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Abstract 
Reservoir simulation is the combination of physics, mathematics, reservoir engineering, and computer 
programming for predicting the performance of a hydrocarbon reservoir under various operating 
conditions. The necessity of optimizing oil extraction methods is to  increase the efficiency of a 
hydrocarbon reservoir under various operating conditions. Therefore, in a hydrocarbon recovery 
project that may involve hundreds of millions of dollars in investments, the risk associated with using 
the best method for the desired outcome must be evaluated and minimized.  
Finding an optimal model for static reservoir simulation through fluid flow model is the main goal of 
this paper. For this purpose, first of all, artificial data of porosity and permeability was generated, and 
then these data were used for geostatistical simulation. Sequential Gaussian Simulation (SGS) method 
was used for static simulation of a region and for each of two static parameters, 25 realizations were 
obtained. The realizations of SGS were randomly entered in the dynamic model of the reservoir. 
Dynamic model was coded by Python for slightly-compressible fluid flow equations in three dimensions 
and the pressure in each of the blocks in the oil production reservoir  was determined. For each 
category, the least Sum of Squared Errors (SSE) was determined and then the corresponding static 
model was selected as  the desired static model. With a reliable static model, it is possible to define 
different locations for designing injection and oil production wells, potential intelligent wells areas, as 
well as optimizing the management of a reservoir, which leads to costs reduction and, at the same 
time, increase in oil production. 
Keywords: Static modeling; Sequential Gaussian simulation; Dynamic modeling; Slightly-compressible fluid 
flow equations; Integrated reservoir Modeling; History matching. 

 

1. Introduction 

Reservoir simulation is a numerical model in the petroleum industry that has become a 
pattern for solving reservoir engineering problems.In fact, reservoir simulation is the operation 
of simulating the deportment of fluid flow in porous media of an oil reservoir and predicting 
the performance of a hydrocarbon reservoir using the combining physics, mathematics and 
reservoir engineering. A reservoir simulation model is a suitable tool for reducing the costs of 
multi-million dollar investments by predicting the performance of oil reservoir and location of 
wells. This model is created from initial parameters, then certify through the history matching 
method.  History matching is done to bring the performance of simulation model closer to the 
performance of actual reservoir [1]. 

In predicting the reservoir study, it is important to help the decision-making process by a 
positive impact on the technical and business performance of oil industry. History matching is 
one of the most important of methods, which helps greatly in the optimization of the field. 
History matching is also calibrated based on historical observations and used to estimate fu-
ture hydrocarbon production [2]. 

Due to the large resources and errors in the input data, building a model without a history 
match will not be accurate enough in the results. Nowadays, with the advantage of computer 
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science, the methods of history matching are performed with better quality and less compu-
tation and time than traditional methods [3].  

Reservoir simulation is an important part and should be done with the least error, which 
still needs more attention and discussion. One of the essential tasks for describing the reser-
voir is the integration of two important datasets called static and dynamic data. Static data 
such as porosity and permeability are obtained from the core, log, and seismic data. Dynamic 
data include pressure, saturation, and fluid rates. The integration method increases quality of 
the reservoir models and reduces the uncertainty of the simulated models [4]. 

Mathematical methods are the most appropriate methods for integrating static and dynamic 
data, and are divided into three categories: deterministic or gradient-based methods [5-6], 
stochastic methods and particle filter methods. In last two decades, there have been many 
activities to develop stochastic methods by using history matching. These methods do not use 
gradient information. In short, it uses the trial and error approach in the manual reservoir 
model structure system. The most commonly used methods are: on simulated annealing and 
genetic algorithms [7-8]. 

The convergence rate of deterministic methods is faster than stochastic methods, but one 
of the good advantages of stochastic methods is the easier computational performance and 
lower computational volume. Stochastic methods are classified as global optimization algo-
rithms. Instead of minimizing the target locale, these methods attempt to achieve the global 
minimum of the objective function. However, it should be noted that the number of iterations 
is limited and access to the global minimum may be difficult.  

