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Abstract 
The current study focused on characterizing lean grade coal and carbonized biomass (at 400oC) for 
energy generation. Samples were pulverized using a ball mill and then mixed with a mechanical mixer 
at two mixing ratios. Proximate, ultimate and calorific value analyses were carried out on the samples 
using different ASTM standards and some available linear regression models.  Lean grade coal has the 
highest ash content (79.58%) while raw biomass has the least (2.29%). Carbonized biomass samples 
have the highest heating value (9.49 MJ/kg). The O/C and H/C atomic ratios shows that carbonized 
biomass is the best fuel compared to coal and blended samples. The FTIR spectra of coal and blended 
samples shows peaks representing Si-O-Si while C-H bonds were the predominant ones in raw and 
carbonized samples. Lean grade coal and blended samples contain silicon as displayed by the EDX 
spectra. The coal and blended samples have grey-like silica and carbide microstructure. The coal and 
blended samples are not good for energy generation but may serve well as raw material for silicon 
recovery. Carbonized biomass has good fuel properties that can be useful in existing coal-fired plants. 
Keywords: Lean grade coal; Antiaris toxicaria; Carbonization; FTIR spectroscopy; Energy. 

1. Introduction

Energy generation plays a significant role in a nation whether under-developed, developing
or developed [1-2].  Access to various energy sources in order to generate electricity has be-
come a dynamic force for economic or social development [3-4]. There are several sources of 
renewable and non-renewable sources of energy spread across the country [5-8]. Coal and 
biomass materials are two key examples of these materials. Nigeria has large coal deposits 
and abundance biomass wastes. Nigeria has a widespread of coal supply with proven reserve 
of millions of tons [9]. The Electricity Company of Nigeria (ECN) and the Nigerian Cement 
Company (NCC) at Nkalagu use coal for their electricity generation.  Coal plays major role in 
the power sectors. However, there are critical issues with coal usage all over the world. The 
continuous release of greenhouse gases into the atmosphere and environmental pollution has 
become a major barrier to its application [10-12]. Thus, the need for its partial or total replace-
ment [13]. Biomass as an ancient energy source that is considered as carbon neutral has be-
come an enviable material for this purpose [2,14]. Biomass has been found useful in so many 
other applications [1, 15–21]. Its usefulness is predominantly for energy generation [22-23]. How-
ever, biomass has some limitations when it comes to its application as fuel in coal-fired plants. 
These include low energy content, high moisture content, poor grindability and fast combus-
tion [24-25]. Biomass must have certain properties like coal for it to be effective in partially 
replacing it in a coal-fired plant. Some coal-fired plants work with pulverized coal/coal fines. 
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Thus, biomass must be easy to grind, have improved energy content and be void of unbounded 
moisture for effectiveness.  Thus, the need for initial pretreatment before use. Previously, 
researcher have adopted several treatment methods for biomass upgrade. These include tor-
refaction [26-27], pyrolysis [28], and carbonization [29].  This thermochemical conversion process 
improves the energy content and upgrade the grindability property of biomass. Adeleke et al. [23] 
improved the energetic properties of melina wood using torrefaction technology. The higher 
heating value of the biomass increased from 18.39 MJ/kg to 22.07 MJ/kg based on different 
parametric settings.  Similar effort by Odusote et al. [26]  on torrefaction of Tectonas grandis  
at 240 - 300℃ yielded an improved heating value, lower moisture content and improved struc-
tural content which was ultimately reported to affect grindability in positive direction. Torre-
faction, carbonization and other methods have been tested and approved as good approach 
for upgrading biomass. Thus, the need for selecting one of those processes in this study. This 
process is carbonization. It helps in carbonaceous residue generation via thermal decomposi-
tion (as well as distillate removal) from biomass materials [30]. Pulverized coal and upgraded 
biomass will serve as good source of fuel in coal-fired plant. This is because there will be 
reduction in deleterious effluents which affects the global climatic sphere. Meanwhile, there 
are limited information on the various coal from different mines available at the Nigerian coal 
market. Thus, further effort is brought to forward by the current study.  The biomass (Babu 
wood) used in this study is one of the common woods at the sawmill in Nigeria for several 
furniture works. Hence, it contributes to the huge deposit of wastes at the sawmill. Therefore, 
the present study focuses on comparing carbonized Babu wood wastes and lean grade coal 
obtained from market.  This is to ascertain their properties singly and when combined for use 
in an existing coal-fired plant.  

