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Abstract 
Well test analysis is a method for evaluating the average properties of the reservoir by characterizing 
the ability of the fluid to flow through the reservoir and to the well. Well test output parameters that 
descript reservoir are permeability, reservoir heterogeneities, boundaries and pressure; also, 
parameters that descript well are skin factor, productivity index and well geometries. The suggested 
models for prediction of pressure drop in vertical well have obtained from the solution of diffusivity 
equation for radial and elliptical regime. The purpose of this project is to generate a model for the 
horizontal well in fracture reservoir and estimate a parameter for this type of well by ANN method and 
compare the results with well test software. In this study, pressure data versus time was obtained for 
horizontal wells in naturally fractured reservoirs by solving diffusivity Equation using Stehfest 
algorithm, and for each set of data, a polynomial was developed for pressure derivative data by 
applying Chebyshev polynomials method. The polynomial coefficients along with reservoir and 
horizontal well data were fed into Artificial Neural Network (ANN) as input data and as a result, a model 
was presented for the horizontal well in naturally-fractured reservoir. In addition, output of the model 
was compared to the well log and well test software’s data and it was found that the presented model 
has better and higher performance than well test software’s. 
Keywords: Well test; Horizontal well; Naturally-fractured reservoir; Diffusivity equation; ANN method. 

1. Introduction

In recent years, there has been growing interest in neural networks, in which the human
brain functions differently than conventional digital computers when it comes to processing 
information. Neural networks can assist in integration of various types of data in reservoir 
managing and address both fundamental and specific petroleum engineering problems which 
conventional calculating has been unable to solve. When required data for modeling and in-
terpretation is insufficient, petroleum engineers can benefit from neural networks. 

Hydrocarbon reservoirs are heterogeneous, complex media with characteristics which are 
generally calculated indirectly by well-testing methods. The well test analysis is basically per-
formed by causing flow disturbances in the well and then measuring the bottom-hole pres-
sure response. This method provides the necessary data for quantitative analyzing the reser-
voir characteristics and reservoir description. The well-testing technique includes two steps: 
(1) Recognizing the reservoir model, and (2) estimating the parameters.

The goal of this work is to use the Artificial Neural Network (ANN) in order for reservoir
parameters estimation. The applied neural network has a multi-layer perceptron (MLP) struc-
ture. The needed training and well test data sets have been developed by using the analytical 
solutions from common reservoir models. ANN applies input and output data in order to 
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achieve a relation between them, and unlike symmetric methods, gets its strength from a 
heavily parallel distributed structure and generalization in which it learns the structure instead 
of storing information [1].  

The following are some of the advantages of ANN to identify reservoir models and evaluate 
their parameters: (1) Unlike symbolic methods, it has no need to preprocess or write complex 
rules; (2) it is insensitive to noisy pressure data; and (3) it performs nonlinear mapping for 
nonlinear issues. 

The first use of ANN in well test dates back to the 1990s, when Al-Kaabi and Lee (1990) 
utilized it to recognize well test models [2]. They applied normalized pressure derivatives in a 
logarithmic plot as an input to ANN and presented the application of a new artificial neural 
network-based approach to automatically classify a preliminary well test interpretation model 
for horizontal wells from the derivative plot and normalized pressure derivative results. 

Allian and Houze  applied the ANN technique in combination with symbolic approach in their 
research [3-4]. They used the artificial neural network to recognize the reservoir model type 
and a symbolic approach to measure parameters of the reservoir.  

Although numerous researchers have applied ANN to recognize reservoir models by using data 
from well test , researches on applying ANN for reservoir parameters estimation are limited [5] 

There are three popular techniques for estimating the reservoir parameters from well test 
data: conventional method, using type-curves, and non-linear regression [5]. 

In conventional analysis, each flow pattern needs to be plotted individually to estimate 
reservoir parameters. Therefore, achieving reservoir parameters from all well test data is im-
possible using this method. In type-curves and nonlinear regression techniques, all the test 
data are used for reservoir parameters estimation though each approach has its own difficul-
ties. In type-curves, numerous curves may match the pressure data and the results are not 
unique. On the other hand, because nonlinear regressions are extremely dependent on initial 
guesses, different results may be obtained from different initial guesses [5]. 

Drilling horizontal wells has become increasingly more common around the world due to 
their large contact area with reservoir rock and increased productivity. Horizontal wells provide 
a very high desired production enhancement as a method for improving production perfor-
mance [6]. Transient well testing in horizontal oil wells demonstrates more complex behaviors 
in characterizing reservoir properties when compared to vertical oil wells. The complexity re-
sults from the fact that most horizontal wells are not completely horizontal and parallel to the 
bedding plane. In addition, the wells may be located in the middle of the reservoir thickness, 
close to the bottom boundary, or close to the top boundary, which affects the flow behavior 
and makes the interpretation more difficult. Well length, formation thickness, and the ratio of 
vertical/horizontal permeability are three key parameters that affect transient well tests in 
horizontal wells [7]. Houzé et al. considered the well to be completely horizontal, and to be 
located in a homogeneous formation of uniform thickness h. First, the reservoir is assumed 
isotropic in the horizontal plane, but vertical anisotropy and other parameters will be defined 
as in the limited entry well [8]. 

Nowadays, naturally fractured reservoirs may comprise a significant portion of total oil and 
gas production. There are numerous ways to describe this behavior; however, the purpose of 
this study is to use pressure transient tests in a horizontal well in order to better understand 
and describe these types of reservoirs [9]. The ultimate goal is to accurately characterize the 
reservoir properties, like skin factor, permeability and storage capacity of each medium [10]. 
In the following, the core theory of this study is presented. The data set and methodology are 
discussed in Section 3. This is followed in Section 4 by presentation and discussion of the 
results obtained. 

2. Theory 

Due to the properties of noise insensitive and nonlinear mapping, ANN has been widely 
used to solve nonlinear problems in recent years. The ANN training samples are a series of 
data points taken from theoretical pressure derivative curves. The data point series is normal-
ized or scaled down to [0, 1] or [–1, 1] before input to ANN to uniform the input data and 
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prevent saturation while training ANN [11]. Since actual tested pressure derivative curves are 
unavailable as learning samples to train ANN due to the complexity of the well test problem, 
the logical training samples are the theory pressure derivative curves based on the mathe-
matical model. In comparison to the training samples, the actual tested pressure derivative 
curve is normally transferred, noised, and truncated, resulting in the tested curve not being 
in the same model area as the training samples [12-13]. 