Previously used of history matching are genetic algorithm [9-10], particle swarm optimization 
(PSO) [11-12], evolutionary strategies [13], ant colony optimization (ACO) [14], Gaussian Process [15], 
genetic algorithm and particle swarm optimization [16]. Deterministic methods calculate the 
gradients of the mathematical model with regards to the parameters (permeability, porosity. 
e.g.) and minimize the objective function [17-18]. 

As previously mentioned, these methods have a very quick convergence rate to a local 
minimum of the objective function. However, they also have weaknesses, for example in many 
conditions these algorithms may not converge to a local minimum [4]. Bayesian framework 
[19], and LBFGS algorithm [20-21] are some examples. 

Finally, The Kalman filter is an estimator that uses the previous state estimation and the 
current observation to calculate the current state estimation as powerful tool for combining 
information in the presence of uncertainties. The measurements are also associated with un-
certainty [22]. The EnKF is based on the simpler Kalman filter [23-24]. The extended Kalman 
filter has also been used for parameter estimation in hydrological modeling [25-26]. 

The main approach of this paper is to develop an optimization phase in a simulated model 
to find the optimal simulated static model for improving oil production with a combination of 
static and dynamic simulation techniques in uncertain geological scenarios. 

2. Materials and methods  

2.1. Static reservoir simulation  

 
Figure 1. Position of wells in 3D view 

Porosity and permeability are the most important 
petrophysical properties of the reservoir. A synthetic 
450*450*6 heterogeneous reservoir is generated 
comprising 600 cells (10*10*1). In Table 1, detail in-
formation about the number of blocks in three axes 
of X, Y, and Z, as well as the size of the blocks are 
provided. Petrophysical and fluid properties data is 
generated using normal and random conditions. The 
position and three-dimensional arrangement of wells 
are mentioned in Figure 1. Table 2 is given the maxi-
mum, minimum, mean and variance values of porosity 
and permeability. 
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Table  1. Properties of the grid embedded in the 
study area in three directions X, Y and Z Table 2. Statistical data information 

 

     Y-direc-
tion 

X-direc-
tion 

Z- direc-
tion 

Number 
of blocks 

10 10 10 

Block size 45 m 45 m 1 m 

 

Variable 
name 

Porosity 
(%) 

Permeability 
(md) 

minimum 7.9864 32.5083 
Maximum 23.9531 83.7347 
Mean 15.99 57.97 
Variance 3.9842 35.828 

The SGS geostatistical method is used in the current article to construct the static model 
and generated 25 permeability, porosity, field realizations of a 3D reservoir. Some of these 
realizations are shown in Figure 2. 

Figure 2. Realization of SGS method. a) Permeability, b) Porosity. Numbers one and two are two reali-
zations of 25 realizations and numbers three are the average model of 25 realizations 

2.2. Fluid flow simulation 

Mathematical modeling of a system needs to understand the behavior of different compo-
nents that build a system. In the reservoir simulation, system is composed of reservoir rocks 
and various fluids that flow through it. For model developers and users, a complete under-
standing of the relationship between fluid densities, viscosity, formation volume factor, soluble 
gas/liquid to pressure ratios, and also relative permeability and capillary pressure with satu-
ration are very useful. 

