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Abstract 

A model is developed for performance prediction of waterflooding performance in stratified reservoirs 
using the Buckley-Leverett displacement theory. The paper discusses the flow process in heterogeneous 
reservoirs and the inherent assumptions underlining the model have been examined. The resulting 
formulation was used to forecast performance prediction and the inverse solution was used to determine the 
permeability distribution from displacement data. The results show that Dystra-Parsons advance theory 

may be applied to flow in heterogeneous porous media for processes that exhibit linear relation. The 
displacement performance of Dystra-Parsons two dimensional model approximates the one dimensional 
frontal advance theory with unit mobility ratio displacements. The performance relationship between 
the one dimensional model and the two dimensional is more qualitative at non-unity mobility ratios. 
However, true quantitative agreement is not attainable due to nonlinear relationship. The effect of 

mobility ratio and the Dykstra-Parsons permeability variation coefficient (VDP) on the performance is 
investigated. 

Keywords: oil and water displacement; recovery; water cut; pseudo relative permeability; mobility ratio; permeability 
variation. 
 

1. Introduction 

Most oil-bearing formations across the world are normally described by heterogeneous 

petrophysical properties. The most significant property that affects waterflooding performance is 

the absolute permeability and its variation normal to the direction of flow. This variation causes 

the displacing fluid to advance faster in zones of higher permeability and thus results in earlier 

breakthrough in such layers. In this case, the conventional frontal advance theory of Buckley-

Leverett [1] and its graphical equivalent of Welge tangent construction method  cannot be 

applied to the reservoir as a single layer. The reservoir is divided into a number of layers, 

each is assumed to be homogeneous with a constant permeability. 

Different analytical models are available in the literature for waterflooding performance of 

stratified reservoirs [2-6,9-11,13]. Stiles [11] assumed the displacement velocity in a layer to be 

proportional to its absolute permeability neglecting the effect of mobility ratio. Dykstra-Parsons [2] 

developed a model for non-communicating layers without crossflow between layers while Hiatt [5] 

presented a model for communicating layers with complete crossflow. Warren and Cosgrove [13] 

applied Hiatt’s model to stratified systems with a log normal permeability distribution. Hearn [6] 

developed expressions for the pseudo relative permeability functions for communicating 

stratified reservoirs. Reznik et al. [10]  extended the Dykstra-Parsons method to continuous 

real-time basis. El-Khatib [3-4] investigated the effect of crossflow on the performance of stratified 

reservoirs and presented a closed form analytical solution for communicating stratified systems 

with log-normal permeability distributions. 

All of the above mentioned models used to predict waterflooding performance in stratified 

reservoirs assume piston-like displacement in the different layers of the reservoir. Under this 

assumption, only oil flows ahead of the displacement front with a relative permeability k0
ro at 
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the irreducible water saturation. All recoverable oil is displaced by water leaving only the residual 

oil saturation behind the displacement front with water flowing with a relative permeability k0
rw 

at the residual oil saturation. Only the end points of the rock relative permeability data k0
ro 

and k0
rw are used in these models. These two values with oil and water viscosities define the 

mobility ratio which is an important factor affecting the performance. When the displacement 

front in a given layer reaches the outlet face (producing well), no more oil flows from that layer 

and the production is completely water. All the recoverable oil (1 - Swi- Sor) is produced from 

the layer at the time of water breakthrough. This leads to a highly optimistic performance 

prediction, i.e. higher fractional recovery and lower water cut. This is particularly aggravated 

at high mobility ratios where early breakthrough occurs with appreciable amounts of recoverable 

oil left behind the displacement front. 

As opposed to piston-like displacement, the frontal advance theory shows that the saturation 

at the displacement front Sw* is less than (1 – Sor) and is determined by drawing a tangent 

to the fractional flow curve (fw , Sw) from the point of initial conditions (Swi,0). The point of 

tangency determines the outlet water saturation and water cut, Sw* and fw* at the time of 

water breakthrough. The intercept of the tangent with the horizontal line of fw=1 determines 

the average saturation Savw which is also below (1 – Sor). The oil recovery from the layer at 

time of breakthrough is (Sw– Swi) and is equal to the reciprocal of the slope of the tangent 

line. After breakthrough, as water injection continues, more of the oil that is left behind the 

displacement front is recovered and the water fraction fw increases steadily approaching the 

value of one as the oil recovery approaches the ultimate oil recovery of (1 - Swi- Sor). 