Using ANN for reservoir characteristics estimation of Naturally Fractured Reservoirs (NFRs) 
was conducted by Alajmi and Ertekin (2007) for first time [?]. They obtained a coefficient of 
interpolating polynomials by fitting a conventional polynomial of degree 4 to pressure data 
plotted in a semi-log scale and applied this coefficient as input of the ANN. 

Serra et al. showed that three different semi-log flow patterns can be observed for pressure 
responses of naturally fractured reservoir, and they also provided methods to classify these 
flow regimes using field data, as well as the times and physical conditions under which they 
occur [14]. Using the pressure curves plotted in the semi-log format to train the ANN, is the 
main drawback of their work. These curves, when compared to the pressure derivative data 
plotted in log–log format, are extremely similar for NFRs to effectively conduct the learning 
process, and consequently, learning process of the ANN discovered to be very tedious [15-16]. 

In this study, Pressure derivative data in the log–log scale is applied to train the ANN. The 
fundamental concept is to fit a polynomial to pressure derivative data in a log–log format and 
use the interpolating polynomial coefficient as an input to the ANN instead of normalized data. 
Also, Chebyshev polynomials were applied to interpolate the pressure derivative data. Fur-
thermore, a reservoir model which corresponds to NFR with PSS inter-porosity flow is used 
and all unknown reservoir parameters are determined using ANN. These parameters are as 
following: (1) wellbore storage(C); (2) skin (S); (3) permeability of fracture (kf); (4) inter-
porosity flow coefficient (λ); (5) storativity ratio (ω) [17]. 

3. Data Set 

General description 

The oilfield illustrated in Figure 1 is the largest onshore oilfield discovered in the last three 
decades and is located in south-west of Iran. Sarvak, Kazhdumi, and Gadvan are productive 
reservoirs of this field [18].  
 

 
Figure 1. Regional location map of A specific oil field in southwest Iran 
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Well information 
The exploration and delineation drilling in this field has proved presence of a very prolific 

hydrocarbon-enriched bearing sedimentary column. 
Fracturing 

Fracturing affects all rock types and can increase reservoir potential. Vugs developed in 
Middle Sarvak with vertical variations can be observed in outcrops at different scales in Bang-
estan (about 200 kilometers west of this oilfield). Figure 2 shows developed and undeveloped 
vugs in Sarvak outcrops [6].  
 

 
Figure 2. Developed Vugs in Bangestan 

In order to investigate the correlation between lithological data and reservoir properties 
graphically, comprehensive reservoir columns are generated by using lithological, core poros-
ity and permeability, in addition to log data, as shown in Figure 3.  

 
Figure 3. Comprehensive reservoir column of Well-A 
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Fractures in Sarvak 
Due to the lack of FMI and outcrop data, there is no direct evidence of fracture distribution. 

However, the existence of fractures is confirmed by the following indirect evidences: 
1. Some cores are fragmented and have stylolite-related micro fractures. 
 

 

 
Figure 4.  Well-A core photograph 

 

 
Figure 5. Well-B core photograph 

2. The results of a plug permeability analysis show values as high as 1256 md, which could 
be an indication of fracture. The values of permeability can be found in Table 1; and the 
corresponding logs are illustrated in Figure 6. Also, the mercury injection curves of Well-A 
at 2756 m are displayed in Figure 7.  

3. Reservoir properties and well test results in the oilfield have been recorded in Tables 2 and 
3 respectively. As it can be observed, Sarvak is a low-permeability reservoir with an aver-
age permeability of 11.6 md which has been measured from log interpretation. However, 
the high production test (over 6000 bbl/d in Well-C) of some wells is inconsistent with the 
low permeability of this layer. This productivity can result from the existence of fractures. 

4. Fracture Analysis of Well-A: EMI logging was conducted in Well-A. Analysis shows that (1) 
Conductive fractures are generally not formed, with only 8 fractures identified; (2) resistive 
fractures are also not developed, with only 2 fractures identified; and (3) one group of 
induced fractures is found with a high dip angle, which may be linked to the release of 
geostress. 

Table 1. Permeability of core in Well-A 

Well Sample  Zone Core 
depth(m) 

MD (m) Porosity Permeability 

Well-A 2-2 Sar-3 2756.4 2759.9 0.101 1256 

Well-A 2-6 Sar-3 2765.4 2768.9 0.236 89 

Well-A 2-10 Sar-3 2774.1 2775.7 0.208 29 

Well-A 2-22 Sar-3 2871.1 2873.8 0.039 0.69 

Table 2. Reservoir properties of the Specific oilfield 

Form. Net k μ Kh/μ GOR Boi Pi-Pb 
Sar. 75.2 11.6 5 174 267 - 493 1.25-1.35 2700 - 3629 
Kaz. 10.8 99.1 0.4 2696 916 - 1589 1.38 - 1.95 1299 - 2689 
Gad. 13.3 181.5 0.35 6897 1168 - 1391 1.79 – 1.87 2277 - 2933 
Fah. 36.2 11.5 0.33 913 1519 - 1996 1.8 – 2.08 4710 - 5400 
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Figure 6. Logging depth and features for samples in Table 1 

 
Figure 7. Mercury injection data of 2-2 sampled in Well-A well 
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Table 3. Well test result 

Well Test.n
o 

Top 
depth 

Base 
depth Pressure Oil (bbl/D) Gas Oil gas 

Well-B PT1 2800 2820  335-425  1020 
Well-B PT2 2762 2778 469 4602  1571 
Well-C PT2 2930 2953 0-70    
Well-C PT3 2928 2938 50-60 706  2436 
Well-C PT4 2806 2821 810 6238 197 290 
Well-C    1030 4260 108 290 
Well-C    1200 1902 126 290 

Methodology  

Artificial Neural Network of which the specification has been reported in Table 4, is applied 
to evaluate reservoir parameters using data from well test. The Stehfest numerical Laplace 
inverse algorithm was employed to train the ANN on theoretical pressure derivative curves 
from a NFR with Pseudo Steady State (PSS) inert porosity flow in a horizontal well [19].  