2. Methodology 

2.1. Raw materials 

In this study, the Okpara mines coal samples purchased from Okpara coal sellers in Nigeria 
were characterized. The coals were said to be obtained from Okpara mines, Nigeria. Three 
days (5 h/day) sun-drying was done on the coal samples to eliminate the residual external 
moistness.  A ball mill was used in crushing the coal samples and later were screened to 
acquire particle size lower than 0.5 mm.  The coal samples were then reserved in zip-locked 
bag for further characterization and utilization. The woody biomass utilized in this study was 
sawdust of Babu wood, which was gotten from Al-Barka Sawmill, Omu-Aran, Nigeria. The 
sawdust was sun-dried for three days in Engineering Building in Landmark University to re-
move surface and residual moisture. It was further milled to a particle size lower than 2 mm. 

2.2. Carbonization of Babu wood dust 

The carbonization process was done using a muffle furnace. The muffle furnace has con-
stant supply of lean oxygen from outside through a metallic duct. Pulverized biomass (200 g) 
was placed in a crucible. The crucible was then placed in the muffle furnace, while the furnace 
was set to 400℃. The sample was kept for 30 minutes after the furnace reached 400℃ [31]. 
The sample was removed and placed in a desiccator. The carbonized sample was milled and 
screened to a particle size less than 0.5 mm for easy mixing with coal for further analyses. 
Carbonized biomass (CB) and lean grade coal were thoroughly mixed using a mechanical mixer 
at two different ratios; 50: 50 and 40: 60, respectively.  

2.3. Proximate and higher heating value analyses  

The IS:1350-1(1984) [32] standards for coal and coke was utilized to determine the proxi-
mate analyses of the coal samples. Moisture content (MC) analyses was evaluated by meas-
uring the mass of the blank crucible (M1) by utilizing an Electronic Analytical and Precision 
Balance (Sartorius BSA Series: BSA 224S-CW). Each sample of mass (1 g) was placed into 
the crucible before weighing to obtain mass (M2). The sample in the crucible was positioned 
into an oven (Model No: OF-22G, JESO TECH, Korea) at 105℃ and drying time of 1 h was 
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used. The oven dried sample in the crucible was ejected from the oven and cooled in a desic-
cator, which was later measured as  M3. Equation (1) was utilized to evaluate the moisture 
content. 
MC = M2−M3

M2−M1
× 100%                 (1) 

Volatile matter (VM): The mass of alumina crucible was obtained through the usage of an 
Electronic Analytical and Precision Balance (Sartorius BSA Series: BSA 224S-CW) and recorded 
as Mo. Sample of 1 g was placed in the crucible and lid covered, to disallow the blasting and 
combustion of the sample. The mass of the sample with the covered crucible was taken to be 
 Ma . The samples with the covered crucible were placed in a muffle furnace (Model No: 
CBFL518C, USA) for 7 mins after the furnace has been initially heated to 950℃. The crucible 
was then removed and cooled in a desiccator. The obtained mass after measurement was 
recorded as Mf. Equation (2) was used for the volatile matter determination. 
VM = Ma−Mf

Ma−Mo
× 100%                 (2) 

Ash content (AC): The mass of silica crucible was obtained through Electronic Analytical 
and Precision Balance (Sartorius BSA Series: BSA 224S-CW) and noted as Mc. Using muffle 
furnace (Model No: CBFL518C, USA), 1 g of each sample was placed into the crucible and 
values noted as  Ms, and placed in the furnace at 815oC. Soaking was done for 1 h in the 
furnace and later cooled in a desiccator. The furnace-dried sample with the crucible were taken 
as Mf. The ash content calculation was by Equation (3). 
AC = Mf−Mc

Ms−Mc
× 100%                 (3) 

 
Equation (4) was utilized to determine the fixed carbon (FC) of the sample by finding the 

difference 100 and when MC, AC, and VM are summed. Equation (5) was used to determine 
the higher heating value (calorific values) of the sample [33]. 
FC(%) = 100 − (MC + AC + VM)              (4) 
HHV(MJ/kg)= 0.2949C + 0.825H             (5) 

2.4. FTIR and SEM-EDX  

The functional groups of the samples were characterized using the Fourier Transform In-
frared spectrophotometry (FTIR) spectrophotometry. The samples were appropriately pre-
pared and placed in discs for analysis in the FTIR, while 4000 – 450 cm-1 is the range of the 
spectra having a resolution of 4 cm-1  The micrographs as well as the elemental studies of the 
samples was done on a scanning electron microscope (SEM) equipped with EDX (energy dis-
persive x-ray spectroscopy).  

