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Abstract 
Drill string vibrations are one of the most serious problems encountered while drilling as the bit and 
drill string interaction with formations under certain drilling conditions usually induces complex shocks 
and vibrations into the drill string components resulting in premature failure of the equipment and 
reduced drilling penetration rate. In severe cases where shocks and vibrations accumulated into drill 
string till exceeded its maximum yield or torsional strength, fatigue will occur and thereby increase the 
field development costs associated with replacing damaged components, fishing jobs, lost-in-hole 
situations, and sidetracks. Thus, real-time monitoring for downhole-generated vibrations and accor-
dingly adjusting drilling parameters, including weight on bit, rotary speed, and circulation rate, play a 
vital role in reducing the severity of these undesirable conditions. Vibration optimization must be done 
incorporation with the penetration rate, as a minimum economical penetration rate is required by the 
operator. In this study, three penetration rate and vibration level models were developed for axial, 
lateral, and stick-slip drilling modes using both MATLABTM Software neural network and multiple 
regression analysis. It is found that the three models' results for vibration level and penetration rate, 
as compared with those recorded drilling data, showed an excellent match within an acceptable error 
of average correlation coefficient (R) over 0.95. The prediction of penetration rate and vibration level 
is thoroughly investigated in different axial, lateral, and stick-slip vibration drilling modes to be able to 
best select the optimum safe drilling zone. It is found that the axial vibration could be dampened by 
gradually increasing the weight on the bit and increasing rotary speed, while both the lateral and 
torsional vibrations are enhanced by increasing the rotary speed and decreasing the weight on the bit. 
Keywords: Drilling optimization; MATLAB; Neural network; Rate of penetration; Regression, Twist-off, and Vibrations. 

1. Introduction

The ability to monitor and accurately interpret dynamic drilling behavior depends on back-
ground knowledge of vibration types and how they arise. Thanks to the new advanced tech-
nology, measurement while drilling tools can real-time monitor and detect these generated 
downhole shocks and vibrations. Thus, we can adjust and optimize drilling parameters based 
on the type of vibration to minimize nonproductive time, save cost, and enhance drilling effi-
ciency. Appropriate real-time corrective action can have a significant impact on the lifetime of 
the MWD tool, drill string, motor, bit, drill rates, and whole drilling efficiency [1]. As a matter 
of fact, to avoid these unstable drilling zones with high vibration levels, we are forced to 
sacrifice the rate of penetration (ROP) which is the principal goal of drilling economically. So, 
Optimization is to bypass and diminish vibration with a less harmful impact on ROP. 

Simulation models; built based on actual recorded data with an acceptable minimal error; 
will help to dispense with the vibration-monitoring MWD tool as drilling parameters in con- 
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junction with drill string design and area experience can be selected, ROP and vibration level 
could be predicted. 

The objective of this study is to develop axial, lateral, and stick-slip models to predict 
mainly the vibration level and rate of penetration as outputs by using neural network back-
forward-propagation method and multiple linear regression based on previously actual rec-
orded drilling and vibrational data to have the ability to:  
• Select and adjust the optimum drilling parameters such as weight on bit, rotational speed, 

and mudflow rate. 
• Enhance the drilling efficiency and avoid drill string twist-off. 
• Minimize the cumulative drilling cost by reducing NPT. 
• Give minimal error outputs compared to the MWD tool readings. 
Downhole vibrations are generally classified into three primary categories, axial, torsional, 
and lateral/transverse, as shown in Fig. 1. 

 
Fig. 1. Vibration modes a) Axial vibration b) Torsional vibration c) Lateral vibration 

1.1. Axial vibration 

Vibrations that propagate in a parallel direction to the axis of the drill string. Axial vibrations 
are caused by the movement of the drill string upwards and downwards and may result in a 
bit of bounce. Bit bounce is observed when the changes in substantial bit weight (WOB) cause 
the bit to periodically rise off the bottom, along the drill string in a vertical direction, and then 
drop and affect the formation [2-3]. 

