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Abstract

Underbalanced drilling (UBD) offers significant advantages over conventional drilling operations by
minimizing formation damage and enhancing drilling efficiency. However, fluctuations in bottomhole
pressure (BHP) during UBD operations can temporarily create overbalance conditions, potentially
damaging the reservoir and reducing productivity. Accurate prediction and control of BHP are therefore
critical to the success of UBD operations. The present paper investigates the application of deep
learning approaches, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks, for predicting BHP variations. A comprehensive dataset from the published literature was
employed to train the models. Statistical indices, including Mean Absolute Percentage Error (MAPE)
and root mean square error (RMSE), were used to evaluate the models' performance. The results
indicate that both LSTM and GRU models show significant promise in predicting BHP, with the GRU
model slightly outperforming the LSTM. The finding of this study can assist the industry in enhancing
UBD safety, efficiency, and formation protection by enabling more accurate prediction and control of
B.
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1. Introduction

Underbalanced drilling (UBD) is a technique used to enhance drilling efficiency and minimize
formation damage by maintaining bottomhole pressure (BHP) below formation pressure [l
This method aims to reduce the invasion of drilling fluids into the formation, thereby improving
well productivity. However, accurately predicting BHP during UBD operations is challenging
due to the complex and dynamic nature of the drilling environment [21, Traditional prediction
methods often rely on physical models that require extensive calibration and may not fully
capture the nonlinear interactions between various drilling parameters. Moreover, maintaining
the desired underbalance state can be particularly difficult during drilling interruptions or con-
nections, leading to fluctuations in BHP and potentially resulting in temporary overbalance
scenarios [31,

This limitation paves the way for the application of data analytics and data-driven models.
Machine learning (ML) has revolutionized various aspects of the oil and gas industry by ena-
bling the prediction of critical parameters 491, Previous studies [10-13] revealed that ML al-
gorithms can analyse vast datasets of field data to identify patterns and predict reservoir
properties, thereby optimizing well placement and production strategies [*4]. Additionally, Fer-
reira et al. [*5] investigated the application of ML models for predicting equipment failures and
proactively scheduling maintenance procedures. This approach helps minimize downtime and
optimize maintenance costs [16l, Other studies conducted by [17-201 have employed data-
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driven models to analyse real-time drilling data and optimize drilling parameters, such as the
rate of penetration (ROP), to reduce drilling costs.

Early research focused on employing ML algorithms to predict bottomhole pressure (BHP)
under steady-state conditions. Pioneering studies by Osman et al. [211 and Jahanandish et al. [22]
established the foundation by demonstrating the effectiveness of artificial neural networks
(ANNs) in predicting BHP for vertical wells with multiphase flow. Osman et al. [2t]1 compared
an ANN model with existing correlations, achieving lower errors. Jahanandish et al. [22] built
upon this by validating the approach across different network architectures and datasets. The ex-
ploration of machine learning for BHP prediction extended beyond ANNSs. Feili Monfared et al. [23]
investigated the use of fuzzy inference systems (FIS) for BHP prediction in unconventional
reservoirs. Ashena and Moghadasi [24] applied ANNs to predict pressure drop in the annulus,
introducing various optimization algorithms like Genetic Algorithms (GA) and Ant Colony Op-
timization (ACO) to improve model performance. Nasimi et al. [25] further explored optimiza-
tion techniques for ANNs. They compared Particle Swarm Optimization (PSO) and a combina-
tion of ACO with Backpropagation (BP) to achieve faster and more accurate BHP predictions
in UBD. In studies conducted by Sami and Ibrahim [26] and Zolfagharroshan and Khamehchi [27],
the performance of ANNs was compared with other machine learning models such as Random
Forest (RF), K-Nearest Neighbors (KNN), Radial Basis Function (RBF) neural networks, Least-
Squares Support Vector Machines (LSS VMs), and Genetic Programming (GP) for BHP predic-
tion during production. Ashena et al. [28]1 extended the application of ANNs to predict BHP in
inclined wells, demonstrating the potential for broader wellbore configurations. Okoro et al. [2°]
employed Extremely Randomized Tree and Feed Forward Neural Network (FFNN) models for
BHP prediction in UBD. Notably, Spesivtsev et al. [3°]1 made a significant leap forward by em-
ploying ANNSs to predict BHP in transient multiphase flows, effectively handling interdependent
time series data. Building on previous studies, it is evident that the field of machine learning
for BHP prediction has evolved considerably. While early research focused on steady-state
conditions, recent advancements, like those by Spesivtsev et al. [3°], have enabled high-ac-
curacy BHP predictions in time-dependent scenarios. This capability enhances wellbore opti-
mization, leading to improved production efficiency and reservoir management.