Table 4. Initial and steady states values of output 

ANN 
Number of neurons 

in output layer 
Number of neurons 

in hidden layer 
Number of neurons 

in input layer 
Output layer 

transfer function 
Hidden layer 

transfer function 
8 15 17 linear sigmoid 

Each reservoir parameter is estimated using all test data for verification of the accuracy of 
the trained ANN. The ability of the new method, which uses curve fitting polynomial coeffi-
cients as input to train ANN, is demonstrated by low relative error values of reservoir param-
eters when test data is used. Furthermore, well test data for a fractured reservoir with dual-
porosity model in a horizontal well in this oil-field was used to compare the outputs of the ANN 
with the results achieved using various well test software’s and normalization methods. The 
results indicate that ANN and well test software’s are very consistent [20-22]. 

The pressure derivative data plotted in log-log scale are obviously more recognizable com-
pared to the pressure drop data in a semi-log format. Even by using different reservoir pa-
rameters, the similarity of the pressure data in a semi-log scale leads to the same input data 
for ANN, which causes difficulties in the learning process. Due to the problems with normalized 
input data, a new approach is presented in this study to explain the properties of pressure 
derivative data used as an input to the ANN.  

The main idea is to fit a polynomial to pressure derivative data in a log–log plot and use 
the interpolating polynomial coefficients as inputs to the ANN instead of normalized data. The 
main issue, however, is that the pressure derivative curves of NFRs in horizontal wells are 
extremely dissimilar for different values of λ, ω, Lw, or so. As a result, higher order polyno-
mials are required. Figure 8 shows simulations of pressure derivative data plotted in log–log 
format for different parameters. 

A polynomial fit was created to effectively preserve the signature integrity of the double 
porosity model in horizontal well. This procedure necessitates the use of the following curve 
fitting tool box of Matlab software. Quantitative data can be fully utilized by fitting the data to 
a mathematical model. 

It was observed that a suitable polynomial of degree nine produced a very good fitting 
between the polynomial and the pressure transient data. As a result, the ten characteristic 
polynomial coefficients are used to replace the data point pressure transient data, which ef-
fectively explain the double porosity in each pattern's horizontal well signature. The use of the 
polynomial fit procedure has been displayed in Figure 9. Also, an example of the obtained 
polynomial coefficient by using the polynomial fit algorithm has been recorded in Table 5 [23].  
𝑓𝑓(𝑥𝑥) = 𝑝𝑝1𝑥𝑥9 + 𝑝𝑝2𝑥𝑥8 + 𝑝𝑝3𝑥𝑥7 + 𝑝𝑝4𝑥𝑥6 + 𝑝𝑝5𝑥𝑥5 + 𝑝𝑝6𝑥𝑥4 + 𝑝𝑝7𝑥𝑥3 + 𝑝𝑝8𝑥𝑥2 + 𝑝𝑝9 𝑥𝑥 + 𝑝𝑝10       (1) 
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Figure 8. Simulated logΔP΄ vs. Δt for different parameters 

 
Figure 9. A polynomial fiting procedure demonstration 

 

Table 5. An example of the obtained polynomial 
coefficient using the polynomial fit algorithm 

 
 

Polynomial coefficient Value 
P1 -0.2127 
P2 -0.5372 
P3 1.161 
P4 3.394 
P5 -1.73 
P6 -6.748 
P7 0.8511 
P8 3.856 
P9 -1.134 
P10 -6.574 

 
Figure 10. Horizontal well schematic in dual-po-
rosity and single permeability reservoir [24] 

Pressure behavior of horizontal wells in natural fractured reservoirs 

In horizontal wells in NFRs, the Warren and Root model, a dual-porosity and single-perme-
ability model, is used in each pressure drawdown and buildup equation. This study presents 
an analytical solution for pressure transient behavior of a horizontal well in dual-porosity, dual-
permeability NFRs. When we consider the flow condition inside the matrix blocks, the proposed 
equations can be derived using the double Fourier transform and Laplace transformation. The 
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results measured for combinations of dimensionless characterization parameters, like perme-
ability ratio between matrix and fracture structures, have shown the unique behavior of NFRs. [24]. 

Model of horizontal well  

 
Figure 11. Horizontal well configuration 

Figure 11 shows a schematic of a horizon-
tal well with length L which is parallel to x 
direction. The following assumptions have 
been considered:  
1. The dual-porosity NFR is a horizontal layer 

of which thickness, porosity, and permea-
bility’s of matrix and fracture are con-
stant. 

2. The matrix system is homogeneous and 
isotropic, as is the fracture system. 

 
3. Since the reservoir has an infinite lateral extension, pressure disturbances during well 

production do not reach the boundaries. 
4. The initial pressure in the reservoir is constant, and it is uniform in the reservoir. At an 

infinite distance from the well, the pressure remains constant and equal to the initial value. 
The reservoir is also bounded by top and bottom impermeable layers. 

5. The production takes place through a horizontal well with a radius of rw and a length of L, 
which is illustrated in the model by a uniform line sink located at a distance of w z from the 
lower boundary. In addition, the formation's thickness is small in comparison with the hor-
izontal well's length. 

6. A single-phase fluid with a low and constant compressibility C, constant viscosity μ, and 
formation volume factor Bo enters from the reservoir to the well. Also, flow rate is Constant 
and Fluid properties are pressure-independent. 

7. Interporosity flow between the matrix blocks and fractures occurs in a pseudo-steady state, 
and both the fracture system and the matrix blocks will feed the horizontal wellbore. 