1.2. Torsional vibration  

Torsional vibrations usually occur as a result of excessive twisting motions in the drill string. 
Stick-slip is the primary mechanism for creating torsional vibrations. Due to the frictional 
torque of bit and BHA, the vibration is generated by cyclic acceleration and deceleration of bit 
and drill string [2-3]. 

1.3. Lateral vibration 

Lateral vibrations are those vibrations formed in a direction perpendicular to the string. The 
main source of vibration is a whirl, which is the eccentric rotation of the drill string around a 
point other than the center of the borehole. Transverse vibrations are approved to be the most 
damaging process, resulting in significant damage to the BHA components and wellbore [2-3]. 

2. Literature review 

Over the past years, several mathematical models have been proposed to explain the re-
lationship between the rate of penetration and drilling parameters such as weight on bit, rotary 
speed, circulation rate, and formation rock mechanics neglecting the impact of vibration data. 
In the following, some of the well-known models are briefly discussed. 

Maurer et al. [4] present an equation relating the ROP with WOB, RPM, bit size, and rock 
strength as expressed in Eq. 1: 
𝐑𝐑𝐑𝐑𝐑𝐑 =  𝑲𝑲 𝑵𝑵 (𝑾𝑾−𝑾𝑾𝟎𝟎)𝟐𝟐

𝒅𝒅𝒃𝒃
𝟐𝟐 𝑺𝑺𝟐𝟐

                  (1) 
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where ROP refers to the rate of penetration ft/hr; K is a constant of proportionality, S denotes 
the rock compressive strength, psi; W is the WOB, lbf; W0 is the threshold WOB, lbf; db is the 
bit diameter, in; and N denotes the rotary speed, rpm. 

Bingham [5] proposes an experimental model that is applicable for low values of weight on 
bit (WOB) and rotational speed (RPM). This model neglects the effect of drilling depth. The 
Bingham model is defined by 
𝐑𝐑𝐑𝐑𝐑𝐑 =  𝐊𝐊 ( 𝑾𝑾𝑾𝑾𝑾𝑾 

𝒅𝒅𝒃𝒃
)𝒂𝒂𝒂𝒂 𝑵𝑵𝒆𝒆 …               (2) 

where K is a proportionality constant, a5 denotes the weight on bit exponent that should be 
determined experimentally based on the prevailing conditions. 

Bourgoyne and Young [6] develop a model with nine inputs (depth, equivalent mud density, 
equivalent circulation density, WOB, bit size, rotational speed, Q, mud density, plastic viscos-
ity), but multiple regressions are required to calculate seven different exponents for this 
model. 

Recently, and with the help of progressing neural network modeling method, numerous 
models were built for ROP prediction using drilling data. Abdolali Esmaeili et al. [7] develops 
an ROP model using neural network and drill string vibration data. As it is realized from pre-
vious works of literature, most of the models just illustrate the relationship between penetra-
tion rate and drilling parameters such as weight on bit, rotary speed, bit diameter, mud weight, 
and formation rock mechanics except Abdolali Esmaeili neural network model, which takes 
into consideration the effect of vibration data on the rate of penetration. 

In this approach, we built three models for the rate of penetration and drill string vibration 
level independently using neural network and multiple linear regression taking into consider-
ation the type of vibration; axial, lateral, or stick-slip; and vibration level, which helps to define 
the optimum safe drilling zone as a combination between a high rate of penetration and low 
vibration level for each vibration mode. 

3. Data used 

 
Fig. 2. WOB/RPM relationship 

The real data used in this study were col-
lected from different fields in the western de-
sert of Egypt, including 12.25" hole drilling 
parameters and vibrational data, especially 
those encountered at Khoman formation 
with high downhole axial, lateral, and stick-
slip vibration levels to be able to understand 
the drilling behavior and best select the sta-
ble drilling zone. 