Recent advances in machine learning (ML) have introduced new opportunities for predictive
analytics in the oil and gas industry. Techniques such as GRU networks and LSTM networks
have shown promise in modelling the complex, nonlinear relationships inherent in drilling data.
These approaches excel at handling sequential data and can effectively learn from historical
drilling information. The present paper aims to implement GRU and LSTM networks to improve
the accuracy of predicting BHP during UBD operations. It represents a significant advancement
in the field, as, to the best of our knowledge, it is the first to apply GRU and LSTM networks
for predicting BHP changes during underbalanced drilling (UBD) operations. Unlike previous
approaches, which primarily relied on traditional machine learning models or focused on
steady-state conditions, this study leverages the strengths of deep learning techniques to
capture the intricate and time-dependent nature of BHP variations. By analysing historical
data to identify trends, GRU and LSTM networks can capture the intricate relationships be-
tween variables like nitrogen injection rate, oil injection rate, and wellhead pressure. This
capability allows them to predict BHP fluctuations with high accuracy, even during transient
states like connections. By utilizing historical data to identify patterns and trends that tradi-
tional methods might overlook, these models offer improved accuracy in predicting BHP during
UBD operations.

2. Theorical background
2.1. Underbalanced drilling

Underbalanced drilling is a drilling technique in which the pressure in the well is maintained
lower than the formation pressure. This approach offers several advantages over conventional
drilling methods. By maintaining a lower pressure in the wellbore than in the formation, UBD
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minimizes the penetration of drilling fluids into the formation. This reduces the risk of for-
mation damage, which can significantly reduce well productivity. Additionally, UBD facilitates
hydrocarbon recovery during the drilling process. This can lead to increased well productivity
and potentially shorter payback periods. The lower pressure environment in UBD promotes
better well cleaning by facilitating the removal of cuttings and debris. This improves drilling
efficiency and reduces the risk of stuck pipe incidents [31], Building on these advantages, UBD
offers potential benefits for wellbore productivity. However, its implementation requires me-
ticulous planning and execution to avoid exceeding formation pressure and inducing wellbore
damage. Compared to well-designed conventional overbalanced drilling programs, poorly de-
signed and/or executed UBD programs can lead to more severe formation impairment.

Several key challenges are inherent to UBD operations. Firstly, maintaining a consistently
underbalanced condition throughout the drilling process presents significant difficulties. Pres-
sure fluctuations can occur during routine operations, such as drill pipe connection procedures,
where the temporary cessation of nitrogen injection leads to a transient increase in bottom
hole pressure (BHP). These overbalanced situations can negate the advantages of UBD and
potentially inflict more formation damage due to fluid invasion. Secondly, UBD programs are
often associated with increased costs and safety concerns. The specialized equipment and
procedures required for UBD operations necessitate a higher capital expenditure compared to
conventional drilling. Additionally, the influx of formation fluids during UBD introduces the risk
of uncontrolled hydrocarbon flow, posing a potential safety hazard.

In conclusion, while UBD offers potential benefits, its implementation requires careful con-
sideration of the associated challenges. Maintaining precise pressure control throughout the
drilling process is crucial to avoid exceeding formation pressure and inducing wellbore dam-
age. Furthermore, the increased cost and safety concerns necessitate a thorough evaluation
of the project's feasibility before embarking on a UBD program [32],

2.2. Recurrent neural networks (RNNs) for time-series prediction

RNNs are a class of artificial neural networks specifically designed to process sequential
data. Traditional neural networks struggle with sequential data because they treat each data
point independently. RNNs overcome this limitation by incorporating internal memory mech-
anisms that allow them to learn from past data points and use this information to make pre-
dictions for future points. This ability makes RNNs well suited to tasks such as time series
prediction, where the future value depends on the historical sequence of data points [33],

Two specific types of RNNs that have gained significant popularity for time series prediction
tasks are LSTM) and GRU networks. LSTMs address a significant limitation of standard RNNs,
known as the vanishing gradient problem. This problem arises when processing long se-
guences of data, where the influence of earlier data points can fade as the network propagates
information forward. LSTMs contain a gated memory cell that allows them to selectively store
and access information over long periods of time, enabling them to capture long-term depend-
encies within sequential data. In the other hand, GRUs offer a simpler alternative to LSTMs
while achieving comparable performance in many tasks. They use a gate mechanism similar
to LSTMs, but with a slightly less complex architecture. This simpler structure can make GRUs
more computationally efficient than LSTMs, while still effectively capturing temporal depend-
encies in sequential data [34],