The outlet saturation and the water cut at any time after breakthrough are those at the 

point of tangency to the fractional flow curve of a line with slope equals to the reciprocal of 

the pore volumes of water injected into the layer (dimensionless time). Again, the intercept 

of the tangent with the horizontal line of fw=1 locates the average saturation which determines 

the oil recovery at that time. Essentially all calculations of waterflood or other oil recovery 

process performance are based on the use of relative permeability functions which describe 

the local movement of phases based on their saturations. Several approaches have featured 

in the waterflooding where relative permeabilities are determined from the displacement data.  

For instance Buckley-Levertt [1]), Welge and Jonson [14], Johnson et al. [8], Jones and Roszelle [7] 

are routinely used to determine relative permeability functions from measurement of fractional 

flow of water leaving a core and the pressure drop across the core. This paper investigates 

the extent of the application of one dimensional frontal advance theory on flow in heterogeneous 

media. The advantages and limitations of the fractional flow in heterogeneous reservoirs was 

examined through the application of the fractional flow theory on displacement in stratified 

reservoir and the results juxtaposed with the results produced by the Dystra-Parsons theory 

on the same displacement. Moreover, the determination of pseudo relative permeabilities for 

the same system was considered.  

Assumptions 

The following assumptions are made: 

1. The system is linear, horizontal and of constant thickness. 

2. The flow is isothermal, incompressible and obeys Darcy’s law. 

3. Capillary and gravity forces are negligible 

4. The system is divided into a number of homogeneous layers each with uniform thickness 

and constant permeability. 

5. The system is a non-communicating with no crossflow allowed between the different layers. 

6. The relative permeability characteristics are the same for all layers. 

7. The initial fluid saturation is uniform at the irreducible water saturation. 

8. The porosity is assumed constant in all layers. For convenience, the layers are arranged 

in decreasing order of permeability.  

2. Materials and Methods  

The summary of the methodology and the phases used in the study is described next. 

The section also provides in-depth explanation of the concepts and theories, which were 

employed during the process. 
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2.1. Theory of Fractional Flow 

A flow of fluid representation displacement is based on the idea that a local change of a 

component is expressed only as a function of its neighborhood concentration. 
Porosity volume of a hexadron:                       (1) 

Mass of fluid in a unit volume:                        (2) 

Rate of fluid mass change during unit time: 
     

  
                (3) 

The total change of fluid mass during time dt: 
     

  
                (4) 

Obviously the total change of fluid mass should equal total mass differences between inflow 

and outflow during time dt, that is  
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where   is the concentration of the displacing fluid,  ̅ is the velocity,   is the density, and   

is the volume fraction of the flowing fluid. If fluid is incompressible, (   is constant and  ̅ is 

one space dimension time function, 
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If    is a function of   only then       
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Eq. 8 becomes       
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Because   is a function of space and time 
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If   is taken as constant,       , then the velocity of the concentration     is  
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Replacing Eq. (10) into Eq. (12), reduces it to the form 
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                                                                                                                                (13) 

Eq. (13) is similar in kind to the Backley-Leverett frontal displacement theory Eq. (14) if 

the local concentration is similar or the same as water saturation.  

[
  

  
]
  

  
   

   
                                                                                                                                  (14) 

From the Bacley-Leverett frontal displacement theory, the fractional flow is made as a 

functional part of water saturation and mobility ratio and is expressed as Eq. (15) 

   
 

  
   
   

   
  

                                                                                                                                        (15) 

Welge [14]proposed material balance approach for determination of the oil recovery 

determination from relative permeability data. Johnson et al. [8] and Jones and Roszelle [7] 

developed a model and for determination of relative permeabilities from dynamic displacement 

and subsequently outlined a simple regime for the determination of relative permeability 

functions from graphs of oil recovery and reduced pressure drop as a function of pore water 

injected. Performance prediction and interpretation of displacement performance have featured 

primarily in problems of waterflooding in a homogeneous medium.  

However, these principles appear general and can be used in the displacement of other 

complicated systems contained in reservoirs composed of stratified layers. 
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2.2. Waterflooding performance in stratified reservoirs 

Dystra and Parsons [2] discussed on displacement in stratified reservoirs. Their work assumed 

the reservoir to be composed of a number of individual layers that only relates at the wellbore. 