Fig. 2. shows the weight on bit and rota-
tional speed relationship for each vibration 
mode axial, lateral, and stick-slip. Detecting 
a stable drilling zone for the whole section 
would be so difficult, but step-by-step real-
time drilling parameters optimization is the 
best choice for safe drilling practice. 
 

4. Methodology and model description 

4.1. ANN model development 

To build the artificial neural network model for ROP and vibration level prediction, the model 
passed through 3 stages as follows [8]: (i) Data preprocessing; (ii) Model learning; (iii) model 
evaluation. 
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4.1.1. Data preprocessing 

Table 1. illustrates the real field input data ranges for axial, lateral, and stick-slip ANN 
models. Eight data sets as input parameters across 20 wells, including the depth, WOB, RPM, 
TQ, standpipe pressure (SPP), the flow in (GPM), DWOB, and MSE. The output data would be 
the rate of penetration and the vibration level. 

The whole input data were collected from the mud logging unit except for the values of 
downhole weight on bit (DWOB), as measured from the sensor at the MWD tool and mechan-
ical specific energy (MSE); which is an indicator for the amount of energy transfer from the 
surface to bit [9]; is calculated as per Eq. 3 

𝐌𝐌𝐌𝐌𝐌𝐌 = 𝐌𝐌 𝒎𝒎 𝐱𝐱�� 𝟒𝟒𝟒𝟒𝟎𝟎 𝐱𝐱 𝐓𝐓𝐓𝐓 𝐱𝐱 𝐑𝐑𝐑𝐑𝐌𝐌
𝐝𝐝𝐛𝐛𝐛𝐛𝐛𝐛

𝟐𝟐 𝒙𝒙 𝑹𝑹𝑾𝑾𝑶𝑶
� + �𝟒𝟒 𝐱𝐱 𝐖𝐖𝐑𝐑𝐖𝐖

𝝅𝝅 𝐝𝐝𝐛𝐛𝐛𝐛𝐛𝐛
𝟐𝟐 ��…         (3) 

where MSE refers to mechanical specific energy (psi), Em denotes bit mechanical efficiency 
(assumed to be 0.35).   

Table 1. Input data ranges for axial, lateral, stick-slip ANN models 

4.2. Model learning 

The algorithm of backpropagation in neural networks comprises the following sequence [10]: 
• Initialize the number of hidden nodes. 
• Initialize the learning rate and the maximum number of iterations (set all weights and 

thresholds to small random values). 
• Select the activation function, which interconnects the input neuron to its output by a 

mathematical equation. 
• Input values for the hidden nodes are determined based on Eq. 4. 
𝐌𝐌𝐣𝐣 = ∑ 𝐗𝐗𝐛𝐛𝐖𝐖𝐛𝐛𝐣𝐣

𝐧𝐧
𝐛𝐛=𝟏𝟏 …                 (4) 

where 𝐗𝐗𝐛𝐛 is the input variable at node i and 𝐖𝐖𝐛𝐛𝐣𝐣 is the weight from input node i to hidden node j. 
The output was derived from the hidden nodes, according to Eq. 5: 

𝐘𝐘𝐣𝐣 = 𝐟𝐟�𝐌𝐌𝐣𝐣� = 𝟏𝟏

𝟏𝟏+𝐞𝐞−𝐌𝐌𝐣𝐣
 ……                (5) 

where 𝐘𝐘𝐣𝐣 is the output variable from hidden node j.  
The same algorithm was employed to calculate the inputs to the output nodes. 

• The error term for the output node was calculated. 
• Iteration ending condition was defined when the network errors were larger than the pre-

defined threshold or the number of iterations was less than the maximum preset iterations, 
then the calculation process continued till one of these criteria was achieved. 
In this study, simple axial, lateral, and stick-slip three-layered ANN networks (one input 

layer, one hidden layer, and one output layer) were created by programming software 
MATLABTM. Cross-validation plots were applied to determine the most proper number of neu-
rons in the hidden layer.   