8. The effect of gravity drainage is ignored. 

Initial and boundary conditions 

As it can be observed in Figure 11, the horizontal well is a uniform line sink in 3 dimensions, 
and the coordinates of the 2 ends are (0, 0, zw) and (L, 0, zw). The drainage domain is: 
Ω (−∞, ∞) ∗ (−∞, ∞) ∗ (0, H)                    (2) 

The reservoir is infinite laterally extended; it means that the outer boundary condition is as 
follows: 
Pj (r, t) = Pini; when r →∞ ;( j = 1, 2)                 (3) 
where Pini is the initial pressure in the reservoir, and subscripts 1 and 2 respectively denote 
the matrix block structure and the fracture system. In addition, upper and lower boundaries 
of the reservoir are impermeable. 
𝜕𝜕𝑝𝑝𝑝𝑝
𝜕𝜕𝑧𝑧

|𝑧𝑧 = 𝑜𝑜 = 𝜕𝜕𝑝𝑝𝑝𝑝
𝜕𝜕𝑧𝑧

|𝑧𝑧 = 𝐻𝐻 = 0;( j = 1, 2)                  (4) 
Boundary condition at wellbore: 

P1 (rw, t) = P2 (rw, t) = Pw (t)                      (5) 
Initial condition: Pj (r, t) = Pini; when t=0 ;( j = 1, 2)     

At each mathematical point, the medium and flow parameters of both fracture and matrix 
media are described using continuum mechanics. The pressure equations for a single point 
sink are obtained, and then the solutions for a uniform line sink are obtained using the principle 
of superposition [25-26]. 
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Point Sink Solution 

In the dual-porosity, and dual-permeability NFRs, let the system of equations for a point sink 
at (x', 0, zw) be as follows:    
𝜕𝜕2𝑃𝑃𝑚𝑚
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑃𝑃𝑚𝑚
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑃𝑃𝑚𝑚
𝜕𝜕𝑧𝑧2

+ 𝛼𝛼(𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑚𝑚) = �𝜇𝜇𝜑𝜑𝑚𝑚𝐶𝐶𝑚𝑚
𝐾𝐾𝑚𝑚

� 𝜕𝜕𝑃𝑃𝑚𝑚
𝜕𝜕𝜕𝜕

+ �𝜇𝜇𝐵𝐵𝑜𝑜𝑞𝑞𝑚𝑚
𝐾𝐾𝑚𝑚

� 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝛿𝛿(𝑦𝑦)𝛿𝛿(𝑧𝑧 − 𝑧𝑧𝑤𝑤)     (6) 
𝜕𝜕2𝑃𝑃𝑓𝑓
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑃𝑃𝑓𝑓
𝜕𝜕𝑦𝑦2

+
𝜕𝜕2𝑃𝑃𝑓𝑓
𝜕𝜕𝑧𝑧2

+ �𝐾𝐾𝑚𝑚𝛼𝛼
𝐾𝐾𝑓𝑓
� (𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑓𝑓) = �

𝜇𝜇𝜑𝜑𝑓𝑓𝐶𝐶𝑓𝑓
𝐾𝐾𝑓𝑓

�
𝜕𝜕𝑃𝑃𝑓𝑓
𝜕𝜕𝜕𝜕

+ �
𝜇𝜇𝐵𝐵𝑜𝑜𝑞𝑞𝑓𝑓
𝐾𝐾𝑓𝑓

� 𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝛿𝛿(𝑦𝑦)𝛿𝛿(𝑧𝑧 − 𝑧𝑧𝑤𝑤)         (7) 

The ratio of matrix permeability to fracture permeability is defined in the equation below: 
𝐷𝐷 = �𝐾𝐾𝑚𝑚

𝐾𝐾𝑓𝑓
�                            (8) 

𝛽𝛽 = 𝐷𝐷
(1+𝐷𝐷)

                            (9) 
Assume  𝑞𝑞𝑚𝑚 is the flow rate of matrix block system, and 𝑞𝑞𝑓𝑓 is the flow rate of fracture system, 

then we can obtain the total flow rate of horizontal well, 𝑞𝑞𝑤𝑤: 
𝑞𝑞𝑤𝑤= 𝑞𝑞𝑚𝑚+ 𝑞𝑞𝑓𝑓                          (10) 

Define: 
𝜏𝜏𝑚𝑚 = 𝑞𝑞𝑚𝑚

𝑞𝑞𝑤𝑤
                             (11) 

𝜏𝜏𝑓𝑓 =
𝑞𝑞𝑓𝑓
𝑞𝑞𝑤𝑤

                            (12) 
And assume: 
𝜏𝜏𝑚𝑚 = 𝑘𝑘𝑚𝑚

𝑘𝑘𝑓𝑓+𝑘𝑘𝑚𝑚
                            (13) 

𝜏𝜏𝑓𝑓 =
𝑘𝑘𝑓𝑓

𝑘𝑘𝑓𝑓+𝑘𝑘𝑚𝑚
                            (14) 

Then: 
𝑞𝑞𝑚𝑚 = 𝑘𝑘𝑚𝑚𝑞𝑞𝑤𝑤

𝑘𝑘𝑓𝑓+𝑘𝑘𝑚𝑚
= 𝜏𝜏𝑚𝑚𝑞𝑞𝑤𝑤                         (15) 

𝑞𝑞𝑓𝑓 =
𝑘𝑘𝑓𝑓𝑞𝑞𝑤𝑤
𝑘𝑘𝑓𝑓+𝑘𝑘𝑚𝑚

= 𝜏𝜏𝑓𝑓𝑞𝑞𝑤𝑤                          (16) 

The storage capacity ratio is calculated as follows: 
𝜔𝜔 =

𝜑𝜑𝑓𝑓𝐶𝐶𝑓𝑓
(𝜑𝜑𝑚𝑚𝐶𝐶𝑚𝑚+𝜑𝜑𝑓𝑓𝐶𝐶𝑓𝑓)

                         (17) 

The interporosity flow parameter is: 
𝜆𝜆 = 𝛼𝛼𝑘𝑘𝑚𝑚ℎ2

𝑘𝑘𝑓𝑓+𝑘𝑘𝑚𝑚
                                     (18) 

Using dimensionless transformations, Equations (6) and (7) are changed to: 
𝛽𝛽 �𝜕𝜕