Several numerical methods are used to discretization fluid flow equations. The most com-
mon approach in the oil industry is the finite-difference approximation [27-28]. Slightly-com-
pressible fluid flow equation is expressed in three dimensions according to Equation 1: 

    
   

 

 

   
 

(a1) (a2) (a3) 

(b1) (b2) (b3) 

120



Petroleum and Coal 

                          Pet Coal (2023); 65(1): 118-130 
ISSN 1337-7027 an open access journal 

(Eq. 1) 
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𝛽𝛽𝑐𝑐𝐴𝐴𝑥𝑥𝑘𝑘𝑥𝑥
𝜇𝜇𝑙𝑙𝐵𝐵𝑙𝑙

𝜕𝜕𝛷𝛷𝑙𝑙

𝜕𝜕𝜕𝜕
� 𝛥𝛥𝜕𝜕 + 

𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝛽𝛽𝑐𝑐𝐴𝐴𝑦𝑦𝑘𝑘𝑦𝑦
𝜇𝜇𝑙𝑙𝐵𝐵𝑙𝑙

𝜕𝜕𝛷𝛷𝑙𝑙

𝜕𝜕𝜕𝜕
�𝛥𝛥𝜕𝜕 + 

𝜕𝜕
𝜕𝜕𝜕𝜕
�
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𝜕𝜕𝛷𝛷𝑙𝑙

𝜕𝜕𝜕𝜕
� 𝛥𝛥𝜕𝜕 + 

𝑞𝑞𝑙𝑙𝑙𝑙𝑐𝑐 =
𝑉𝑉𝑏𝑏𝜙𝜙𝑐𝑐𝑙𝑙
𝛼𝛼𝑐𝑐𝐵𝐵𝑙𝑙°

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

where l = o or w; 𝛽𝛽𝑐𝑐is a unit coefficient equal to 0.001127; 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦 and 𝑘𝑘𝑧𝑧 are the absolute 
permeability of the rock in the flow direction; 𝐴𝐴𝑥𝑥, 𝐴𝐴𝑦𝑦 and 𝐴𝐴𝑧𝑧 are introduced as area perpendicular 
to flow. Respectively 𝑞𝑞𝑙𝑙𝑐𝑐, V, 𝜑𝜑, 𝐵𝐵𝑙𝑙 are called the production rate in standard term, the volume 
of each block, the porosity of each block, the formation volume factor; 𝛼𝛼𝑐𝑐, is as a constant 
value, in this case equal to 5.615; 𝑐𝑐𝑙𝑙 is the total oil compressibility calculated using Equation 2: 

𝐶𝐶𝑜𝑜 = 𝑆𝑆𝑤𝑤𝐶𝐶𝑤𝑤 + (1 − 𝑆𝑆𝑤𝑤)𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑟𝑟 (Eq. 2) 

In Equation 1, 𝛷𝛷 is called the potential gradient and defined by Equation 3 and 𝛾𝛾𝑙𝑙 is the 
density of the liquid phase. P and Z are optional points of pressure and height, respectively. 

(Eq. 3) 𝛻𝛻�⃗ 𝛷𝛷𝑙𝑙 = 𝛻𝛻�⃗ 𝜕𝜕 − 𝛾𝛾𝑙𝑙𝛻𝛻�⃗ 𝑍𝑍 
The presence of a third dimension creates a coefficient matrix with a heptadiagonal struc-

ture for the three-dimensional problem. Figure 3 shows the matrix equation for three-axes 
flow. By replacing Equation 3 into Equation 1 and applying the backward difference approxi-
mation, the result will be as follow [27, 29-31]: 

(Eq. 
4) 

𝐵𝐵𝑖𝑖 ,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖 ,𝑗𝑗,𝑘𝑘−1
𝑛𝑛+1 + 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖,𝑗𝑗−1,𝑘𝑘

𝑛𝑛+1 + 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖−1,𝑗𝑗,𝑘𝑘
𝑛𝑛+1 + 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑛𝑛+1 + 𝐸𝐸𝑖𝑖,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖+1,𝑗𝑗,𝑘𝑘
𝑛𝑛+1 + 𝑁𝑁𝑖𝑖,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖,𝑗𝑗+1,𝑘𝑘

𝑛𝑛+1 + 
𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘𝜕𝜕𝑖𝑖,𝑗𝑗,𝑘𝑘+1

𝑛𝑛+1 = 𝑄𝑄𝑖𝑖,𝑗𝑗,𝑘𝑘 

In the simpler form of this equation is Equation 5: 
�̱̱�𝑀 × �̱�𝑃 = �̱�𝑄 (Eq. 5) 

 
 
 
 
 
 
 
 
 
 
 
 
 

where �̱̱�𝑀 is the 𝑛𝑛 × 𝑛𝑛 matrix of transmissibility; �̱�𝑃 display a vector of unknown-block pressures; 
and �̱�𝑄 is introduced as vector of boundary condition. 