Weights and biases of the networks were then appropriately initialized, and therefore the 
artificial neural networks were subjected to a backpropagation training algorithm [11]. ANN 

No. Input parameter Data 
Source 

Axial Lateral Stick-slip 
Unit 

 Min Max Min Max Min Max 
1 Depth 

M
ud

 lo
gg

in
g 

un
it 

 

2785 6785 3660 5805 2750 6775 Feet 
2 Weight on Bit 6 25 13 47 35 61 Klbs 
3 Revolution per minute 71 124 55 118 65 128 RPM 
4 Torque 2 14 9 14.5 2 11 Klbs.ft 
5 Standpipe pressure 543 2096 526 1685 421 2140 Psi 
6 Flow in 297 649 242 623 234 658 GPM 

7 Downhole Weight on Bit MWD 
sensor 3 22 8 41 20 51 Klbs 

8 MSE Calc. 6 77 18 77 2 58 Kpsi 
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training involves the use of 70% of the original data sets, and the last 30% of the original 
data sets are allocated for model verification and testing.  

4.3. Artificial neural training  

The ANN models were trained by the backpropagation method with a learning rate of 0.001. 
Table 2 show neural network parameters for axial, lateral, and stick-slip models, respectively. 
Figures (3, 4, and 5) present the network structure of the proposed ANN axial, lateral, and 
stick-slip models used in this study, respectively.  

Table 2. Axial, lateral, and stick-slip neural network parameters 

Network structure 

Axial neural network pa-
rameters 

Lateral neural network pa-
rameters 

Stick-slip neural network 
parameters 

ANN parameter ANN parameter ANN parameter 

Input layer neurons 8 8 8 

Output layer neurons 2 2 2 

Hidden layer 1 1 1 

Hidden layer neurons 10 10 15 

Activation function Sigmoid (Log-Sig) & Linear Sigmoid (Log-Sig) & Linear Sigmoid (Log-Sig) & Linear 
Learning rate 0.001 0.001 0.001 

 
Fig. 3. Axial proposed ANN model architecture (Generated by MATLAB TM) 

 
Fig. 4. Lateral proposed ANN model architecture (Generated by MATLABTM) 

 
Fig. 5. Stick-slip proposed ANN model architecture (Generated by MATLABTM) 

4.4. Model evaluation  

The accuracy of the neural network model is evaluated by using validation and testing 
sample data through several statistical error analyses, including average absolute percent 
relative error (AAPRE), Mean squared error (MSE), Root mean squared error (RMSE), and 
Standard deviation (SD) [12-13]. 
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4.4.1. Garson algorithm 

Garson et al. [14-15] used the connection weights in the ANN architecture to assess the 
desired relative importance of each variable. The relative importance for each variable is given 
by the following formula: 

𝐈𝐈𝐌𝐌�𝐗𝐗𝐩𝐩� =  
∑ ��

|𝐈𝐈|𝐩𝐩𝐣𝐣
∑ |𝐈𝐈|𝐩𝐩𝐣𝐣,𝐊𝐊
𝐧𝐧𝐩𝐩
𝐊𝐊=𝟏𝟏

� �|𝐑𝐑|𝐣𝐣�
𝐧𝐧𝐡𝐡
𝐣𝐣=𝟏𝟏

∑ �∑ ��
|𝐈𝐈|𝐩𝐩𝐛𝐛,𝐣𝐣

∑ |𝐈𝐈|𝐩𝐩𝐛𝐛,𝐣𝐣,𝐊𝐊
𝐧𝐧𝐩𝐩
𝐊𝐊=𝟏𝟏

� �|𝐑𝐑|𝐣𝐣�
𝐧𝐧𝐡𝐡
𝐣𝐣=𝟏𝟏 �

𝐧𝐧𝐩𝐩
𝐛𝐛=𝟏𝟏

……        (6) 

where 𝐈𝐈𝐌𝐌�𝐗𝐗𝐩𝐩� represents the relative importance measure of the input variable Pth on the 
output. 𝐧𝐧𝐩𝐩 is the number of input parameters and 𝐧𝐧𝐡𝐡 is the number of neurons in the hidden 
layer. The term |𝐈𝐈|𝐩𝐩𝐣𝐣 is the absolute value of the weight in the neural network for the Pth input 
variables and Jth hidden layer. The term |𝐑𝐑|𝐣𝐣 is the absolute value of the output layer weight 
in the neural network for the Jth hidden layer.  