2𝑃𝑃𝑑𝑑𝑚𝑚
𝜕𝜕𝑥𝑥𝑑𝑑

2 + 𝜕𝜕2𝑃𝑃𝑑𝑑𝑚𝑚
𝜕𝜕𝑦𝑦𝑑𝑑

2 + 𝜕𝜕2𝑃𝑃𝑑𝑑𝑚𝑚
𝜕𝜕𝑧𝑧𝑑𝑑

2 � + 𝜆𝜆(𝑃𝑃𝑑𝑑𝑓𝑓 − 𝑃𝑃𝑑𝑑𝑚𝑚) = (1 − 𝜔𝜔) 𝜕𝜕𝑃𝑃𝑑𝑑𝑚𝑚
𝜕𝜕𝜕𝜕𝑑𝑑

− 𝜏𝜏𝑚𝑚𝛿𝛿(𝑥𝑥𝑑𝑑 − 𝑥𝑥′𝑑𝑑)𝛿𝛿(𝑦𝑦𝑑𝑑)𝛿𝛿(𝑧𝑧𝑑𝑑 − 𝑧𝑧𝑑𝑑𝑤𝑤)    (19) (1 −

𝛽𝛽) �
𝜕𝜕2𝑃𝑃𝑑𝑑𝑓𝑓
𝜕𝜕𝑥𝑥𝑑𝑑

2 +
𝜕𝜕2𝑃𝑃𝑑𝑑𝑓𝑓
𝜕𝜕𝑦𝑦𝑑𝑑

2 +
𝜕𝜕2𝑃𝑃𝑑𝑑𝑓𝑓
𝜕𝜕𝑧𝑧𝑑𝑑

2 � − 𝜆𝜆(𝑃𝑃𝑑𝑑𝑓𝑓 − 𝑃𝑃𝑑𝑑𝑚𝑚) = 𝜔𝜔
𝜕𝜕𝑃𝑃𝑑𝑑𝑓𝑓
𝜕𝜕𝜕𝜕𝑑𝑑

− 𝜏𝜏𝑓𝑓𝛿𝛿(𝑥𝑥𝑑𝑑 − 𝑥𝑥′𝑑𝑑)𝛿𝛿(𝑦𝑦𝑑𝑑)𝛿𝛿(𝑧𝑧𝑑𝑑 − 𝑧𝑧𝑑𝑑𝑤𝑤)      (20) 

Then, we can attain the point sink solution at ( xd' ,0, zwd) using the Laplace transform and 
double Fourier transform of Equations (19) and (20), along with boundary and initial condi-
tions: 
𝑝𝑝𝑑𝑑𝑓𝑓(𝑥𝑥′𝑑𝑑 , 𝑧𝑧𝑤𝑤𝑑𝑑 , 𝑡𝑡𝑑𝑑) = −∑ 𝑐𝑐𝑜𝑜𝑐𝑐 �𝑛𝑛𝑛𝑛𝑧𝑧𝑤𝑤𝑑𝑑

ℎ𝑑𝑑
�∞

𝑛𝑛=0 𝑐𝑐𝑜𝑜𝑐𝑐 �𝑛𝑛𝑛𝑛𝑧𝑧𝑤𝑤𝑑𝑑
ℎ𝑑𝑑

� × �𝜏𝜏𝑚𝑚𝑓𝑓3,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑) +

𝜏𝜏𝑓𝑓𝑓𝑓4,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑)�                               (21) 
Where: 
𝑓𝑓𝑝𝑝,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑) = � 1

2𝑛𝑛
� ∫ ∫ 𝐹𝐹𝑝𝑝,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝛾𝛾, 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑 , 𝜉𝜉1, 𝜉𝜉2) 𝑒𝑒𝑥𝑥𝑝𝑝[𝑖𝑖(𝜉𝜉1𝑥𝑥𝑑𝑑 + 𝜉𝜉2𝑦𝑦𝑑𝑑)]∞

−∞
∞
−∞ 𝑑𝑑𝜉𝜉1𝑑𝑑𝜉𝜉2     

                              (22) 
And:𝐹𝐹3,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝛾𝛾, 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑, 𝜉𝜉1, 𝜉𝜉2) = �𝑒𝑒𝑥𝑥𝑝𝑝(−𝑖𝑖𝜉𝜉1𝑥𝑥′𝑑𝑑)

2𝑛𝑛ℎ𝑑𝑑𝑑𝑑𝑛𝑛
× �� 𝜆𝜆

𝜔𝜔(𝜔𝜔−1)
� × �(𝑎𝑎−𝑏𝑏)+𝑏𝑏 𝑒𝑒𝑥𝑥𝑝𝑝(𝑎𝑎𝜕𝜕𝑑𝑑)−𝑎𝑎𝑒𝑒𝑥𝑥𝑝𝑝(𝑏𝑏𝜕𝜕𝑑𝑑)

𝑎𝑎𝑏𝑏(𝑎𝑎−𝑏𝑏)
��� (23) ( 24) 

In above equation: 
𝑎𝑎 =

(−𝑈𝑈+�𝑈𝑈2−4𝑉𝑉)
2

 
( ) ( )

( )
( ) ( ) ( ) ( ) ( )2

1
4, 1 2

exp ' exp exp exp exp1, , , , ' , , ,
2 1 ( )

d d d d d
n d d

d n

i x a b b at a bt at bt
F x t

h d ab a b a b
ξ βγ λβ λ ω γ ξ ξ

π ω ω ω

   − − + − −   +  = × × − ×        − − −         
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                              (25) 

𝑏𝑏 = (−𝑈𝑈−�𝑈𝑈2−4𝑉𝑉)
2

                          (26) 

𝑈𝑈 = (−2𝛽𝛽𝜔𝜔𝛾𝛾2−𝛾𝛾2+𝛽𝛽𝛾𝛾2−𝜆𝜆+𝜔𝜔𝛾𝛾2)
−𝜔𝜔+𝜔𝜔2                       (27) 

𝑉𝑉 = (−𝛽𝛽𝛾𝛾4−𝜆𝜆𝛾𝛾2+𝛽𝛽2𝛾𝛾4)
−𝜔𝜔+𝜔𝜔2                          (28) 

𝛾𝛾2 = 𝜉𝜉1
2 + 𝜉𝜉2

2 + �𝑛𝑛𝑛𝑛
ℎ𝑑𝑑
�
2
                         (29) 

Uniform line sink solution 

By assuming the horizontal well as a uniform line sink, located between points (0,0, zw) 
and (L,0, zw), and dimensionless line sink locating between points (0,0,zwd) and (Ld,0, zwd), 
the dimensionless pressure at the wellbore point (xd ,0,zwd ) is as the following, by using 
Principle of Superposition, and recall Equation (5): 
𝑝𝑝𝑤𝑤𝑑𝑑(𝑥𝑥𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑧𝑧𝑤𝑤𝑑𝑑 , 𝑡𝑡𝑑𝑑) = −∑ 𝑐𝑐𝑜𝑜𝑐𝑐 �𝑛𝑛𝑛𝑛𝑑𝑑