3. Results and discussion 

3.1. Proximate, ultimate and calorific values analyses 

 
Figure 1. Calorific values of the samples 

Table 1 presents the ultimate and proxi-
mate contents of the samples while the cal-
orific values are displayed in Figure 1. Based 
on the proximate analysis for the samples, 
the moisture content of coal (2.16%) and 
carbonized biomass (2.20%) were lower 
than that sawdust (4.60%). Carbonized bio-
mass (CB) had a moisture content of 2.20%. 
Carbonization has driven off some OH bonds 
from the sawdust [4]. Similarly, coal and car-
bonized biomass are now in range based on 
moisture content. It has been proposed that 
good fuel should have moisture content 
lower than 15% [34]. 
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System capacity is lowered while operational cost is increased as a result of high moisture 
content of fuel. This is disadvantageous. As expected, the Babu wood sawdust (biomass) dis-
played a higher moisture content compared to coal. This is because the moistness in coal has 
been eliminated during the coal formation process. The coal-CB mixture 50:50, 60:40 had a 
moisture content of 3.24% and 2.34%, respectively. The moisture content of the coal-CB 
blend increased with increased biomass content, which reveals that more volume of moisture 
was retained by biomass material than coal. The coal’s ash content is extremely higher than 
that of raw biomass and carbonized. This has huge implication on its usage as fuel in a boiler 
or for energy generation. High ash content of the coal makes the coal very lean grade coal 
that may be peat family [35].  

Table 1. Proximate and ultimate analyses of the samples 
 

Proximate 
 

Sample MC (%) AC (%) VM (%) FC (%) 
RB 
CB 
Okpara Coal 
50%CB-50%Coal 
40%CB-60%Coal 

4.60 2.26 84.74 8.40 
2.20 2.27 70.33 25.20 
2.16 79.58 14.22 2.29 
3.24 67.24 20.12 9.40 
2.34 68.83 20.03 8.80  

Ultimate 
 

 
C (%) H (%) N (%) S (%) O (%) 

RB 23.70 1.40 1.72 0.02 4.48 
CB 28.75 1.22 1.20 0.02 1.75 
Okpara Coal 5.24 0.90 0.39 1.88 0.27 
50%CB-50%Coal 12.59 1.30 0.41 1.83 0.81 
40%CB-60%Coal 11.71 1.50 0.57 1.82 0.49 

The quality of any fuel is better when the fuel has lower ash content [36]. Solid fuel ash 
content is germane to its combustion characteristics. Coal-CB blend 60:40 had ash content of 
68.83% higher than that of 50:50 mixtures at 67.24%. The more the biomass content of the 
blend, the lower is the coal-CB blend’s ash content. The ash content of the samples and blend 
are non-fuel components of the blends, thus, undesirable as fuel. Studies have shown that 
typical biomass possesses lower ash content with composition depending on the plant’s chem-
ical components acquired during growth compared to coal, which have mineralogical compo-
sition [37]. The volatile matter of CB (70.33%) and raw biomass (84.74%) were higher than 
that of coal (14.22%). Biomass contains high volatile matter (70 – 85%). Hence, it is ex-
tremely reactive as a fuel with a faster rate of combustion [38]. There is slight increment in 
the volatile matter of the coal-CB blends between 20.03% (60:40) and 20.12% (50:50). The 
Babu wood sawdust contains the highest volatile matter in the blends than the coal. During 
combustion, many pollutants such as smoke from the fuel are due to volatile matter. It is 
quite challenging to naturally utilize biomass residues as fuel owing to their small bulk density, 
little heat release as well as the excessive amounts of smoke they generate [1,39]. The carbon-
ized sample has the highest fixed carbon (FC) content (25.20%), while raw biomass has 
8.40% and lean grade coal has 2.29% fixed carbon. The most paramount fuel property is the 
fixed carbon, which have direct relations with the calorific/heating value [23]. The result of the 
FC of the coal-CB blend revealed that CS-50:50 had 9.40% and went on a downward trend 
with 60:40 being 8.80%. The FC percentage is important having direct influence on the calo-
rific value. This implied that the coal is extremely poor as fuel source. It contains high amounts 
of impurities that impair its fuel properties. Calorific value results (Figure 1) revealed that coal 
had 2.29 MJ/Kg, carbonized biomass and raw biomass had a calorific value of 9.49 MJ/Kg and 
8.15 MJ/Kg, respectively. The major influencers of the calorific value of a fuel are the volatile 
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matter and fixed carbon content. There is relative closeness between the raw and the carbon-
ized sawdust fixed carbon content and volatile matter, which could have resulted in their 
heating values closeness. Oxygen diffusion and transfer of heat to the fuel surface during char 
combustion is significantly influenced by ash [1,34,40]. The coal sample utilized in this study is 
a doubt as fuel in any application. Carbonized biomass is to be used at 100% for any boiler/ 
heat generation.  The incombustibleness of the ash makes it to reduce the solid fuels’ calorific 
value. The result of the ultimate analysis is shown in Table 1. Biomass samples had higher 
carbon contents compared to the hydrogen, nitrogen, sulphur and oxygen contents. Coal had 
a carbon content of 5.24%, carbonized while carbonized biomass had 28.75% carbon content 
and raw sawdust had 23.70% carbon content. The carbon content of the coal-CB blends is 
12.59% and 11.71% in 50:50 and 60:40, respectively. The hydrogen content of the saw dust 
is 1.40%, coal sample is 0.90%, and carbonized biomass 1.22%. Biomass such as sawdust 
contain hydrogen obtainable from water (H2O) as well as other volatile and tars (CH4, C6H6). 
The content of hydrogen present in the coal- CB blends is 1.30% and 1.50% in 50:50 and 
60:40, respectively. 