4.5. Multiple linear regression analysis 

Multiple linear regression is a statistical method of data analysis to estimate the relationship 
between two or more independent variables and one dependent variable. Eq. 7 shows the 
basic model relationship: 
𝒀𝒀𝒊𝒊 = 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝒊𝒊 𝑿𝑿𝟏𝟏 +  𝜷𝜷𝟐𝟐𝒊𝒊 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟐𝟐𝒊𝒊 𝑿𝑿𝟐𝟐 + ⋯  +  𝜷𝜷𝒌𝒌 𝑿𝑿𝒌𝒌𝒊𝒊 + 𝝐𝝐𝒊𝒊 …   (7) 
where 𝒀𝒀𝒊𝒊 is the dependent variable, and there are k of independent variables (x1, x2, …..xk).  
𝜷𝜷𝟎𝟎 and 𝜷𝜷𝒌𝒌 are the intercept and slope parameters. 𝝐𝝐𝒊𝒊 is the error term, and i = 1…n refers to 
the total number of observations [16]. 

In this study, two regression models for each vibration mode; axial, lateral, and stick-slip; 
were developed in which the rate of penetration (ROP), vibration level represent the depend-
ent variables and the depth, WOB, RPM, TQ, SPP, GPM, DWOB, MSE represent (x1….x8) the 
independent variables. The estimated coefficients and intercept were selected to minimize the 
sum of squared errors. 

Once a multiple linear regression model was formed, A regression report is typically outlined. 
With the help of estimated coefficients and statistical data, the strength of the model can be verified. 
A parametric sensitivity analysis is performed later on each model by increasing and decreas-
ing some variables by 10% to find out which parameters have a greater impact on the ROP 
and vibration level. Table 3 displays the regression statistics results and the estimated coeffi-
cients for both ROP and vibration level models in the axial, lateral, and stick-slip drilling modes.  

Table 3. ROP & Vibration regression statistics and coefficients 

Parameter 
ROP Regression Model Vibration Regression Model 

Axial Lateral Stick-slip Axial Lateral Stick-slip 
Multiple R 0.926728 0.9084 0.88471127 0.908693 0.720211 0.8927944 
R Square 0.858826 0.825191 0.78271403 0.825724 0.518704 0.7970818 

Adjusted R Square 0.852551 0.819364 0.78061971 0.817978 0.370612 0.795126 
Standard Error 6.127561 2.630403 8.63204927 0.377199 0.303361 0.2828931 
Observations 189 249 839 189 35 839 

Coefficients 
Intercept  (X0) 16.93501 0.648517 22.9482996 -1.87064 3.482601 4.4615572 

Depth  (X1) -0.00207 0.00045 0.00534881 0.000204 -0.0001 9.315E-05 
WOB  (X2) -1.58102 0.493951 -2.3755313 -0.00634 0.049479 -0.005993 
RPM  (X3) 0.268227 0.215426 0.34981771 0.019703 -0.03226 -0.000143 

TORQ.  (X4) 0.003179 0.001963 0.00235017 0.000413 0.000156 3.039E-05 
SPP  (X5) -0.00117 0.004695 -0.0103191 -8.5E-05 0.001257 -0.000366 

FLOW IN  (X6) 0.014828 -0.00862 -0.0006879 0.000375 -0.00467 -0.00463 
DH WOB  (X7) 1.891414 -0.46128 2.44481598 -0.0125 -0.03314 0.0095891 

MSE  (X8) -0.75143 -0.49127 -0.8780216 -0.00299 0.005036 -0.006303 
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5. Result and discussion 

5.1. ANN model structure 

The ANN total data set was divided into three data sets: training set, validation set, and 
testing set. More specifically, 30% of the whole dataset was randomly selected as the testing 
and validation sets and then utilized for comparison between the proposed ANN model results 
and actual recorded data. 