ℎ𝑑𝑑
�∞

𝑛𝑛=0 𝑐𝑐𝑜𝑜𝑐𝑐 �𝑛𝑛𝑛𝑛𝑤𝑤𝑑𝑑
ℎ𝑑𝑑

� × �𝜏𝜏𝑚𝑚𝑔𝑔3,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑) +

𝜏𝜏𝑓𝑓𝑔𝑔4,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑)�                      (30)  
where: 
𝑔𝑔𝑝𝑝,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑) = ∫ 𝑓𝑓𝑝𝑝,𝑛𝑛(𝛽𝛽, 𝜆𝜆,𝜔𝜔, 𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑 , 𝑥𝑥′𝑑𝑑 , 𝑡𝑡𝑑𝑑)𝑙𝑙𝑑𝑑

0 𝑑𝑑𝑥𝑥′𝑑𝑑            (31) 
Equation (4.22) for all h > 0 will change to: 
∫ ∫ 𝐹𝐹(𝜉𝜉1, 𝜉𝜉2)𝑑𝑑∞

−∞
∞
−∞ 𝜉𝜉1𝑑𝑑𝜉𝜉2 = ∑ ∑ ∫ ∫ 𝐹𝐹(𝜉𝜉1, 𝜉𝜉2)𝑑𝑑(𝑚𝑚+1)ℎ

𝑚𝑚ℎ
(𝑖𝑖+1)ℎ
𝑖𝑖ℎ

∞
𝑚𝑚=−∞

∞
𝑖𝑖=−∞ 𝜉𝜉1𝑑𝑑𝜉𝜉2         (32) 

Then by applying Mean Value Theorem, we obtain: 
𝑓𝑓𝑝𝑝,𝑛𝑛(𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑) = � 1

2𝑛𝑛
�∑ ∑ ℎ2𝐹𝐹𝑝𝑝,𝑛𝑛 ��𝑖𝑖 + 1

2
� ℎ, �𝑚𝑚 + 1

2
� ℎ� , (𝑗𝑗 = 3,4)20

𝑚𝑚=−20
20
𝑖𝑖=−20          (33) 

At very early time, the horizontal wellbore pressure can be calculated as follows using 
Equations (30), (31), (32), and (33): 
𝑝𝑝𝑤𝑤𝑑𝑑 = 1

2
{1.423 + 𝑙𝑙𝑙𝑙( 𝑡𝑡𝑑𝑑)} − 1

4
𝑙𝑙𝑙𝑙[4 𝑐𝑐𝑖𝑖𝑙𝑙(𝜋𝜋𝑧𝑧𝑤𝑤𝑑𝑑) 𝑐𝑐𝑖𝑖𝑙𝑙(𝜋𝜋𝑟𝑟𝑤𝑤𝑑𝑑)]              (34)  

where: 
𝜒𝜒 = � 1+𝐷𝐷

𝐷𝐷�𝜂𝜂1+�𝜂𝜂2
�                          (35) 

and: 
𝜂𝜂1 = 1−𝜔𝜔

𝛽𝛽
                            (36) 

𝜂𝜂2 = 𝜔𝜔(1 + 𝐷𝐷)                           (37) 
When td < 0.05, Ld> 5, Equation (34) changes to: 

𝑝𝑝𝑤𝑤𝑑𝑑 = � 2𝜒𝜒
𝐿𝐿𝑑𝑑√𝑛𝑛

��𝑡𝑡𝑑𝑑                         (38) 
At very late time, if D< 0.25, td > 103 there holds: 

𝑝𝑝𝑤𝑤𝑑𝑑 = 1
2
�1.423 + 𝑙𝑙𝑙𝑙( 𝑡𝑡𝑑𝑑) + 𝐸𝐸𝑖𝑖 � −𝜆𝜆𝜕𝜕𝑑𝑑

𝜔𝜔(1−𝜔𝜔)
� − 𝐸𝐸𝑖𝑖 � −𝜆𝜆𝜕𝜕𝑑𝑑

(1−𝜔𝜔)
�� − 1

4
𝑙𝑙𝑙𝑙[4 𝑐𝑐𝑖𝑖𝑙𝑙(𝜋𝜋𝑧𝑧𝑤𝑤𝑑𝑑) 𝑐𝑐𝑖𝑖𝑙𝑙(𝜋𝜋𝑟𝑟𝑤𝑤𝑑𝑑)]      (39) 

When td > 105, Equation (39) reduces to: 
𝑝𝑝𝑤𝑤𝑑𝑑 = 1

2
{1.423 + 𝑙𝑙𝑙𝑙( 𝑡𝑡𝑑𝑑)} − 1

4
𝑙𝑙𝑙𝑙[4 𝑐𝑐𝑖𝑖𝑙𝑙(𝜋𝜋𝑧𝑧𝑤𝑤𝑑𝑑) 𝑐𝑐𝑖𝑖𝑙𝑙(𝜋𝜋𝑟𝑟𝑤𝑤𝑑𝑑)]              (40) 

In oil field units if only the mechanical skin factor is considered, Equation (40) is expressed 
as follows: 
𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖−𝑝𝑝𝑤𝑤 = �162.6𝜇𝜇𝐵𝐵𝑜𝑜𝑞𝑞𝑤𝑤

𝑘𝑘𝑡𝑡ℎ
� �0.618 + 𝑙𝑙𝑜𝑜𝑔𝑔 � 𝑘𝑘𝑡𝑡𝜕𝜕

𝜇𝜇(𝜑𝜑𝜑𝜑)𝑡𝑡ℎ2
� − �ℎ

𝐿𝐿
� 𝑙𝑙𝑜𝑜𝑔𝑔 �4 𝑐𝑐𝑖𝑖𝑙𝑙 �𝑛𝑛𝑧𝑧𝑤𝑤

ℎ
� 𝑐𝑐𝑖𝑖𝑙𝑙 �𝑛𝑛𝑟𝑟𝑤𝑤

ℎ
�� + 0.217 �ℎ

𝐿𝐿
� 𝑆𝑆𝑚𝑚�  41) 

