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Abstract 

This work proposes the use of data division and if statements in a programming language, as an 

effective classifier in Artificial Neural Network. The Standing and Katz chart was digitized to obtain 
input (pseudo reduced temperature and pressure) and output (gas compressibility factor) data 

points, which was used in developing the artificial neural network. A total of 114,120 input data 

points and 57,060 output data points were used. The dataset was divided into 4 groups , and each 
of the groups was assigned a neural network that corresponds to the value range of the grouped 

data using a Matlab nnet tool box. 
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1. Introduction  

Fluid properties are determined from the laboratory using applicable experimental proce-
dures, with the aim of analyzing samples to meet conditions of interest. The unavailability of 
these samples brings rise to the use of empirical correlations. The determination of accurate 
compressibility factor is of great importance in the industry. This parameter has been a tool in 

determining the deviation of real gas from ideal behaviour. A compressibility factor is a useful 
tool in various engineering applications, which include; designing pipelines, gas flow rates, the 
design of oil and gas separators, gas reserves estimation, etc. According to Cengel and Boles [1], 
the principle of corresponding states indicates that all gases, when compared at the same 
reduced pressure (Ppr) and reduced temperature (Tpr), have approximately the same com-

pressibility factor. The development of the general EOS and the elaboration of general exper-
imental charts expressed in terms of the reduced properties were based on this principle. 
Standing and Katz [2] developed a chart for the compressibility factor and pseudo reduced 
properties (temperature and pressure) which is an industry standard. Other correlations exist 
and each of which shows better prediction at specific ranges of pseudo reduced temperatures. 

Katz et al. [3] developed a chart of compressibility factor in terms of pseudo reduced prop-
erties for natural gases at pressures of 10,000 to 20,000psia. The chart displays a high level 
of linearity, which makes prediction less complex without the need for multiple data points 
selection across the pseudo reduced temperature curves. 

Kamyab et al. [4] worked on digitizing the Standing-Katz and Katz compressibility chart to 
obtain input and output data, in which artificial neural network was used as a tool in predicting 

the output of compressibility factor. In their project, a two-hidden-layer feed forward network 
was designed and trained with back-propagation supervised learning. They developed a 
methodology to obtain z-factors for Natural Hydrocarbon Gases using Artificial Neural 
Networks (ANN). Data obtained directly from the Standing-Katz and Katz compressibility 
charts were used to train several topologies of ANN. The input parameters in the ANN are the 

pseudo-reduced pressure and temperature, and the output is the z-factor. Two of the 
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successful networks have two hidden layers. The first ANN uses five neurons in each hidden 
layer and the second ANN uses ten neurons in each hidden layer (called 2-5-5-1 and 2-10-
10-1 networks respectively). These topologies were trained with the data from the charts 
using a back-propagation training algorithm. This work had a limitation in understanding the 
level of accuracy of artificial neural networks as a predictive tool for complex datasets.  

Beggs and Brill [5] developed a correlation for the determination of compressibility factor 
which is given below as: 
𝑍 = 𝐴 + (1 − 𝐴)𝑒−𝐵 + 𝐶𝑃𝑝𝑟

𝐷                    (1), where: 

𝐴 = 1.39 (𝑇𝑝𝑟 − 0.92)0.5 − 0.36𝑇𝑝𝑟 − 0.101              (2) 

𝐵 = (0.62 − 0.23𝑇𝑝𝑟 )𝑃𝑝𝑟 + [(
0.066

𝑇𝑝𝑟−0.86
) − 0.037]𝑃𝑝𝑟

2 + [
0.32

109(𝑇𝑝𝑟−1)
]𝑃𝑝𝑟

6       (3) 

𝐶 = (0.132 − 0.32𝑙𝑜𝑔𝑇𝑝𝑟                   (4) 

𝐷 = 100.3106−0.49𝑇𝑝𝑟+0.1824𝑇𝑝𝑟
2
                  (5) 

Dranchuk and Abou-Kassem [6]developed their equation for the determination of the compres-
sibility factor as follows; 
𝑍 = 1 + 𝐶1(𝑇𝑝𝑟)𝜌𝑝𝑟 + 𝐶2(𝑇𝑝𝑟 )𝜌𝑝𝑟