Figs. (6, 7, and 8) shows the prediction results of regression analysis for training, validation, 
testing, and total data set related to axial, lateral, and stick-slip models, respectively. It is 
observed that the difference in the correlation coefficient (R) between training and testing 
data sets for all models is relatively small, which indicates that these ANN models' training 
process is reliable. 

 

  
Fig. 6. Regression for Axial proposed ANN 
model (Generated by MATLABTM) 

Fig. 7. Regression for Lateral proposed ANN 
model (Generated by MATLABTM) 

 

 
Fig. 8. Regression for Stick-slip proposed ANN model (Generated by MATLAB TM) 

969



Petroleum and Coal 

  Pet Coal (2021); 63(4): 963-973 
ISSN 1337-7027 an open access journal 

Moreover, it can be observed that the predicted rate of penetration and vibration level have 
a good match with the target values with an acceptable range of accuracy. The R of the testing 
data set for all models is estimated to be around 0.95, indicating that these ANN models have 
relatively strong predictive behavior. 

5.2. Modeling analysis 

Table 4 presents the relative importance of various input parameters, as per garthon for-
mula calculations, on the rate of penetration and vibration level outputs from axial, lateral, 
and stick-slip ANN models. These results indicate that each input plays a great role according 
to each input weight, therefore optimizing the drilling process through controlling vibration 
level severity with little harmful impact on the rate of penetration. 

Table 4. Relative importance of various input parameter in ANN models 

# Parameters Relative Importance % 
Axial Lateral Stick-slip 

1 Depth 9.3% 10.1% 5.9% 
2 WOB 3.3% 7.1% 7.2% 
3 RPM 14.6% 27.2% 10.9% 
4 TORQ. 22.2% 7.8% 21.9% 
5 SPP 4.5% 7.2% 4.1% 
6 Flow in 10.6% 11.6% 13.6% 
7 DH WOB 6.3% 7.9% 8.0% 
8 MSE 29.1% 21.0% 28.3% 

Tables 5 and 6 demonstrate a more comprehensive set of error calculations for the modeled 
regression-neural ROP, and vibration level results in axial, lateral, and stick-slip drilling modes. 
As can be seen that all error statistical values are small which confirms the reliability of both 
neural and regression model results.  

Table 5. Regression and neural ROP models error calculation 

Table 6. Regression and neural vibration models error calculation 

5.3. ROP vs. depth 

Fig. 9 illustrates the relationship between regression, neural modeled, and actual ROP re-
sults with depth for all axial, lateral, and stick-slip vibration drilling modes. Moreover, the 
predicted values for both neural and regression ROP models showed a very good match with 
actual values with an acceptable minimal error. The neural network model has more consistent 
results than the regression model with the actual recorded values. 

Parameter Regression ROP Neural ROP 

Axial Lateral Stick-slip Axial Lateral Stick-slip 
MSE 32.2719 4.95589 79.2959249 17.1506 0.0785 0.046767 
RMSE 5.68084 2.22618 8.90482593 4.14133 0.28018 0.2162568 
AAPRE % 10.9171 7.26036 19.0695773 7.0563 0.72482 0.4327411 
SD 0.15789 0.09657 0.25026054 0.10842 0.01175 0.0091985 