The individual layers are assumed to compose of homogeneous properties but different from 

each other. Dystra and Parsons considered the flow of oil to be described by piston-like dis-

placement where the static properties of the individual layers such as initial saturations, 

porosities and relative permeabilities are considered the same for each layer.  Based on the 

understanding, the position of the flood front at any time was derived analytically. An expression 

of coverage or oil recovery at breakthrough of successive layers was derived as below.  

The term coverage, denoted by C, was defined as the fraction of the reservoir depleted by 

water. Eq. (16) is an expression for the coverage when the thickness of each layer is hi. The 

(n) layers are arranged in order of descending permeability with layer (j) representing the most 

recent layer flooded out.  
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                                                                                                                          (16) 

The term αi is given by  
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                                                                                                           (17) 

where:  M  is  the  mobility  ratio  based  on  end  points  of  the  relative permeability 

curves. Where the fractional flow expression may be defined in terms of the producing 

water-oil ratio (WOR) as  

   
   

     
                                                                                                                                    (18) 

The  WOR  (water-oil  ratio)  corresponding  to  the  flood  out  of  layer  j  is given by 
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The permeability of the individual layers may be determined from the cumulative probability 

distribution. 

               [
   (

 

  
)

√   
]                                                                                              (20) 

where    is the mean and    is the standard deviation of the distribution. In most cases 

however, the standard deviation is replaced by the Dystra-Parsons variation coefficient VDP 

which are related in the following expressions, 
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]                                                                                                              (21) 

The Dystra-Parsons variation coefficient     is estimated from the CDF plot by the following Eq. 
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where    and       are the values of permeability at 50% and 84.1% of cumulative 

probability. They are separated by one standard deviation of distribution   . A value of     of 

zero represents a homogeneous (constant K) while a value of 1 represents a totally 

heterogeneous reservoir. From Eq. (20), k can be obtained as 

       [√       
  (       )]                                                                                     (23) 

This can be reduced as  

           √       
                                                                                               (24) 

Eq. 24 can be written as linear Eq. in the form  

                                                                                                                                              (25) 

With       ,        ,   √   , and                  
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Values of x for different data points are computed by evaluating               . Eq. (25) 

is fitted to a straight line by the least square method. The slope of the straight line is √    

and the intercept is      . After these parameters, values of k are generated for      ranging 

between 0 and 1. 

2.3. Calculation of oil Recovery 

Average coverage or recovery for a given outflow saturation was determined by the application 

of the Welge’s material balance model. Fractional flow curves were determined from Eq.s 18 

and 19 with permeability variation and mobility ration as variables. Average coverage as a 

function of injected water was obtained through the application of the Welge’s material balance 

on the fractional flow curves. The gradient of the fractional flow curve was determined and 

the average water saturation calculated using Eq. (26) 
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]                                                                                                                    (26) 

The average outlet saturation     moves with velocity 
   

   
, hence the total pore volume 

injected is  
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]                                                                                                                                       (27) 

where    is the dimensionless time in pore volumes injected,    
  

   
. Therefore the average 

saturation at time    is given as  

      
                                                                                                                           (28) 

The time scale of the displacement process is triggered by the water injection rate. Since 

the solution depends on time through the dimensionless value of pore volumes injected, the 

recovery curves are valid for constant-pressure injection, constant-rate injection or variable-

rate injection. Hence the fractional flow and saturation derived above on one dimensional flow, 

can be used directly to calculate displacement performance. Based on the recovery performance 

of one dimensional flow in the Dystra-Parsons model, a similar calculation was made with 

the two dimensional form of Dystra-Parsons model. The waterflood performance forecast was 

put in the form of oil recovery and dimensionless pressure drop as a function of volume injected. 

Similarly, performance curves were generated for different permeability ratios using analytical 

results of Resinik et al. [10]. The unique thing about their model is it extends the Dystra-Parsons 

model beyond production performance only at layer breakthrough times to production 

performance on a continuous basis. 