3. Data description and pre-processing

The current study investigates two distinct machine learning models for predicting BHP
changes in UBD, namely, GRU, and LSTM. By training the models on data from wells with
similar geological formations, and using drilling rigs with comparable specifications, we can
tailor the models to capture the specific pressure response patterns relevant to the UBD op-
eration in question. This customization has the potential to provide more accurate BHP pre-
dictions than generic software solutions applied to different well conditions. To do this end, a
comprehensive dataset was collected to train the ML models. This dataset was extracted from
readily available graphs of three horizontal wells. These wells, drilled in Algerian oilfields using

Pet Coal (2024): 66(4): 1519-1530
ISSN 1337-7027 an open access journal

1521



Petroleum and Coal

UBD, target oil from Cambrian formations through horizontal sections. The dataset captures
key parameters crucial for predicting bottom hole pressure (BHP) change, including time, BHP,
nitrogen injection flow rate (qy,), oil flow injection rate (q,), and wellhead pressure (WHP).
BHP is the primary target variable that the models aim to predict, with measurements taken
at regular intervals throughout the UBD well operations. The time data provides the temporal
context necessary for the models to capture the sequential nature of BHP variations.

Tables 1-3 summarize the dataset for Wells 1, 2, and 3, respectively. The statistics include
the count, mean, standard deviation, minimum, 25th percentile, median, 75th percentile, and
maximum values. This comprehensive view allows for a better understanding of the range and
variability of the data used in the predictive modelling.

Table 1. Descriptive statistics of input and output parameters for well 1.

BHP (psi) N, rate (L/min) Oil rate (Lmin) WHP (psi)
Count 955 955 955 955
Mean 2595.26 28.34 566.17 189.64
SD 78.05 9.31 206.88 93.25
Min 2473.98 0 0 2.41
25% 2549.34 30.81 587.75 133.38
50% 2570.6 31.29 664.65 158.59
75% 2630.51 32.28 670 202.34
Max 2941.63 34.24 706.01 536.83

Table 2. Descriptive statistics of input and output parameters for well 2.

BHP (psi) N, rate (L/min) Oil rate (Lmin) WHP (psi)
Count 649 649 649 649
Mean 2756.36 21.12 506.76 160.92
SD 59.99 11.63 266.53 65.18
Min 2644.45 0 0 41.05
25% 2712.36 26.67 546.16 106.13
50% 2743.6 27.3 650.21 136.61
75% 2804.72 27.72 655.13 219.06
Max 2916.1 28.98 725.65 335.03

Table 3. Descriptive statistics of input and output parameters for well 3.

BHP (psi) N> rate (L/min) Oil rate (Lmin) WHP (psi)

Count 720 720 720 720

Mean 2972.28 26.1 513.9 142.24
SD 64.94 12.61 248.1 74.98
Min 2761.76 0 0 47.24
25% 2929.57 30.78 536.8 80.05
50% 2964.12 32.2 636.05 111.52
75% 3011.15 32.55 650.77 216.1
Max 3174.22 36.75 708.98 316.59

Before the data can be used to train machine learning models, several pre-processing steps
are essential to ensure data quality and model effectiveness. The data was carefully examined
to identify and remove inconsistencies, errors, or missing values. Extreme data points, known
as outliers, which are significantly different from the rest of the data, can distort the model's
learning process. These outliers were identified and removed prior to modelling to ensure the
data more accurately reflects underlying trends and patterns. Missing data points were ad-
dressed using interpolation techniques, which estimate missing values based on surrounding
data. This approach helps to minimize the impact of missing data on model training. Subse-
quently, BHP values along with the input parameters were normalized to a common scale
using the MinMaxScaler approach, which scales the data between 0 and 1. This normalization
ensures that all features contribute equally to the training process and prevents features with
larger scales from dominating the model's learning.
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Another pre-processing steps involved accounting for the time it takes for WHP to affect
BHP. To address this, we lagged the WHP data by creating a new feature that reflects the WHP
value from a previous time step. Incorporating lagged data allows the model to learn the
temporal relationship between WHP and BHP. Since WHP has a significant impact on BHP, we
applied a scaling factor to the WHP data to emphasize its importance. This scaling factor in-
creases the weight of WHP relative to other features during normalization. This emphasizes
the importance of WHP in the learning process of the model and improves the model's ability
to capture the nuances of this relationship. Finally, the UBD data was divided into two sets: a
training set and a testing set. 50% of the data was allocated to the training set, used to train
the models, and the other 50% was employed as a testing set to evaluate the model’s gener-
alizability on unseen data.

