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Abstract 
In the exploration and mining industry, accurately estimating the thickness of coal is crucial for 
resource assessment and mine planning. Traditional geostatistical methods, like ordinary kriging, have 
been used for this purpose. However, they often struggle to manage compositional data, where the 
sum of multiple components, such as coal, must remain constant. Compositional kriging offers an 
innovative approach to address this challenge, providing a robust framework for predicting coal 
thickness while considering the interdependency between components. This article presents an 
overview of compositional kriging, discussing its theoretical foundations and practical applications in 
the context of coal thickness estimation. It explains the key steps involved in the compositional kriging 
process, including data transformation, variogram modeling, and prediction. The article also 
emphasizes the importance of comparing the distribution shapes between the original data and the 
kriged data obtained from wireline logs in Queensland. This study demonstrates the potential of 
compositional kriging to improve the accuracy and reliability of coal thickness predictions in complex 
geological settings. As a result, compositional kriging is becoming increasingly significant as a valuable 
tool for geoscientists and mining professionals who require precise and geologically sound estimates 
of coal thickness for further informed studies. 
Keywords: Compositional kriging; Coal thickness; Thickness estimation; Geostatistical methods. 

1. Introduction

Over the past few years, the mining and geostatistical sectors have acknowledged the ne-
cessity for creative methods to address the challenges posed by compositional data in esti-
mating coal thickness. Precisely estimating coal thickness is crucial in geological exploration 
and mining, playing a vital role in resource evaluation, mine planning, and various mining 
industry operations [1]. Traditional geostatistical techniques, like ordinary kriging, have been 
widely used to forecast coal thickness using sampled data points. These methods have played 
a crucial role in estimating coal thickness by revealing the spatial distribution of this important 
geological parameter. Nevertheless, they face challenges when dealing with compositional 
data where the total sum of components remains constant. In such cases, compositional 
kriging emerges as a viable solution as it considers the relationships between coal and other 
constituents, leading to more precise predictions of coal thickness [2]. The thickness of coal is 
merely a single aspect of a broader compositional entity, in which the varying proportions of 
these elements play a role in the complete geological makeup. Compositional kriging is intro-
duced as an innovative remedy, broadening the geostatistical toolkit to address the intricacies 
of compositional information and the methodology is based on the concept that estimating 
coal thickness should not be done independently but rather in the context of the broader 
geological composition, in addition, compositional kriging uses spatial correlations within the 
compositional dataset to provide more precise and reliable predictions of coal thickness, while 
also respecting the compositional constraints that are essential to the geological reality. The 
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field of compositional data analysis, which is still developing, has demonstrated potential in 
addressing these issues. By explicitly acknowledging the compositional nature of the data, it 
offers a strong framework for understanding how coal thickness is closely related to the pres-
ence of other geological constituents [3]. 

2. Methodology  

2.1. Data information  

Geological data on coal thickness in Queensland was acquired from the Queensland Gov-
ernment's data portal by the Geological Survey of Queensland (GSQ). 

 
Figure 1. Generating a coal data map. 

The dataset contained measurements of 
coal thickness along with their corresponding 
spatial coordinates. Prior to any analysis, the 
raw data was preprocessed to transform 
them into log-transformed data, ensuring 
consistency in data format and quality. Spa-
tial interpolation techniques were employed 
to fill in any missing values and create a con-
tinuous representation of coal thickness 
across Queensland. This study encompassed 
a total of 317 wells, grouped into sixteen cat-
egories as shown in Table 1 based on well 
depth.  This study encompassed a total of 
317 wells as shown in Figure1. The research 
focused on utilizing Julia-based composi-
tional kriging to forecast coal thickness in 
Queensland, emphasizing the significance of 
data preprocessing, algorithm implementa-
tion, and validation procedures by comparing 
distributions between the original and kriged 
data. 

Table 1. Data pertaining to the group number and thickness (m). 

Group number Thickness (m) Group number Thickness (m) 
1 0.00-0.20 9 1.75-2.00 
2 0.20-0.40 10 2.00-3.00 
3 0.40-0.60 11 3.00-4.00 
4 0.60-0.80 12 4.00-5.00 
5 0.80-1.00 13 5.00-6.00 
6 1.00-1.25 14 6.00-8.00 
7 1.25-1.50 15 8.00-10.00 
8 1.50-1.75 16 10.00-100.00 