2.4. Pseudo Relative Permeability and Function Flow Curves 

It is important to extend the discussion beyond the level of calculating the recovery given 

the description of the reservoir to the determination of the reservoir properties from displacement 

data. The property described here as pseudo relative permeability can be determined from 

the fractional flow model of the displacement given the availability of pressure data. The 

procedure is extended to two dimensional representation where layer permeabilities are 

determined from water production rate and overall pressure drop data. Displacement data 

may be expressed as graphs of water production and pressure drops all as a function of 

time. From the Dystra-Parsons model, the water production rate and pressure drop can be 

used to determine the individual layer permeabilities. The permeability thickness product of 

layer i from Darcy is given by Eq. (29)  
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Similarly the permeability thickness product of layer j=i+1, 

     
     

 

   

   

 

  
                                                                                                                                 (30) 

where   , is the pressure drop at the time of breakthrough of the layer.  

The same procedure may be applied to subsequent layers to determine the permeability 

thickness product of each layer. For equal thickness layer, the permeability of each layer can 
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be determined. Jones and Roszelle [7]  presented a material balance technique that simplifies 

the procedure of pseudo relative permeability from displacement data. Firstly the fractional 

flow as a function of the outflow saturation is determined from the oil production curve. The 
slope of the oil production curve is calculated to determine    from Eq. 27and then the outflow 

saturation is determined from Eq. 28 where (       is obtained as the slope of the oil production 

curve. Then from the values of   
  and    , the ratio of relative permeabilities can be obtained 

as a function of saturation using Eq. 15. The individual relative permeabilities can be obtained 

from the dimensionless pressure drop as follows 
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where 
 

  
 refers to the dimensionless pressure drop and i initial values. 

3. Results and Discussion 

Effects of permeability variation and mobility ratio 

Fractional flow curves as a function of outflow saturation, determined from Eq.s (18) to (19) 

with permeability variation and mobility ratio are shown in Figures 1 to 3. To investigate the 

effect of the reservoir heterogeneity, permeability distributions were generated using a log-

normal distribution with values of VDP of 0.2, 0.4, 0.6 and 0.8. The fractional flow increases 

with increasing mobility ratio as well as increasing permeability ratio. The more heterogeneous 

reservoirs show earlier water breakthrough there is higher water cut and increasing water 

saturation.  

3.1. Oil Recovery Performance 

The application of Welge material balance on the fractional flow curves above, gives average 

coverage as a function of volume injected as shown in Figures 4 to 6. As expected, the oil 

recovery decreases as mobility ratio increases. The oil recovery is higher for increasing 

heterogeneity of the reservoir. The effect is more evident in high mobility ratios. The reason 

is that for the case of high mobility ratios, the displacement front is very diffuse thus delay 

the water breakthrough and decreases oil recovery. For all mobility ratios recovery increases 

as pore volume injected increases. Figures 7 and 8 show the performance in terms of water 

cut as a function of fractional oil recovery. Earlier water breakthrough and higher water cut 

at the same fractional recovery is observed for higher mobility ratios. 

3.2. Comparison of recovery performance in frontal advance model and Dystra-

Parsons model 

The curves for oil recovery as a function of volume injected are shown in Figures 9 to 11. 

The oil recovery in pore volume is equal to average coverage. A comparison was made for 

both one and two dimensional frontal advance formulation. If the computed results for both 

cases were completely consistent, Figures 4 to 6 would have been identical to Figures 9 to 

11. However, comparison of the corresponding graphs show that calculated performance is 

identical only for unit mobility ratio. For instance, Figure 12 shows the difference in performance 

from one and two dimensional approaches, for mobility ratio of 0.5 and 5.0, and permeability 

variation of 0.8.  It is observed that the one dimensional model underestimates the oil recovery 

for mobility ratio of 0.5, and over estimate the recovery for mobility ratio of 5. The difference 

in performance increases as mobility ratio increases departs from unity and as permeability 

variation increases. The difference occurs due to the fact that instability in saturation is a 

function of local speed which changes from layer to layer as injected fluid replaces original 

fluid with different viscosity. This is best explained by Figure 13. It is observed that the 

characteristic curve is only linear only at mobility ratio of 1. Hence, the two dimensional flow 

in Dystra-Parsons model approximate the one dimensional frontal advance approach only at 

unit mobility ratio.  
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3.3. Computation of Pseudo Relative Permeability 

Figures 14 and 15 show the graphs of dimensionless pressure drop as a function of water 

injected in pore volume for the Dystra-Parsons model at various values of permeability variation 

and mobility ratio. It is observed that the dimensionless pressure decreases with increasing 

mobility ratio with the water injected in pore volume and will approach unity when mobility 

ratio approaches unity. Figure 16 shows the pseudo relative permeabilities determined from 

the displacement performance using Jones and Roszelle material balance technique Eq. (31). 