The equations used for calculating the components of Equation 4 are as follow: The coeffi-
cient C is the principal diameter of the matrix, which is calculated by Equation 12. 

𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘 = −�
𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝐸𝐸𝑖𝑖,𝑗𝑗,𝑘𝑘

+𝑁𝑁𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘 + � 𝑉𝑉𝑏𝑏𝜙𝜙𝑐𝑐𝑙𝑙
𝛼𝛼𝑐𝑐𝐵𝐵𝑙𝑙

°𝛥𝛥𝛥𝛥
�
𝑖𝑖,𝑗𝑗,𝑘𝑘

�  
(Eq. 12) 

Also, the value of T is used to define the coefficients A, N, E, B, S, W, known as the tran-
spiration coefficient, and represented by Equation 13: 

(Eq. 6) 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑙𝑙𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘+12

 

(Eq. 7) 𝑁𝑁𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑙𝑙𝑦𝑦
𝑖𝑖,𝑗𝑗+12,𝑘𝑘

 

(Eq. 8) 𝐸𝐸𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑙𝑙𝑥𝑥
𝑖𝑖+12,𝑗𝑗,𝑘𝑘

 

(Eq. 9) 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑙𝑙𝑧𝑧
𝑖𝑖,𝑗𝑗,𝑘𝑘−12

 

(Eq. 10) 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑙𝑙𝑦𝑦
𝑖𝑖,𝑗𝑗−12,𝑘𝑘

 

(Eq. 11) 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑘𝑘 = 𝑇𝑇𝑙𝑙𝑥𝑥
𝑖𝑖−12,𝑗𝑗,𝑘𝑘
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(Eq. 13) 𝑇𝑇𝑙𝑙𝑥𝑥,𝑦𝑦,𝑧𝑧𝑖𝑖,𝑗𝑗,𝑘𝑘 = �𝛽𝛽𝑐𝑐
𝐴𝐴𝑥𝑥𝑘𝑘𝑥𝑥
𝜇𝜇𝑙𝑙𝐵𝐵𝑙𝑙𝛥𝛥𝜕𝜕

�
𝑖𝑖,𝑗𝑗,𝑘𝑘

 

The value of 𝑄𝑄𝑖𝑖 ,𝑗𝑗,𝑘𝑘, as gravity- head term (𝛾𝛾𝑙𝑙𝑍𝑍) is calculated by Equation 14. 
  
 
 

𝑄𝑄𝑖𝑖,𝑗𝑗,𝑘𝑘 = −�
𝑉𝑉𝑏𝑏𝜙𝜙𝑐𝑐𝑙𝑙
𝛼𝛼𝑐𝑐𝐵𝐵𝑙𝑙°𝛥𝛥𝜕𝜕

�
𝑖𝑖,𝑗𝑗,𝑘𝑘

𝜕𝜕𝑖𝑖𝑛𝑛 − 𝑞𝑞𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘 + 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘𝛾𝛾𝑙𝑙
𝑖𝑖,𝑗𝑗,𝑘𝑘−12

�𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘−1 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘�

+ 𝑆𝑆𝑖𝑖,𝑗𝑗,𝑘𝑘𝛾𝛾𝑙𝑙
𝑖𝑖,𝑗𝑗−12,𝑘𝑘

�𝑍𝑍𝑖𝑖,𝑗𝑗−1,𝑘𝑘 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘� + 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑘𝑘𝛾𝛾𝑙𝑙
𝑖𝑖−12,𝑗𝑗,𝑘𝑘