2.2. Analysis tools  

Compositional kriging, a geostatistical method for estimating the compositional  Julia pro-
gramming language was utilized to analyze data at unsampled locations [4]. That programming 
language provides a range of robust libraries and tools for spatial data analysis, including 
Gestalts’ which is specifically designed for geostatistical modeling and interpolation. In this 
study, the compositional kriging technique was adapted to suit the unique characteristics of 
coal thickness data, such as its compositional nature and spatial autocorrelation. The approach 
involved modeling the spatial variability of coal thickness using a variogram model and em-
ploying a compositional kriging model to interpolate values. The Compositional kriging method 
was validated by comparing the distribution of the original data with the compositional kriging 
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values [5-6]. Julia's exceptional computing capabilities facilitated rapid processing of extensive 
datasets and efficient model convergence. The accuracy and dependability of the compositional 
kriging estimates were evaluated through cross-validation and uncertainty analysis [7-8]. A portion 
of the data was reserved for validation purposes, and the kriging model's performance was 
assessed by comparing predicted values against observed measurements. Furthermore, un-
certainty evaluations, such as prediction intervals or variance maps, were produced to quantify 
the uncertainty linked with the interpolated coal thickness values. Sensitivity analyses were 
conducted to explore the influence of variogram parameters and model assumptions on the 
reliability of the kriging forecasts. The validation outcomes and uncertainty evaluations offered 
valuable insights into the dependability of the compositional kriging technique for estimating 
coal thickness in Queensland for resource exploration and mining operations [9].  

Gamma ray logging is a geophysical well logging technique used in the oil and gas industry 
to detect natural gamma radiation released by rocks around a borehole. Gamma rays are 
high-energy electromagnetic radiation released by the atomic nuclei of certain elements, such 
as uranium, thorium, and potassium, which are abundant in sedimentary rocks. Geologists 
can use transmitting an electric current through the surrounding rock. The resistance encoun-
tered by the current reveal information on the formation’s conductivity, which varies based on 
fluid saturation, rock type, and porosity. Resistivity logs are essential for detecting hydrocar-
bon-bearing formations, assessing reservoir quality, and defining fluid type. The last part is  
density logging which measures the bulk density of subterranean formations [10]. It uses a 
gamma ray generator and detector to measure the attenuation of gamma radiation as it trav-
els through the formation. The degree of attenuation is directly proportional to the material's 
density, allowing bulk density to be calculated. Density logs give useful information regarding 
lithology, porosity, and fluid content, which can help with reservoir characterization, fluid iden-
tification, and wellbore stability assessment. Gamma ray intensity to determine lithology 
changes, pinpoint hydrocarbon zones, and evaluate the formation features [9]. The gamma 
ray, resistivity, and neutron density logs were used to characterize the coal-bearing strata in 
the well [10-11], in addition, gamma ray log revealed low natural radiation levels typical with 
coal, which aided in the identification and linkage of coal seams inside the reservoir. Simulta-
neously, resistivity records revealed the electrical characteristics of the formations. Variations 
in resistivity values helped distinguish coal beds from surrounding lithologies, allowing for 
more precise mapping of coal reservoir boundaries. Additionally, the neutron-density logs 
have provided crucial information regarding the bulk density and hydrogen content, both of 
which play a vital role in determining porosity and fluid saturation levels within coal for-
mations. By combining these logging techniques, a thorough understanding of the composition 
and structural characteristics of the coal-bearing reservoir has been achieved, leading to im-
proved estimations of hydrocarbon concentration. The process involves the insertion of elec-
trodes into the borehole, with gamma rays showing lower levels on the left side due to reduced 
radioactivity from uranium (U), thorium (Th), and potassium (K) [12-13]. Furthermore, Density-
Neutron measurements reveal higher porosity in the reservoir, while non-conductive hydro-
carbons result in increased resistivity on the right side, indicating the presence of coal in that 
specific location. 

3. Results and discussion  

Figure 2 displays gamma rays, resistivity, and neutron-density logs illustrating the signifi-
cance of well logging technologies in characterizing coal deposits within boreholes. This me-
ticulous approach involves the careful insertion of electrodes into the borehole to obtain crucial 
geological data. In the realm of coal exploration, gamma ray logs exhibit noticeably lower 
readings on the left side of the borehole, which can be attributed to the reduced radioactivity 
caused by uranium (U), thorium (Th), and potassium (K) elements present in coal deposits. 
Density-Neutron measurements indicate increased porosity throughout the reservoir, suggest-
ing the presence of coal seams. Conversely, the presence of non-conductive hydrocarbons 
leads to higher resistivity values on the right side of the borehole. These factual observations 
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collectively support the presumed existence of coal reserves at the specified location. By in-
tegrating information derived from various logging techniques, a comprehensive understand-
ing of coal reservoir characteristics is achieved, enabling more informed decisions regarding 
resource assessment and development. 

 

Figure 2. Gamma ray, resistivity and, density-neutron. 

Figure 3 displays a scatter plot that displays the connection between two coal thickness 
categories: 0.40-0.60 m and 0.20-0.40 m thickness. Each data point represents the 0.40-0.60 
m on the x-axis and the corresponding 0.20-0.4 m on the y-axis. The scatter plot indicates a 
negative correlation, suggesting that areas with a higher coal proportion in the 0.40-0.60 m 
range tend to have a lower coal proportion in the 0.20-0.40 m range. As a result, there is a 
spatial relationship between them, allowing us to proceed to the next step, which is examining 
the variogram. 