The Stehfest algorithm is applied to develop pressure derivative data from the pressure 
solution in Laplace media. By considering the impacts of wellbore storage and skin factor, and 
also using the above equation (41), the proposed method is utilized to develop the pressure 
derivative data, which is defined in the following [5, 27, 28]: 
𝜉𝜉 �𝑑𝑑𝑝𝑝𝑤𝑤𝑑𝑑

𝑑𝑑𝜕𝜕𝑑𝑑
� = 𝑐𝑐�̄�𝑝𝑤𝑤𝑑𝑑(𝑐𝑐) − 𝑝𝑝𝑤𝑤𝑑𝑑(𝑡𝑡𝑑𝑑 = 0)                     (42) 

𝑑𝑑𝑝𝑝𝑤𝑤𝑑𝑑
𝑑𝑑𝜕𝜕𝑑𝑑

= 𝜉𝜉−1{𝑐𝑐�̄�𝑝𝑤𝑤𝑑𝑑(𝑐𝑐)}                        (43) 

�𝑡𝑡𝑑𝑑
𝑑𝑑𝑝𝑝𝑤𝑤𝑑𝑑
𝑑𝑑𝜕𝜕𝑑𝑑

�
𝑖𝑖

= � 𝑑𝑑𝑝𝑝𝑤𝑤𝑑𝑑
𝑑𝑑 𝑙𝑙𝑛𝑛(𝜕𝜕𝑑𝑑)

�
𝑖𝑖

= 𝑡𝑡𝑑𝑑𝑖𝑖[𝜉𝜉−1{𝑐𝑐�̄�𝑝𝑤𝑤𝑑𝑑(𝑐𝑐)}]𝜕𝜕𝑑𝑑𝑑𝑑                  (44) 
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�̄�𝑝𝑤𝑤𝑑𝑑(𝑐𝑐) = ℎ𝑑𝑑
2𝑠𝑠
𝑘𝑘��[𝑥𝑥𝑑𝑑2 + (𝑧𝑧𝑑𝑑)2]𝑐𝑐𝑓𝑓(𝑐𝑐)�                    (45) 

where: 
𝑓𝑓(𝑐𝑐) = 𝜔𝜔 + (1−𝜔𝜔)𝜆𝜆

(1−𝜔𝜔)𝑠𝑠+𝜆𝜆
                         (46) 

Eq. (4.43) ignores the influence of rock and fluid properties due to the fact that it only 
generates dimensionless pressure derivative data points. As a result, using the following equa-
tions, the dimensionless pressure derivative data and the dimensionless time are changed to 
the derivative of pressure drop data versus time [5]: 
�𝑡𝑡 𝛿𝛿𝛿𝛿𝑝𝑝

𝛿𝛿𝜕𝜕
�
𝑖𝑖

= 141.2𝑞𝑞𝜇𝜇𝐵𝐵𝑜𝑜
𝑘𝑘𝑓𝑓ℎ

�𝑡𝑡𝑑𝑑
𝛿𝛿𝑝𝑝𝑑𝑑
𝛿𝛿𝜕𝜕𝑑𝑑

�
𝑖𝑖
                       (47) 

𝑡𝑡 =
𝜇𝜇(𝜙𝜙𝑐𝑐𝜕𝜕)𝜕𝜕𝑟𝑟𝑤𝑤2

0.000264𝑘𝑘𝑓𝑓
𝑡𝑡𝑑𝑑 

While ANN has been trained applying drawdown pressure derivative curves, the buildup 
pressure test data can be introduced to ANN using Agarwal's equivalent time, which is defined 
as follows: [29]  
𝑡𝑡 𝜕𝜕𝑝𝑝𝛿𝛿𝜕𝜕
𝜕𝜕𝑝𝑝+𝛿𝛿𝜕𝜕𝑠𝑠𝑠𝑠𝑝𝑝.

                            (48) 

Artificial neural network process 

Curve fitting polynomials of degree 9 are applied to interpolate the pressure derivatives 
time data points, and the corresponding coefficients Pi (i=1-9) are determined using the Least-
Square method. These coefficients are then fed into the ANN together with the rock and fluid 
properties. As it is illustrated in Figure 12, there is an optimal value for the degree of curve 
fitting polynomials. Low degrees of curve fitting polynomials do not precisely match the pres-
sure derivative data, while greater degrees interpolating polynomials enlarge the number of 
input data to the ANN without significantly improving the fitting, which in turn, leads to a 
complicated learning process of ANN. 

A one-layer back-propagation (BP) neural network is used after testing different possible 
configurations of ANN. Therefore, a one-layer ANN was found to be adequate in this case. 
Minimizing Mean Relative Error (MRE) through which the number of neurons in the first hidden 
layers was optimized over the test data, is defined as follows [23]: 
 
𝑀𝑀𝑀𝑀𝐸𝐸 = 1

𝑁𝑁𝑇𝑇

1
8
∑ ∑ �(𝑜𝑜𝑠𝑠𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑,𝑗𝑗−(𝑜𝑜𝑠𝑠𝜕𝜕𝑛𝑛𝑟𝑟𝑡𝑡)𝑑𝑑,𝑗𝑗�

�(𝑜𝑜𝑠𝑠𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)𝑑𝑑,𝑗𝑗�
𝑁𝑁𝑇𝑇
𝑝𝑝=1

8
𝑖𝑖=1                     (49) 

Where NT is the number of test samples in the above equation. The upper bound of the first 
summation has been set to the output parameters of the ANN, which are eight different pa-
rameters. 
 

 
Figure 12. Schematic of the ANN applied to estimate the parameters 
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Figure 13. Workflow of the performed analysis for reservoir model detection 

4. Results 

In this study, in addition to polynomial curve fitting method, other techniques have also 
been used to analyze well test data. Then, the results will be compared to the new proposed 
technique. Based on these methods, an interactive computer aided well test interpretation 
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software has been used of which the results have been compared to actual data in Sarvak 
formation in The oil field. 

In order for accuracy verification of the trained ANN with fitted polynomials, field data which 
have been derived from drill stem test in The oil field areal were introduced to the ANN in 
addition to applying relative error over test data. By using these data, the performance of ANN 
was evaluated in the case of real noisy pressure data.  

It is worth noting that this case is a draw down test with flow rate of 400 STBD and pro-
duction time which is equal to 90 hr. Figure 14 shows flow rate schedule. 
 