4. Results and discussion
4.1. Model development

As previously mentioned, the current study investigates two distinct machine learning mod-
els for predicting BHP changes in UBD operations: GRU, and LSTM. Both models were trained
and evaluated using the same data described above, allowing for a fair comparison of their
performance in predicting BHP. To achieve optimal performance from the LSTM and GRU mod-
els, we employed a hyperparameter tuning process. This process involves systematically eval-
uating different combinations of hyperparameter values and selecting the configuration that
yields the best results on a validation set. The mean squared error (MSE) loss function was
employed to measure the difference between the predicted BHP values and the actual BHP
values. The models were trained to minimize this loss function, leading the model to learn
patterns in data that can accurately predict future BHP changes.

Table 4 summarizes the hyperparameters for both LSTM and GRU models. The GRU model
architecture consists of a GRU layer with 64 units. It is followed by three dense layers, each
with 128 units and RelLU activation function. The optimizer used is Adam with a learning rate
of 0.01. This model aims to predict BHP changes by processing sequences of data from UBD
operations, with specific considerations for WHP scaling factor and a lag time of 9. The LSTM
model utilizes the best hyperparameters identified through tuning. It includes an LSTM layer
with 64 units for sequence processing. The subsequent architecture comprises two dense lay-
ers, each with 64 units and ReLU activation. The model is optimized using Adam with a learning
rate of 0.01. This configuration is designed to effectively capture the temporal dependencies
in the data related to BHP changes during UBD operations, leveraging insights from the lag
time of 9 and WHP scaling factor of 5.

Table 4. Hyperparameter settings for the GRU and LSTM networks.

Hyperparameter Options

GRU units 32, 64, 128, 256
LSTM units 32, 64, 128, 256
Dense layers 1,2,3

Dense units 32, 64, 128, 256
Learning rates 0.01, 0.001
WHP scaling factors 1,3,5,7,9, 11
Lag time 9,13,17

4.2. Model assessment

Once trained, the models were evaluated on the testing set in order to assess their relative
effectiveness in predicting BHP changes during UBD operations. The models predict BHP values
for the testing data points, and these predictions were compared to the actual BHP measure-
ments. Two metrics, namely, mean absolute percentage Error (MAPE) and root mean square
error (RMSE), were employed to quantify the accuracy of the predictions. A lower MAPE and
RMSE values indicates better model performance, signifying that the model's predictions are
closer to the actual values. The mathematical expression of these statistical metrics are given by:
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where: y; is the actual value of measured BHP, x; denotes the predicted value of BHP, and N
refers to the total number of data points.

Table 5 reports the results for each model after evaluation in wells 1, 2, and 3, respectively,
based on the testing subset. As it can be seen in this table, the GRU model consistently shows
better performance compared to the LSTM model across all wells. Specifically, it achieves
lower RMSE values of 49.051, 53.272, and 45.703 for Wells 1, 2, and 3, respectively, com-
pared to LSTM’s RMSE values of 50.772, 55.640, and 49.968. The GRU model also records
lower MAPE values of 1.30%, 1.59%, and 1.25% for the same wells, while LSTM’s MAPE values
are 1.34%, 1.73%, and 1.32%. These results indicate that the GRU model provides more
accurate predictions with fewer errors across all wells, suggesting it is better suited for cap-
turing BHP variations during UBD operations.

Table 5. Performance metrics for GRU and LSTM models in BHP prediction using the testing subset.

Well 1 Well 2 Well 3
LSTM GRU LSTM GRU LSTM GRU
MAPE (%) 1.34 1.30 1.73 1.59 1.32 1.25
RMSE 50.772 49.051 55.640 53.272 49,968 45,703

The performance of the established GRU models for predicting bottom hole pressure (BHP)
in wells 1, 2, and 3 was further assessed through graphical analysis. Figs. 1-3 compare the
predicted BHP from GRU model to the actual measured BHP for each well. These figures also
include inputs parameters, namely, nitrogen injection flow rate, oil injection flow rate, and
wellhead pressure, which influence the BHP within the well. As observed, the predicted BHP
(orange line) closely matches the actual BHP (green line) in both the training and testing
phases, indicating strong model accuracy and generalization. Furthermore, the developed GRU
model was able to follow the trend of the measured BHP with respect to the input parameters.
The model’s ability to align predictions with actual outcomes demonstrates its effectiveness
and the relevance of the selected inputs.
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Fig. 1. GRU model prediction of BHP vs. meas- Fig. 2. GRU model prediction of BHP vs. measured
ured BHP under: nitrogen injection, oil injection, = BHP under: nitrogen injection, oil injection, and
and wellhead pressure in well 1. wellhead pressure in well 2.