 
Figure 3. The scatter plot depicting the relationship between two categories of coal thickness. 

The spatial variability and dependence of a specific attribute, such as the 0.20-0.40 m 
group, are illustrated in the variogram plot shown in Figure 4. The blue points represent the 
study data, while the green line depicts the fitted variogram model. On the x-axis, the lag 
distance between pairs of sample points is shown, and the y-axis displays the corresponding 
semi variance of attribute values at those distances. The variogram typically exhibits three 
key characteristics. Firstly, the nugget signifies the variability at short distances due to meas-
urement error or microscale variability. The range indicates the distance at which spatial cor-
relation peaks and then decreases. Lastly, the sill represents the overall variability of the 
attribute across long distances where spatial autocorrelation is minimal. For example, in the 
variogram for coal thickness, the line starts at 0 (nugget), the semi-variance stops increasing 
at 0.006 (sill), and the range is five thousand meters. This implies that within 300000m, there 
is spatial correlation, allowing for predictions using kriging methods. 
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Figure 4. The variogram of the coal thickness data. (0.20-0.40m). 

The histogram provided in Figure 5 illustrates the distribution of proportions for two sets of 
data: the original data and the compositional kriging data. It is shown in Figure 5 two diverse 
types as unimodal and bimodal appeared. Since it is an amount of coal thickness, and they 
are near to each other then it makes mostly the amount of coal has in similar groups which 
are group 1,2 and 3 for different location. Furthermore, when comparing the distributions of 
the bars between the original data and the compositional kriging data, it can be observed that 
the shape of the distributions is alike. The diagonal line bar represents the original coal thick-
ness data, while the dot pattern bar symbolizes the compositional kriging data. The x-axis 
represents the diverse groups, ranging from group 1 to group 16, while the y-axis shows the 
proportions within each group. The height of each bar indicates the proportion of data within 
its respective coal amount.  

 

 
Figure 5. The histogram displays a unimodal distribution across two distinct locations. 

1128



Petroleum and Coal 

                         Pet Coal (2024); 66(3): 1124-1130 
ISSN 1337-7027 an open access journal 

Figure 5 displays the unimodal distribution shape commonly performed from the study data. 
This distribution has a single peak in the data. For example, sequence_no_133 and 134, since 
they are located near to each other, and their distribution are similar. The former point is 
located at longitude 150.2939556° E and at latitude 26.67716667° S (150.2959694,  -
26.69720833) and the later point is situated at longitude 150.2959694° E and at latitude 
26.69720833° S (150.3092583 , -26.69053333). both exhibit the same unimodal distribution; 
it shows a similarity in their characters estimated. The unimodal distribution found in both 
datasets indicates the presence of a single dominating mode. This is indicated by the presence 
of a significant peak in the frequency distribution of each dataset, around which the data 
cluster. Unimodality suggests a homogenous distribution of values, with most observations 
sharing similar traits across both datasets such as a location. This implies that most coal seams 
in both areas have a thickness like this amount, which represents the central tendency of the 
distribution in each dataset. Likewise, the distribution of commotional kriging data follows 
original data even though there are group 12 and 13 are shown.  

The other distribution type obtained from the coal thickness data is bimodal. The bimodal 
distribution of the data shows that there are two separate modes. Figure 6 which is Se-
quence_no_235, the analysis of coal thickness data collected from a mining site revealed a 
bimodal distribution, with peak thicknesses observed at group 1 which is 0.20m-0.40m and 3 
which is 0.60m-0.80m, respectively. This data is in COXON_CREEK_10 at longitude 
149.0963389 ° E and at latitude 26.36855833° S (149.0963389, -26.36855833). Remarkably, 
the compositional kriging and original data display identical bimodal patterns since it was 
chosen to calculate the compositional kriging as a sample. The alignment of the original and 
kriging data's bimodal distributions demonstrates the kriging method's ability to capture the 
geographic heterogeneity contained in the original dataset.  

 
Figure 6. The histogram bimodal distribution of the well COXON_CREEK_10. 

4. Conclusion  

When comparing the coal thickness distribution between the original dataset and the kriging 
data, strong parallels appear, indicating adaptability in the compositional kriging method's 
ability to approximate the genuine underlying distribution. Both datasets have similar fre-
quency distributions over different coal thickness intervals, demonstrating that the kriging 
interpolation efficiently reflects the spatial variability in the original dataset. This consistency 
demonstrates the validity of kriging as a spatial interpolation approach for determining coal 
thickness across the research region. As a result, our findings support the use of kriging as a 
beneficial tool in geological research, allowing for confident estimates of resource distribution 
and improving in the petroleum field.  
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