2 − 𝐶3(𝑇𝑝𝑟)𝜌𝑝𝑟
5 + 𝐶4(𝜌𝑝𝑟𝑇𝑝𝑟)        (6), where: 

𝜌𝑝𝑟 = 0.27
𝑃𝑝𝑟

𝑧𝑇𝑝𝑟
                      (7) 

𝐶1(𝑇𝑝𝑟) = 𝐴1 + 𝐴2𝑇𝑝𝑟
−1 + 𝐴3𝑇𝑝𝑟

−3 + 𝐴4 𝑇𝑝𝑟
−4 + 𝐴5𝑇𝑝𝑟

−5            (8) 

𝐶2(𝑇𝑝𝑟 ) = 𝐴6 + 𝐴7𝑇𝑝𝑟 + 𝐴8𝑇𝑝𝑟
−2                  (9) 

𝐶3(𝑇𝑝𝑟 ) = 𝐴9[𝐴7𝑇𝑝𝑟
−1 + 𝐴8𝑇𝑝𝑟

−2]                 (10) 

𝐶4(𝜌𝑝𝑟𝑇𝑝𝑟) = 𝐴10(1 + 𝐴11𝜌𝑝𝑟
2 )(𝜌𝑝𝑟

2 𝑇𝑝𝑟
−2)               (11) 

The constants A1 through A11 are as follows: A1 = 0.3265; A2 = -1.07; A3 = -0.5339;  

A4 = 0.01569; A5 = -0.05165; A6 = 0.5475; A7 = -0.7361; A8 = 0.1844; A9 = 0.1056;  
A10 = 0.6134; A11 = 0.721 They used Newton’s method to determine the solution of the 
above equations. 

2. Artificial neural network  

 

Fig. 1 Structure of an Artificial Neural Net-
work 

Artificial Neural Networks are simulators, 

which work on the basis of the human nerv-
ous system to carry out certain tasks like 
classification, pattern recognition, etc. The 
artificial neurons present in the network lies 
in constitutive layers of the network. Layers 
are linked to the next by specific weights 

(w). One of the most practical structures of 
the Artificial Neural Network is Multi-Layer 
Perceptron (MLP) (Fig. 1) in which the input 
and output layers are connected to each 
other by an additional layer called hidden layer. 

This structure was adapted in the course of this work. Each input is multiplied by its corre-
sponding weights. Weights carry the information needed by the neural network to solve a 
problem and also represent the strength of the interconnection between neurons inside the 
neural network. 

Activation functions are set to serve as a transfer function used to get the desired output. 

There are linear as well as the non-linear activation function. Some of the commonly used 
activation function is - binary, sigmoidal (linear) and tan hyperbolic sigmoidal functions (non-
linear).The structure of an Artificial Neural Network is given in Fig. 3. 
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3. Proposed approach  

The Standing and Katz chart data has been read directly from a scanned figure of the 

original plot drawn by Standing and Katz in 1951.The software used in digitizing the chart and 
obtaining the dataset was GraphClick. According to Rakap et al. [7], this software has been 
tested and qualified to be able to digitize charts. Each one of the pseudo-reduced temperature 
curves from Standing and Katz chart was been digitized [4], some curves needed more points 
(Fig. 4) to describe the curvature better while other curves are almost linear and fewer 
points(Fig. 5) were necessary to define the curve. It should also be noted the need for data 

uniformity in the distribution of data points, so as to enable the neural network to to 
understand the data progression pattern.  

  
Fig 2. Regression plot for outputs derived 

from 1.05<TPr<1.2 

Fig. 3. Regression plot for outputs derived 

from 1.5<Tpr<2.0 

The human nervous system works as a transmitter of information which perceives, inter-
prets and transmits information to targets organs in the human body. A key fact that should 

be noted is that the information been perceived and interpreted are later classified (during the 
interpretation phase) before been transmitted to target organs, which optimizes the effective-
ness of the nervous system in transmitting information. Classification in this context means 
allocating information to be transmitted to a particular target organ for execution depending 
on the information perceived. Artificial Neural Network works on this base principle, and the 

importance of data classification/grouping should always be noted especially when dealing 
with large datasets, as it increases the effectiveness in prediction.  