 
Figure 14. Production history 

Fluid and rock data corresponding to this test have been reported in Table 6 and the pres-
sure derivative response during the test has been illustrated in Figure 15. 

Table 6. The fluid and rock parameters related to Well-B 

q (Rbbl/STB) μo(CP) Φt rw(ft) h(ft) Ct(1/psi) 
400 5 0.2 0.37 247 1.67E-05 

 

 
Figure 15. Pressure derivative results during well-testing in Well-B 

A deep valley in the pressure derivative response demonstrates truly dual-porosity system 
of the reservoir and the effect of horizontal well also be shown in figure above. The shape of 
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the fitting polynomial and matched curve is shown in Figure 16. Also the coefficients of the 
fitting polynomial are shown in Table 7. 
 

 
Figure 16. LogΔP΄ vs. logΔt together with the fitting polynomial of degree 9 for a field case Well-B 

Table 7. The fitting polynomial Coefficients for the drawdown test performed in Well-B 

Polynomial coefficient Value Polynomial coefficient Value 
P1 0.05318 P6 1.748 
P2 0.1048 P7 -0.2847 
P3 -0.5211 P8 -0.7023 
P4 -0.8006 P9 0.4483 
P5 1.93 P10 -6.475 

Fitting polynomials coefficients of used data were compared to the results of well test soft-
ware’s like Saphir and Fast in order to test the new presented technique. The results corre-
sponding to the ANN by utilizing the fitting polynomial and well test software’s are given in 
Table 8. 
 

 
Figure 17. An analysis of pressure and pressure derivative through nonlinear regression for Well-B using 
Fast 



Petroleum and Coal 

                          Pet Coal (2022); 64(2): xxx-yyy 
ISSN 1337-7027 an open access journal 

 
Figure 18. Results of pressure and pressure derivative data through nonlinear regression for Well-B 

Table 8. The fitting polynomial coefficients for the drawdown test data performed in Well-B 

 Real data Saphir Fast New 
method 

Kv 1259 484 512 954 

Kh 89 121 115 93 

Le 1650 1921 2021 1712 

Zw 120 123 145 122 

Cd 115 174 148 133 

S * 3.68 4.5 4.52 

ω * 0.0324 0.0301 0.0311 

λ * 2.27E-07 4.57E-07 4.2E-07 

As it can be observed in Table 8, the evaluated parameters of the ANN trained by using the 
fitting polynomials coefficients, lie between those calculated by well test software’s and actual 
data. As a result, the logarithmic pressure derivative curves are represented more accurately 
through fitting polynomials whereas less input data is fed into the ANN. In other words, using 
the fitting polynomials as the input data makes the ANN more efficient in comparison with 
conventional techniques which use pressure derivative data and time as inputs to the ANN.   

5. Conclusion  

In this study, the fundamentals of analytical pressure transient analysis were represented 
and draw down test data of a well in Sarvak formation, a very complex fractured reservoir in 
southwest of Iran, were analyzed by an analytical model and also a numerical model using 
ANN. The complexity of this formation requires special data analysis techniques. In this work 
many efforts have been made to accurately analyze pressure draw down tests using two well-
known industrial software including ‘Saphir’ from Kappa Engineering and ‘FAST Welltest’ from 
Fekete, Inc.  

Based on the analysis of draw down test conducted in a horizontal well and also the new 
method obtained for parameter estimation in the oilfield, the followings conclusions can be 
made: 
1. Sarvak formation in The oil field has many vugs and fractures which should be considered 

in similar studies or interpretations. 
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2. Running ANN model without initial values form analytical model takes a long time to con-
verge and sometimes it may not converge. Therefore, it is recommended to use the final 
results of analytical model as initial guess for numerical models. 

3. By applying the data fitting coefficients as input data to ANN, its learning process has been 
enhanced.  

4. Estimated effective length of horizontal wells has a high value of mean relative error be-
cause of drilling problems.  

Nomenclature 

  
A Total cross section area, ft2 

B Formation volume factor 
 𝐵𝐵𝑂𝑂 Oil formation volume factor, RB/STB 
 𝐵𝐵𝑔𝑔 Gas formation volume factor, RB/MSCF 
𝐶𝐶𝜕𝜕 Total compressibility, 1/psi 
C Well bore storage coefficient, RB/psi 
𝐶𝐶𝐷𝐷 Dimension well bore storage coefficient 
h Thickness of layer, ft2 
k Permeability, md   
p Pressure, psi 
𝑝𝑝1ℎ𝑟𝑟 Pressure for 𝛥𝛥t=1hr on the semi-log straight line, psi 
𝑝𝑝𝐷𝐷 Dimensionless pressure 
𝑝𝑝𝑤𝑤𝑓𝑓 Flowing bottom hole pressure, psi 
𝑝𝑝𝑤𝑤𝑠𝑠 Shut-in bottom hole pressure, psi 
q Well head flow rate, STB/D 
𝑞𝑞𝑓𝑓 Bottom hole flow rate, STB/D 
r Distance from well, ft 
𝑟𝑟𝐷𝐷 Dimensionless distance 
𝑟𝑟𝑖𝑖 Radius of investigation, ft 
𝑟𝑟𝑠𝑠 Real skin radius, ft 
𝑟𝑟𝑤𝑤 Well bore radius, ft 
s near wellbore skin factor 
t Time, hrs 
tp production time, hrs 
𝑡𝑡𝐷𝐷 Dimensionless time 
T Temperature, °F 
𝑉𝑉𝑤𝑤 Volume of the well, ft3 

Z Gas compressibility factor, dimensionless 
P Pressure difference, psi 
𝛥𝛥𝑃𝑃𝑠𝑠 Pressure drop due to skin, psi 
ZW Vertical coordinate of center of horizontal well, ft 
L Horizontal well length, ft 
𝛥𝛥t Time interval, hrs 
𝛥𝛥𝑡𝑡𝑒𝑒 Equivalent time, hrs 

 
µ Viscosity, cp 
𝜌𝜌                Density, lb⁄ft3 
ω Storage coefficient, fraction 
α Characteristic factor for NFR, 1/ft2 
λ Interporosity flow parameter, fraction 
Φ porosity, fraction 
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