Fig. 4 depicts the relative deviation of the BHP values predicted by GRU model against the
actual BHP for wells 1, 2, and 3, with subfigures (a), (b), and (c) corresponding to each well
respectively. According to these plots, the relative deviation generally remains within £10%
across all three wells. Most data points are clustered around the zero-deviation line, indicating
that the model generally predicts BHP with good accuracy. Fig. 5 presents a cumulative dis-
tribution function (CDF) of the MAPE for the GRU model in the three wells. This plot reveals
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Fig. 5. Cumulative distribution function (CDF) of the mean absolute percentage error for the GRU
model predictions in Wells 1, 2, and 3.

Modeling often requires simultaneously defining the model's applicability domain and as-
sessing its validity. Various techniques are available for identifying outlier data, with the Lev-
erage approach being noted for its precision. A detailed explanation of the Leverage approach
can be found in the following paper [35], Fig. 6 presents the Williams plot for the GRU model's
outcomes across the three wells. As observed, it is clear that most data points fall within the
range —3 < R < 3 and 0 £ H < Hx, where Hx represents the warning Leverage value. The fact
that the majority of data is within the 0 < H < Hx and —3 < R < 3 range indicates that the
results lie within the applicability domain, which validates the model. 'Good High Leverage'
points, which are data within the Hx < H and —3 < R < 3 range, are not within the applicability
domain but are predicted accurately. However, other data within this domain might not be
predicted accurately. Additionally, 'Bad High Leverage' points, located in the R > 3 orR < -3
range, are experimentally flagged as suspect data. In this study, 39 data points from the three
wells were identified as being outside the applicability domain, representing 1.80% of the total
data points, and were recognized as experimentally suspect data. Moreover, 60 data points
from the three wells, which represent 2.77% of the total data points, were identified as 'Good
High Leverage' points. These results indicate that the proposed GRU model is capable of ac-
curately predicting BHP across a wide range of input parameters.

4.3. Importance of the machine learning for BHP prediction

By accurately predicting BHP variation, machine learning models can assist drilling engi-
neers in proactively adjusting drilling parameters to maintain the desired underbalance state.
This can help to minimize the risk of overbalance situations and maximize the benefits of UBD.
Machine learning models have the potential to be integrated into real-time drilling monitoring
systems. This would allow for continuous prediction of BHP changes and enable engineers to
make data-driven adjustments to drilling parameters as needed, optimizing the overall UBD
process. While commercial software offers advantages like domain expertise and user-friend-
liness, machine learning models possess distinct strengths.

Their data-driven nature allows them to potentially adapt to new situations and improve
accuracy over time as more data becomes available. Additionally, machine learning models
can be customized to specific well conditions by training them on relevant historical data from
similar wells or rigs.
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4.4, Limitations and improvements

The performance of LSTM and GRU models in predicting BHP changes during UBD opera-
tions highlights their potential applicability across various wells and operational conditions.
However, the models occasionally tend to slightly overestimate or underestimate BHP for some
instances, possibly due to data quality issues, measurement inaccuracies, or other factors
influencing BHP measurements. The wells drilled with UBD in this study are approximately
1,000 meters in length. This relatively short drilling length, combined with the use of data
extracted from graphs rather than direct data logs, limits the amount of data available for
analysis. A more extensive dataset could potentially improve the accuracy of the developed
models. Future research should adopt the methodology presented in this study, with a focus
on collecting additional real-time data, refining feature engineering, and addressing data qual-
ity issues to enhance model robustness and reliability across diverse drilling environments.

5. Conclusion

This study evaluated LSTM and GRU models for predicting bottomhole pressure changes
during underbalanced drilling operations across multiple wells. The findings demonstrate that
both LSTM and GRU models exhibit promising accuracy, with the GRU model slightly outper-
forming the LSTM model in terms of MAPE and RMSE values. Graphical analysis of the GRU
model further reveals a strong agreement between predicted and actual BHP across multiple
wells, indicating the model's robust generalization capacity. These results underscore the ef-
fectiveness of the models in forecasting BHP dynamics, which are critical for maintaining un-
derbalanced conditions and mitigating reservoir damage. Challenges such as limited data
quantity and variability in operational conditions underscore the need for future research to
focus on expanding dataset sizes and integrating real-time data feedback. These efforts aim
to enhance model generalizability and reliability, ultimately supporting more accurate and
proactive management of BHP during UBD operations. In conclusion, while LSTM and GRU
models show considerable promise in predicting BHP changes, ongoing advancements in ma-
chine learning techniques and data handling strategies are essential to maximize their utility
in optimizing UBD efficiency and safety.
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