�𝑍𝑍𝑖𝑖−1,𝑗𝑗,𝑘𝑘 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘� 

+𝐸𝐸𝑖𝑖,𝑗𝑗,𝑘𝑘𝛾𝛾𝑙𝑙
𝑖𝑖+12,𝑗𝑗,𝑘𝑘

�𝑍𝑍𝑖𝑖+1,𝑗𝑗,𝑘𝑘 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘� + 𝑁𝑁𝑖𝑖,𝑗𝑗,𝑘𝑘𝛾𝛾𝑙𝑙
𝑖𝑖,𝑗𝑗+12,𝑘𝑘

�𝑍𝑍𝑖𝑖,𝑗𝑗+1,𝑘𝑘 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘�

+ 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑘𝑘𝛾𝛾𝑙𝑙
𝑖𝑖,𝑗𝑗,𝑘𝑘+12

�𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘+1 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑘𝑘� 

(Eq. 14) 

 
𝑃𝑃𝑖𝑖𝑛𝑛 and 𝑞𝑞𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘 are the pressure and injection/production in each block, respectively.  

2.3. Solver: Gaussian elimination 

In the previous sections, equation 5 was introduced, that is a multi-equation. The Gaussian 
elimination method is one of the most popular and well-known methods for solving equations 
simultaneously. This method consists of forward elimination and backward substitution. 

Forward elimination: The purpose of the forward elimination is to create an upper trian-
gular matrix, which is used as primary operators to achieve its goal.   

The first step assign augmented matrix of M, denoted as �̱̱�𝑀�, by inserting Q in M as last 
column: 

𝑀𝑀�̱̱ �
𝑚𝑚11 𝑚𝑚12 ⋯ 𝑚𝑚1𝑛𝑛
𝑚𝑚21
⋮

𝑚𝑚22 ⋯
⋮

𝑚𝑚2𝑛𝑛
⋮

𝑚𝑚𝑛𝑛1 𝑚𝑚𝑛𝑛2 𝑚𝑚𝑛𝑛𝑛𝑛

�
𝑞𝑞1
𝑞𝑞2
⋮
𝑞𝑞𝑛𝑛
� = �

𝑃𝑃1
𝑃𝑃2
⋮
𝑃𝑃𝑛𝑛
� 

In this level, unknown parameters as like pressure in each cell are systematically deleted 
from the matrix equation. Assume that the first kth rows of the matrix �̱̱�𝑀�′ are upper triangular 
matrix form, therefore, the pivot equation is the k. And all the equations below it still need to 
be converted. The ith row is below the pivot equation and the 𝑚𝑚𝑖𝑖𝑘𝑘 element must be deleted. In 
this method, the difference of an equation (i equation) and the result of multiplying another 
equation (j equation) and constant 𝜆𝜆 = 𝑚𝑚𝑖𝑖𝑘𝑘/𝑚𝑚𝑘𝑘𝑘𝑘 is used to reach its goal. 

 
 
 
                           
 
   

Figure 1. Schematic representation of the matrix generated by the 3D, 
slightly- compressible- flow equation 

Ai,j,k 
Ni,j,k 

Ei,j,k 

Ci,j,k 

Wi,j,k 
Si,j,k 

Bi,j,k 

= 𝐏𝐏𝐢𝐢,𝐣𝐣,𝐤𝐤𝐧𝐧+𝟏𝟏 Qi,j,k 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑚𝑚11 𝑚𝑚12 ⋯𝑚𝑚1𝑘𝑘 ⋯𝑚𝑚1𝑗𝑗 ⋯𝑚𝑚1𝑛𝑛