 
Figure 2. O/C and H/C atomic ratios for the sam-
ples 

The amount of carbon and hydrogen present 
in the Babu wood sawdust are closely in 
agreement with values reported by Odusote 
et al. [26].  The effect is evidently displayed 
in the O/H and C/O atomic ratios shown in 
Figure 2. Figure 2 shows the rank of the sam-
ples as the energy content improves. Car-
bonized biomass is the best fuel compared 
with other. Carbonization has been reported 
to lower the oxygen and hydrogen contents 
of biomass, while it increases the stable aro-
matic carbon content that give room for bet-
ter calorific value [38,40]. The nitrogen and 
sulphur contents of the coal samples are re-
spectively 0.39% and 1.88%. 

Carbonized biomass and sawdust contain 1.72% and 1.20% of nitrogen, respectively. The 
sulfur content (0.02%) is the same for raw and carbonized biomass. When solid fuels contain-
ing nitrogen and sulphur are combusted, they potentially pollute the environment and affects 
man’s health. The extremely reduced amount of sulphur in biomass is advantageous. The 
aggregate sulphur content can be reduced when biomass are blended with other solid fuel. 
The nitrogen and sulphur contents of the coal- CB blends are 0.41% and 1.83%, and 0.57% 
and 1.82% in 50:50 and 60:40, respectively. The proximate, ultimate and calorific value es-
timation of the fuel show that the properties blend of carbonized biomass with the lean grade 
coal used in this study is inadequate as fuel materials.  

3.2. FTIR spectroscopy 

Figure 3 (a-b) display the FTIR spectra of the samples. The spectra revealed strong sharp 
peak in the range of 3600 - 3000 cm-1 in the coal sample. This is the assigned to O-H stretching 
and indicative of moisture forming bonds presence [18,26]. Similar peaks at 1095 and 1011 cm-1, 
1000 and 1420 cm-1, and 1092 and 1041 cm-1 depicting OH associations and OH bending are 
obtained in raw biomass, carbonized and other samples, respectively [18,26]. The peaks be-
tween 900 and 700 cm-1 revealed the high tendency of the presence of C-H and C-O bonding [41]. 
At peaks 1200-1050 cm-1, Si-O-Si presence is also eminent in the samples. Si-O presence has 
been reported to be prominent for peaks below 500 cm-1 [18]. The peaks 691 cm-1, 635 cm-1, 
and 691 cm-1 peaks indicate the presence of –Si(CH3)3 [35,42]. The result of the FTIR analysis 
explains the excessive ash content of the Okpara coal. It could be concluded that the FTIR 
analyses show significant C-H bonds for raw biomass, aromatic functional group for carbonized 
biomass and, Si-O-Si, C-O stretching and C-O deformation for the coal sample. The Si-based 
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functional group dominated the spectra of the coal sample. By implication, the coal formation 
has been extremely linked to peat family, which is not useful for energy generation but may 
be effective for recovering of silicon and some other metals [43].  