This work made use of the Nnet toolbox in Matlab software to develop the needed Neural 
Networks using the back propagation algorithm. The Neural network assumed a total number 
of 30 hidden layers, using 99% data for training, 0.5% for Testing and 0.5% for validation. 

The dataset has 2 input data columns and 1 output data column, having a matrix of 57,060 × 
2 and 57,060 × 1 respectively. The dataset was divided into 4 groups with the aim of devel-
oping a neural network for each group of dataset divided. The development of an individual 
neural network for each grouped data was to reduce the complexity in determining the output 
variables, in this case, the compressibility factor. Each of the Neural networks covered the 

ranges of pseudo reduced temperature values 1.05 ≤ Tpr ≤ 1.2, 1.2 < Tpr ≤ 1.5, 1.5 < Tpr 
≤ 2.0 and 2.0 < Tpr ≤ 3.0 respectively, at Pseudo, reduced pressures of 0.5≤ Ppr < 5.5.  

This work proposes the use of “If Statements” in programming the desired neural network 
as a predictive tool for the compressibility factor when the Input data; Pseudo reduced pres-
sure and temperature are provided. The results were compared with other existing correlations 

and showed an overall outstanding performance (Tables 1-5). 
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Table 1. Compressibility factors at different Tpr=1.2 using various correlations  

Ppr 
Standing and 

Katz 
This approach 

Kamyab et al. 
[4] 

Beggs & Brill 
[5] 

Dranchuk-

Aboukassem 
[6] 

0.5 0.8930 0.8960 0.8953923 0.9026461 0.8950631 

1.5 0.657 0.6573 0.6607512 0.6758659 0.6532419 

2.5 0.519 0.5196 0.5179963 0.4977865 0.5180675 
3.5 0.565 0.5663 0.5676801 0.5605500 0.5631805 

4.5 0.650 0.6499 0.6492856 0.6589953 0.6501377 

5.5 0.741 0.7406 0.7424365 0.7567099 0.7453363 

Table 2. Compressibility factors at different Tpr=1.3 using various correlations  

Ppr 
Standing and 

Katz 
This approach 

Kamyab et al. 
[4] 

Beggs & Brill 
[5] 

Dranchuk-
Aboukassem 

[6] 

0.5 0.916 0.9182 0.9196115 0.9266436 0.9203019 

1.5 0.756 0.7584 0.7567070 0.7675523 0.7543694 
2.5 0.638 0.6399 0.6394479 0.6526911 0.6377871 

3.5 0.633 0.6329 0.6341957 0.6234648 0.6339351 

4.5 0.684 0.6832 0.6857549 0.6921991 0.6898314 
5.5 0.759 0.7604 0.7611212 0.7779095 0.7663247 

Table 3. Compressibility factors at different Tpr=1.5 using various correlations  

Ppr 
Standing and 

Katz 
This approach 

Kamyab et al. 
[4] 

Beggs & Brill 
[5] 

Dranchuk-

Aboukassem 
[6] 

0.5 0.948 0.9493 0.9508509 0.9555248 0.9509373 

1.5 0.859 0.8592 0.8607096 0.8618306 0.8593144 

2.5 0.794 0.7974 0.7940885 0.7945385 0.7929993 
3.5 0.770 0.7694 0.7685691 0.7691830 0.7710525 

4.5 0.790 0.7910 0.7867923 0.7828753 0.7896224 

5.5 0.836 0.8344 0.8323518 0.8248905 0.8331893 

Table 4. Compressibility factors at different Tpr=2.0 using various correlations  

Ppr 
Standing and 

Katz 
This approach 

Kamyab et al. 
[4] 

Beggs & Brill 
[5] 

Dranchuk-
Aboukassem 

[6] 

0.5 0.982 0.9837 0.9839990 0.9853337 0.9824731 

1.5 0.956 0.9575 0.9572277 0.9629020 0.9551087 
2.5 0.941 0.9406 0.9414698 0.9471826 0.9400752 

3.5 0.937 0.9365 0.9352303 0.9471826 0.9385273 

4.5 0.945 0.9437 0.9453140 0.9404180 0.9497137 
5.5 0.969 0.9686 0.9693022 0.9443010 0.9715388 