Pseudo relative permeabilities were determined from the Dystra-Parsons model for permeability 

variation of 0.6 and mobility ratio range of 0.5 to 5. It is observed that the pseudo relative 

permeability functions depend on both permeability variation and mobility ratio. Evaluation 

of the displacement data shown in Figures 17 and 18 show the production rate and pressure 

drop as a function of time for displacement in a ten layer system with a mobility ratio of 5.0 

with reservoir property shown in Table 1. Evaluation of the displacement through Eq. (29) 

yields the individual layer permeabilities as shown in Figure 19. The values of the permeabilities 

were determined based on the reservoir properties in Table 1. Thus, if pressure drop and oil 

recovery data are available, Dystra-Parson model can be used to determine the reservoir 

properties. 

Table 1 Reservoir properties  

Length (ft) 650 Residual Oil Saturation (%) 20 

Width (ft) 320 Relative Permeability to Oil at Swc 1.0 

Thickness (ft) 19.5 Relative Permeability to water at (1-Sor) 1.0 

Porosity (%) 19 Oil Viscosity (cp) 5.0 

Initial Water Saturation (%) 19 Water Viscosity 1.0 

4. Conclusion 

The paper presents a model for application of Bakley-Leverett frontal advance theory to 

the displacement of water and oil in stratified reservoir systems. Jones and Roszelle analysis 

was used to develop pseudo relative permeabilities for heterogeneous reservoirs. The two 

dimensional Dystra-Parsons model for stratified systems approximates the one dimensional 

frontal advance theory with the effect of the heterogeneity in the fractional flow theory. 

There is an agreement between the two theories where mobility ratio approaches unity with 

a characteristic linear relationship. For nonunit mobility ratio, the relationship is more 

qualitative. The resulting pseudo relative permeability functions depend on the permeability 

variation, V, and the mobility ratio, M.  
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Supplement: Figures 1-19 

 

Figure 1 Fractional flow curves for the Dystra-Parsons model with mobility ratio of 0.5 

 

Figure 2 Fractional flow curves for the Dystra-Parsons model with mobility ratio of 1.0 

 

Figure 3 Fractional flow curves for the Dystra-Parsons model with mobility ratio of 5.0 
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Figure 4 Oil recovery calculated using the one-dimensional frontal advance model for 

mobility ratio of 0.5 

 

Figure 5 Oil recovery calculated using the one-dimensional frontal advance model for 

mobility ratio of 1.0 

 

Figure 6 Oil recovery calculated using the one-dimensional frontal advance model for 

mobility ratio of 5.0 
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Figure 7 Effect of mobility ratio on oil recovery for mobility ratio of 0.5 

 

Figure 8 Effect of mobility ratio on oil recovery for mobility ratio of 5.0 

 

Figure 9 Oil recovery calculated using the two-dimensional Dystra-Parsons model for 

mobility ratio of 1.0 
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Figure 10 Oil recovery calculated using the two-dimensional Dystra-Parsons model for 

mobility ratio of 1.0 

 

Figure 11 Oil recovery calculated using the two-dimensional Dystra-Parsons model for 

mobility ratio of 5.0 

 

Figure 12 Comparison of oil recovery curves from one and two dimensional analysis for 

mobility ratios of 0.5 and 5 with permeability variation of 0.8  
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Figure 13 Characteristic curve for water saturation of according to two dimensional Dystra- 

Parsons model for permeability variation of 0.6 

 

Figure 14 Dimensionless pressure drop calculated from the Dystra-Parsons model for 

mobility ratio of 0.5 

 

Figure 15 Dimensionless pressure drop calculated from the Dystra-Parsons model for 

mobility ratio of 5.0 
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Figure 16 Pseudo Relative permeability from factional flow of displacement in a system of 

stratified reservoirs for permeability variation of 0.8 

 

Figure 17 Water production rate for displacement in a stratified system 

 

Figure 18 Pressure drop for displacement in a stratified system 
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Figure 19 Layer permeability determined from displacement data  
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