reboilers were adjusted such that the RON of isomerate could reach to 86. The predic-

tion results indicated that by setting the decision variables on the optimized values, the RON 

of isomerate increased to meet the expectation of the market. It was concluded that the 

presented method provided an appropriate approach for developing a plant-wide model for 

simulating and optimizing the commercial light naphtha isomerization process subject to op-

erating constraints and process limitations. 
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