0
⋮

𝑚𝑚22
⋮

⋯𝑚𝑚2𝑘𝑘
⋮

⋯𝑚𝑚2𝑗𝑗
⋮

⋯𝑚𝑚2𝑛𝑛
⋮

0
⋮

0
⋮

⋯𝑚𝑚𝑘𝑘𝑘𝑘
⋮

⋯𝑚𝑚𝑘𝑘𝑗𝑗
⋮

⋯𝑚𝑚𝑘𝑘𝑛𝑛
⋮

0
⋮

0
⋮

⋯𝑚𝑚𝑖𝑖𝑘𝑘
⋮

⋯𝑚𝑚𝑖𝑖𝑗𝑗
⋮

⋯𝑚𝑚𝑖𝑖𝑛𝑛
⋮

0 0 ⋯𝑚𝑚𝑛𝑛𝑘𝑘 ⋯𝑚𝑚𝑛𝑛𝑗𝑗 ⋯𝑚𝑚𝑛𝑛𝑛𝑛

�

�

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑘𝑘
⋮
𝑏𝑏𝑖𝑖
⋮
𝑏𝑏𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

The corresponding changes in the ith row are as follows:   
𝑚𝑚𝑖𝑖𝑗𝑗 ← 𝑚𝑚𝑖𝑖𝑗𝑗 − 𝜆𝜆𝑚𝑚𝑘𝑘𝑗𝑗 𝑗𝑗 = 𝑘𝑘, 𝑘𝑘 + 1, . . . ,𝑛𝑛 

𝑏𝑏𝑖𝑖 ← 𝑏𝑏𝑖𝑖 − 𝜆𝜆𝑏𝑏𝑘𝑘 𝑖𝑖 = 𝑘𝑘 + 1, 𝑘𝑘 + 2, . . . ,𝑛𝑛 

 𝑘𝑘 = 1,2, . . . ,𝑛𝑛 − 1 

Backward substitution: the last unknown parameters is obtained from the last equation 
and other unknown resolved by substituting known values into the upper triangular matrix 
equation. Repeat the back-substitute processes to obtain a unique answer.  

3. Results 

3.1. Integration of static and dynamic models 

In the previous sections, static and fluid flow models are explained. This section describes 
how to integrate the two models to obtain the pressure in each reservoir block. 

From each of the two class (porosity, permeability) realizations, SGS was randomly entered 
in dynamic model, the method of importing static models into code helps user to control num-
bers of models, depending cost, time and their system of computer. 

In this research, 25 static models separately made for porosity and permeability. Only 20% 
of them in two steps imported into code. 5 models imported from porosity and 5 models from 
permeability. Making a dynamic model of reservoir needs a porosity model and a permeability 
model, after running the code and calculating pressure on each grid block, sum of square error 
(SSE) will be calculated 

The Sum of Squared Errors (SSE) was calculated by Equation 16: 

𝑆𝑆𝑆𝑆𝐸𝐸 = ��𝜕𝜕𝑖𝑖 − 𝜕𝜕𝑖𝑖′�
2 (Eq. 16) 

𝜕𝜕𝑖𝑖 is the output value for the actual model and 𝜕𝜕𝑖𝑖′ is the answer obtained from the simulated 
model. In this paper, 𝜕𝜕𝑖𝑖′ is the amount of pressure obtained for each grid block, and using 
artificial data, and the actual amount equal to the amount of pressure that is intended 4175 
Pisa. 

Importing static models of porosity and permeability was random. At first step one of po-
rosity models imported into the code and fixed, by every code running one of five permeability 
models imported to the code. For each model, it's SEE and block's pressures calculated. Each 
step after calculating current SEE and it deducted with pervious SEEs by coding and models 
related to them choose as desirable model. After importing all permeability models, the model 
with lowest SEE choose as fixed desirable model. 

On the next step porosity models were variable and sequentially imported to the code and 
like the first step, pressure of each block and SEEs of them were calculated. 