3.3. SEM-EDX of the samples 

 
Figure 3a. FTIR spectrum of the raw biomass 

Figures 4a - 8a show the micrographs of 
the raw biomass, carbonized biomass, coal 
and the blends. Figures 4b—8b are the EDX- 
spectra for the samples. The micrograph of 
raw biomass shows spongy like structure 
(Figure 4a).This has been reported in previ-
ous literature that biomass has spongy struc-
ture that makes it hydrophilic in nature [23]. 
This factor necessitated its carbonization. 
The micrograph of the carbonized samples 
was extremely different with breakaways. It 
depicts some disintegration of the spongy 
nature in the raw biomass (Figure 5a). Ther-
mochemical treatment causes loss of vola-
tiles and thus weakened bonds and pores 
that may eventually lead to breakaways in 
biomass structure [44]. 

 

 
Figure 3b. FTIR of carbonized biomass, lean grade coal and mixed samples 
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Figure 4a. Micrograph of 
raw biomass 

Figure 4b. EDX spectra and elemental presence of raw biomass 

 

 
 

Figure 5a. Micrograph of 
carbonized biomass 

Figure 5b. EDX and elemental presence of carbonized biomass 

 

 

 

Figure 6a. Micrograph of 
Okpara coal sample 

Figure 6b. EDX and elemental presence of Okpara coal 
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Figure 7a. Micrograph of 
50%carbonized biomass and 
50% coal 

Figure 7d. EDX and elemental presence of 50%carbonized biomass 
and 50%coal 

 

  

Figure 8a. Micrograph of 
40%carbonized biomass 
and 60%coal sample 

Figure 8b. EDX and elemental presence of 40%carbonized biomass 
and 60%coal sample 

The micrographs of coal and the blends (Figures 6 -8) generally revealed cluster of silica 
and carbide. Dominant grey-like structures are dispersed in the micrograph of the samples.  
This is in agreement with the FTIR and ash results where silica-based bands, and ash contents 
were vehemently dominant. The EDX spectra of raw and carbonized biomass (Figures 4-5b) 
showed that carbon was the predominant elements, while the EDX spectra of coal and blended 
samples in Figures (6 - 8b) displayed silicon to have the highest intensity. This affirms silica as 
the principal content of the coal and blended samples. Aluminum (Al) noticeably appears in 
the lean grade coal and blended samples. This depicts the alumina’s presence. Coal sample 
(Figure 6) has high amount of calcium (Ca), Al and Si were the dominants in the samples. 
This helps to classify the coal samples into clay/sedimentary rock family. It implied that is not 
coal but clayish peat. Other trace elements present in the samples include potassium, mag-
nesium, calcium, sulphur, sodium, and so on, as shown in Figures 4-8. It is expected that coal 
should have carbon as the major element with the trace elements in abysmal quantity [35]. 
However, the biomass samples (raw and carbonized) have a carbon content ranging from 
42.98 - 49.73% of the atomic concentration. By implication, biomass is extremely better as 
raw and carbonized samples than the characterized coal. The coals sample is indeed a lean 
grade coal or a sedimentary rock, which is not recommended in any form for energy genera-
tion [43].  
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4. Conclusion 

Comparative analyses of lean grade coal and carbonized biomass has been carried out in 
this study. The samples were blended and characterized. The lean grade coal contains 79.58% 
ash and 2.29% fixed carbon. Carbonization improved the fixed carbon of biomass sample from 
8.4% to 25.20%. The blended sample have poor proximate and ultimate content. Carbonized 
biomass has the highest heating value (9.49 MJ/kg), while coal has the least (2.29 MJ/kg). 
The C-H band is predominant in the FTIR spectra of raw and carbonized biomass while Si-O-
Si and Si-C bands are predominant in the coal and blended samples. The microstructure of 
raw biomass is spongy while that of carbonized biomass display disintegrated sponges. The 
microstructure of lean grade coal and blended samples is grey-like of silica and carbide. The 
EDX of the coal and blended samples have silicon as the dominant element. Carbonization 
improves biomass. However, the product should not be blend with coal of these characteris-
tics. The lean grade coal is not a material for energy generation as it is dominated by silica. 
Thus, it is recommended as raw materials for silicon recovery.   
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