Table 5. Compressibility factors at different Tpr=3.0 using various correlations  

Ppr 
Standing and 

Katz 
This approach 

Kamyab et al. 
[4] 

Beggs & Brill 
[5] 

Dranchuk-

Aboukassem 
[6] 

0.5 1.002 1.0036 1.0028553 1.0040392 0.9984498 

1.5 1.009 1.0102 1.0095269 0.9514557 0.9995529 

2.5 1.018 1.0187 1.0179196 0.7082371 1.0061111 
3.5 1.029 1.0292 1.0286167 0.1399229 1.0176846 

4.5 1.041 1.0412 1.0412701 -0.8897010 1.0336417 

5.5 1.056 1.0570 1.0563968 -2.5178952 1.0532809 
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4. Results  

The Matlab software produced 4 regression plots which contained the Mean Square error 

and Root Mean Square error of the individual Neural Network developed. The mean square 
error gives the squared mean deviation of the output data (actual value) from the target data 
(estimated value). The closer the mean square error value is to zero, the more accurate and 
the lesser the error of the estimated value. The root means square error measures how much 
error there is between two data sets, in other words, it compares an estimated value and the 
actual value. The R-squared value is an indicator of how well the model fits the data. An R-

square close to 1 indicates that the model accounts for almost all the variability in the data. 
The first Neural Network for data group 1.05 ≤ Tpr ≤ 1.2 (Fig. 2), had a mean square error 
of 0.0016 and a root mean square error of 0.99987. The second Neural Network for data group 
1.2 < Tpr ≤ 1.5 (Fig.4) had a mean square error of 0.000081, and a root mean square error 
of 1.0000. The third Neural Network for data group of 1.5 < Tpr ≤ 2.0 (Fig.3) had a mean 

square error of 0.00003, and a root mean square error of 0.99999 and the last Neural Network 
for data group 2.0 < Tpr ≤ 3.0 (Fig. 5) had a mean square error of 0.000011 and a root mean 
square error of 1.0000.  

 
 

Fig 4. Regression plot for outputs derived 
from 1.2<Tpr<1.5 

Fig. 5. Regression plot outputs derived from 
2.0<Tpr<3.0 

The average absolute error (mean square error), was determined using the following for-

mula 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑉𝑒 − 𝑉𝑎 |𝑛

𝑖                      (12) 

where:𝑉𝑒= estimated value; 𝑉𝑎= actual value; MAE = mean absolute error. 
The mean absolute error determination gives the deviation of the estimated output data 

from the actual output data. The lower the value of this error, the higher the precision. This 

was determined for all the correlations used in the comparison and proved this approach to 
have the least mean absolute error of about 0.00111. The value of the mean square error 
proves the precision of this approach to other methods and can be seen in Table 6.  

Table 6. Average absolute errors 

This approach Kamayab et al. [4] Beggs & Brill [5] Dranchuk-Aboukassem [6] 

0.00111 0.00281249 0.233375273 0.0033042 

The data obtained from this method was compared with existing correlations like; Begs and 

Brill, Dranchuk-Aboukassem [6] and Kamyab et al. [4]. These correlations were proven by pre-
vious research to have a high degree of accuracy in the determination of the compressibility.  
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The test data used for this comparison was derived from previous literature that proved 
these correlations to have a high level of accuracy. The comparisons were made and given 
below in the table of values (Tables 1–5). 

5. Conclusion  

The values derived from this approach proved to be better than existing methods.  This 

approach has justified the uniqueness and accuracy of Artificial Neural Network in data anal-
ysis and pattern recognition, especially in data division. The theory from this approach can be 
deployed in computer based applications to give precision in the determination of the compres-
sibility factor.  

Nomenclature 

P - pressure, psia  𝑇 -temperature, R  
𝑃𝑐  -critical pressure, psia  𝑇𝑐 -critical temperature, R  
𝑃𝑝𝑟 -pseudo-reduced pressure  𝑇𝑝𝑟 -pseudo-reduced temperature  

𝜌𝑔- density of gas, lbm/ft3  z -gas compressibility factor  

𝜌𝑝𝑟-pseudo-reduced density   
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