New SEE and pervious SEEs deducted and models with lowest SEE's introduced as desirable 
models with due attention to choosing 5 porosity models and 5 permeability models and the 
way of importing static models , at last the code ran 9 times and 9 models obtained and for 
each one SEE and pressure calculated separately. 

The performance of this part and the fluid flow model is obtained through coding in the 
Python software. Figure 4 is shown the flowchart that describes the different steps of the 
coding algorithm. 

Figure 2. Flowchart of fluid flow simulation code in porous media 
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3.2. Comparison of SSE, production index and bottom hole pressure  

In Figure 5, the SSE for the nine dynamic model is illustrated. In Figure 5a, the static model 
is a constant porosity and changes due to various permeability models so the reason for the 
change in the SSE and pressures is the change in the permeability models. The SEE of number 4 
with quantity 27450.7 less than the others so permeability model of it, is desirable model for 
next step.  

Figure 5b is the results of fixed desirable permeability and difference porosity models. By 
increasing pressure, quantity of SEEs decreased. Considering Figure 5b, SEEs increased and 
model number 4 with lowest SEE choose as desirable model. Most SSE belong to models 1 and 3.  

In Figure 6, the pressure of the production well in their cells for nine different dynamic 
models was shown that the pressure chart for model 4 is higher than other models and has 
higher values. Bottom hole pressure and drawdown values are shown in Table 3. The highest 
bottom hole pressure with 3758.88 Psi and minimum drawdown 416.12 Psi, belongs to dy-
namic model number 4. 

 

Table 3. BHP, PI and draw down values for 9 models 

Number of 
model BHP (psi) Draw down PI 

1 3731.28 443.72 0.901 
2 3748.34 426.66 0.938 
3 3746.21 428.79 0.933 
4 3758.89 416.11 0.961 
5 3750.72 424.28 0.943 
6 3756.69 418.31 0.956 
7 3755.25 419.75 0.953 
8 3756.21 418.79 0.955 
9 3754.57 420.73 0.951 

 

  
Figure 5. SSE values for 9 different models. 5a) changes due to permeability models. 5b) chenges due 
to porosity models 

On the other side Models 1 and 3 have the lowest values with 3731.28 and 3746.21 Psi, 
respectively. The drawdown for these models is at the highest value and is equal to 443.72 
and 428.79. Figure 7 shows the static models of porosity and permeability corresponding to 
model 4. 

Figure 5. SSE values for 9 different models. 5a) changes due to permeability models. 5b) 
changes due to porosity models 
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In order to better illustrate the difference between the models and the optimal model, the 

production index and the compressibility of the formation were used. 
The production index, shown by J, is defined by Equations 17 and 18 [29,32]. 

𝐽𝐽 =
0.00708𝑘𝑘𝑜𝑜ℎ

𝜇𝜇𝑜𝑜𝐵𝐵𝑜𝑜 �𝑙𝑙𝑛𝑛 �
𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤
� − 0.75 + 𝑠𝑠�

 (Eq. 18) 

where𝑄𝑄𝑜𝑜,𝑃𝑃𝑟𝑟,𝑃𝑃𝑤𝑤𝑤𝑤,𝛥𝛥𝑃𝑃,𝑘𝑘𝑜𝑜, s, h respectively are oil flow rate, initial reservoir pressure, bottom-hole 
flowing pressure, drawdown, effective permeability of the oil, skin factor and thickness.  

All reservoir parameters, including geometry, rock and fluid characteristics, type of fluid 
flow within the porous medium, are included in the production index. In fact, J represents all 
the properties of the reservoir. 