Parameter Regression vibration Neural vibration 

Axial Lateral Stick-slip Axial Lateral Stick-slip 
MSE 0.17403 0.19722 0.07712291 1.30369 0.29578 0.0401002 
RMSE 0.41717 0.44409 0.27771012 1.14179 0.54386 0.2002505 
AAPRE % 10.0791 17.523 8.96420062 27.7601 14.1371 3.766567 
SD 0.1359 0.3204 0.10827111 0.42918 0.27279 0.069284 
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Fig. 9. ROP neural, regression and actual vs. depth 

5.4. Vibration vs. depth 

Fig. 10 illustrates the relationship between regression, neural modeled, and actual vibration 
level results with depth for all axial, lateral, and stick-slip vibration drilling modes. The integ-
rity and combination of penetration rate and vibration level results can help to best select the 
suitable safe drilling behavior. 

Fig. 10. Vibration neural, regression and actual vs. depth 
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5.5. Parametric sensitivity analysis 

A parametric sensitivity analysis is applied to determine the most influential operational 
drilling parameters on the regression developed ROP and vibration models. The analysis is 
performed on the models which were developed using the multiple regression analysis for 
axial, lateral, and stick-slip drilling modes. The weight on bit, revolutions per minute, and 
torque are increased and reduced by 10% separately. A combination set of 10% increasing 
and decreasing is applied on standpipe pressure and circulation rate commingle. Finally, a 
combination set of 10% weight on bit increase in conjunction with 10% revolutions per minute 
decrease, then compared with 10% weight on bit decrease in conjunction with 10% revolu-
tions per minute increase. 

As shown in Fig. 11: In the axial mode, the best optimization parametric set which gener-
ates less vibration level with little harmful impact on ROP is increasing WOB and decreasing 
RPM. In the lateral and stick-slip modes, the best optimization parametric set which generates 
less vibration level with little harmful impact on ROP is increasing RPM and decreasing WOB. 

Fig. 11. ROP and vibration parametric sensitivity analysis 

6. Conclusion

Utilization of the ANN approach through MATLABTM software and multiple regression anal-
ysis for predicting the vibration level and the rate of penetration in axial, lateral, and stick-
slip drilling modes have been investigated in the present study. 

For any planned combination set of drilling parameters (i.e. WOB, RPM, GPM, TQ), Real-
time checking the expected type and severity of vibration accompanying with resulting pene-
tration rate could be achieved, and hence based upon models results, we can readjust the 
drilling parameters to be in the optimum safe drilling zone. 

Real-time monitoring of vibration type and penetration rate will reduce the risk of exceeding 
the drill string manufacture yield or torsional limit and so avoid drill string twist-off. Routine 
inspection and very good tracking for the drill string components working conditions and en-
vironment history will help to diminish the cases of abrupt fatigue.  

Modeling usually provides an effective solution to give reliable simulated results compared 
with those obtained from measurement while drilling (MWD) data which saves cost and en-
hances drilling efficiency. 

Drilling parameters play the primary role in determining the vibration type and level in 
addition to affecting the rate of penetration as follows: 
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• Axial vibration mode is dampened by gradually increasing WOB and decreasing RPM. 
• Lateral vibration mode is associated with a whirl, bending of the drill string, decrease in 

ROP, and requires immediate action through decreasing RPM and monitor the effect on 
torque and ROP. 

• Stick-slip usually occurred while drilling with a tri-cone bit is due to drill string and wellbore 
contact. So, an excellent drill string design and placement of stabilizers will have a good 
impact on the vibration, therefore the drilling efficiency. 
In future work, applying different types of bits other than rock bit in addition to mud prop-

erties in order to spread out the applications of developed models in different areas. 

Nomenclature  

ANN Artificial neural network ROP Rate of penetration, [feet per hour] 
DWOB  Downhole weight on bit, [klbs] RPM Revolutions per minute 
GPM Gallons per minute SPP Standpipe pressure, [psi] 
MSE Mechanical specific energy, [psi] TQ Torque, [klbs.ft] 
MWD Measurement while drilling WOB Weight on bit, [klbs] 
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