 
Figure 6. Pressure of the production well in their cells for 9 different models 

 

 

 

 

Figure 3. The most desirable static models. 7a) Permeability, 7b) Porosity 

𝐽𝐽 =
𝑄𝑄𝑜𝑜

𝑃𝑃𝑟𝑟 − 𝑃𝑃𝑤𝑤𝑤𝑤
=
𝑄𝑄𝑜𝑜
𝛥𝛥𝑃𝑃

 (Eq. 17) 

7a) ( 7b)( 
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According to equation 17 in constant rate production, the lower the drawdown, the higher 
and the production index will be. Based on this fact, the drawdown and production index for 
each model was calculated. Drawdown and Production index are given in Table 3 and the 
values were shown in Figures 8 and 9, respectively.  

  
Figure 4. Draw down for 9 models Figure 9. Production index for 9 models 

When reducing SEE, bottom hole pressure (BHP) increased. Increasing BHP leads to reduce 
drew down and according to equation 17 leads to increasing production index from reservoir. 
Quantity of drew down in models 1 and 3 increased and these models have lowest amount of 
production index and highest BHP. Also the highest production index equals to 0.957 and 
belongs to model 4. This is the highest production index among other models. 

According to equation 18, the production index is directly related to effective permeability 
of the oil. It can be concluded that the permeability rate of model number 4 is higher than 
other models. The effective permeability for all 5 models of permeability was shown in Figure 10. 
It is observed that permeability for model number 4 was had the highest value. The chart of 
model number 4 is shown with dashed line and the rest of the models are below it with smaller 
values. Which can be considered as one of the reasons for the inadequacy of permeability in 
other models. The formation compressibility can be used to compare porosity in models. The 
formation compressibility is indicated by 𝐶𝐶𝑤𝑤 and defined by equation 19 [33]. 

  
Figure 10. Effective permeability for 5 models in 
grid blocks of production well 

Figure 11. Porosity for 5 models in grid blocks of 
production well 
 

𝑐𝑐𝑤𝑤 =
1
𝜙𝜙

.
𝜕𝜕𝜙𝜙
𝜕𝜕𝑃𝑃

 (Eq. 19) 

The initial porosity is inversely related to pressure changes. In Figure 11 the porosity in 
grid blocks of production well for 5 static model is shown. The porosity of the model 4 with 
the dashed line is distinguished from other models and that is higher than other models. 

3.3. Validation  

Another simulation software, called eclipse, has been used to validate the simulated dy-
namic model.  By using the same model of optimal porosity and permeability with respect to 
the remaining terms of discrete, single-phase and three-dimensional simulation of the eclipse 
was applied. Based on Figure 12,   comparing the pressure from the production well column, 
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the difference between two methods is only 8 psi, which can be ignored. Figure 13 shows the 
reservoir pressure model in 3D for both methods, which was also confirmed the correctness 
of the built model. 

 
Figure 12. Comparison of pressure obtained for two methods 

 
 

 

Figure 5. Comparison of pressure models obtained from Python code and Eclipse software. 13a) Pressure 
model obtained from Eclipse software. 13b) Pressure model obtained from Python code 

4. Conclusion 

In this study, an optimization algorithm was developed for finding the optimum static model 
using a combination of static and dynamic simulation techniques. After comparing different 
models by parameters such as SSE, bottom hole and drawdown pressures, production index 
and pressure of each block on production well, model No. 4, which is a simulation of the 
reservoir, has the lowest drawdown and SSE,  and has been improved by 19.1% compared to 
the model with the highest SSE. It has also the highest production index and bottom hole 
pressure among the other dynamic models, which is the result of using the desired permea-
bility and porosity..  The distinguishing feature of these dynamic models was their static mod-
els and the rest of the parameters were considered to be constant and the same. For this 
reason, the change in the results of the dynamic models was due to  the change in their static 
models.  

The desirability of the results of Model 4 depends on the desirability of its static model.  
This static model can be introduced as  the most desirable static model for all two categories 

  

(13a) (13b) 
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of permeability and porosity data. With this method, a large number of static models in dif-
ferent dimensions can be compared according to the cost and time available. These models 
can be used for designing  more reliable and suitable drilling sites for injection and production 
wells to produce more oil. 
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