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Abstract 
Machine learning algorithms have gained popularity recently as a method for predicting the efficiency 
of industrial processes. The fluctuation of desulfurization process operation conditions, especially sulfur 
content in diesel fuel, has an impact on the efficiency of the process. This study presents the 
development of an artificial neural network (ANN) model using Python to predict the efficiency of the 
oxidative desulfurization (ODS) process in highly sour diesel fuel. Experimental data from a trickle bed 
reactor were used to train and validate the model. The dataset included variables such as ODS 
temperature, pressure, liquid hourly space velocity (LHSV), and sulfur content in the feed. The ANN 
model demonstrated a high prediction accuracy with sulfur conversion results matching the 
experimental data with approximately 98% accuracy and a regression coefficient (R²) of 0.99. The 
model effectively captured the influence of the operating conditions, showing that higher temperatures 
and pressures significantly enhanced the desulfurization efficiency. Additionally, the optimization of 
LHSV contributed to achieving optimal sulfur removal. This work highlights the potential of machine 
learning techniques in enhancing the predictive capabilities and efficiency of industrial desulfurization 
processes. 
Keywords: Oxidative desulfurization; Python; Trickle bed reactor; Diesel fuel; Sulfur conversion. 

1. Introduction

The oxidative desulfurization (ODS) of diesel fuel is an essential process for reducing sulfur
emissions, which are a major environmental concern due to their contribution to acid rain and 
air pollution. Traditional hydrodesulfurization (HDS) methods are often inadequate for remov-
ing sulfur compounds from highly sour diesel. As such, there is a growing interest in ODS as 
an alternative or complementary technology, given its potential to achieve higher desulfuriza-
tion efficiencies under milder operating conditions. The combustion of diesel fuel releases sul-
fur oxides (SOx) into the atmosphere, leading to severe environmental and health issues. 
Sulfur oxides contribute to the formation of fine particulate matter (PM2.5), which can pene-
trate deep into the lungs and bloodstream, causing respiratory and cardiovascular diseases. 
Additionally, SOx emissions result in acid rain, which adversely affects soil, water bodies, and 
vegetation. Therefore, reducing the sulfur content in diesel fuel is critical to mitigating these 
environmental and health impacts. Predicting the optimum operating conditions for the ODS 
process is crucial for maximizing sulfur removal efficiency and minimizing emissions. Accurate 
prediction models can help in identifying the best combination of temperature, pressure, liquid 
hourly space velocity (LHSV), and sulfur content in the feedstock to achieve the desired desul-
furization levels. This not only enhances the efficiency of the ODS process but also ensures 
compliance with stringent environmental regulations. Artificial neural networks (ANNs) are 
empirical modeling methods that mimic the functioning of organic brain structures, capable of 
revealing underlying complex correlations from input-output data alone. These potent tools 
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have seen extensive research and application in various fields, including chemical engineering 
for process modeling. Despite the challenges in modeling and validating trickle bed reactors 
(TBR) due to their heterogeneous nature and the complexity of transport and reaction phe-
nomena, ANNs provide a promising approach to improve predictive capabilities. Artificial neu-
ral networks (ANNs) [4], and in particular feed-forward FANNs [4], have been the subject of 
much research to develop process models during the past ten years, and the industry has 
been using them more and more frequently [5]. These networks are now being used for num-
ber prediction in applications such as exhaust gas emission modeling [6], design of eco-friendly 
materials [7], computation of efficiency of wastewater treatment units [8-13], heavy metals in 
groundwater leaching modeling [7], and chemical [14] and microbial [15] coal desulfurization 
modeling [16-20]. Some studies have developed homogeneous and heterogeneous models for 
the TBR models [21]. These models are very useful in calculating parameters, but they do not 
provide more information about the reaction rate kinetics. Understanding these phenomena' 
effects on TBR performance in terms of conversion, selectivity, and temperature profile is very 
significant [21]. Many program software have been presented in literature used for modeling, 
simulating, and optimization of the three-phase models of TBR including gPROMS [22-25], 
Matlab [26-28], Aspen HYSYS [29-31], Fluent [32-34], Comsol [35-36], Fortan [22,37-39], and Python 
[40-42]. Choosing of favorable software technique represents a significant issue because select-
ing solution software can be considered one of the difficult tasks in a solution of three-phase 
reactors. Nawaf et al. [43] used gPROMS programming language to predict the efficiency of 
ODS of light gas oil using a manganese oxide catalyst. They also used it to obtain a highly 
accurate kinetic model of the ODS reactions in a trickle-bed reactor. The optimal kinetic model 
parameters are found using an optimization method based on the reduction of the sum of 
squared errors between the experimental and predicted composition of the oxidation process. 
For a broad variety of operating circumstances, the projected product conversion demon-
strated extremely excellent agreement with the actual results, with absolute average errors 
of less than 5%. Ramírez-Castelán [44] used Matlab programming language to simulate the 
behavior of an industrial hydrotreating unit under various conditions and assumptions, such 
as those of the linear gas velocity, the model is solved using the method of lines with a finite 
difference scheme for discretization in the axial direction. To find out how the system behaves 
as the feed's content of sulfur compounds changes, a study of dynamics is conducted. A sen-
sitivity analysis of the most important model parameters was also carried out and high preci-
sion results were achieved. Lindfors [45] computed the demetallization (HDM) and desulphuri-
zation (HDS) conversions of heavy oils on catalysts under hydrogen pressure for a variety of 
temperature, pressure, and liquid hourly space velocity (LHSV) combinations using the simu-
lation tool that is described. The code was fed with HDM, HDS, T, p, and LHSV data from at 
least one (test) run for the simulation pattern to work. This test data set serves as a "finger-
print" of the catalyst, oil, hydrogen, and reactor system that was employed. A procedure for 
estimating the catalyst's lifespan up to the point of maximal metal absorption is included in 
the software. Using the information on the density, volumetric flow rate, and metal content of 
the oil, as well as the mass of the catalyst in the reactor and the maximum amount of metal 
that the catalyst can absorb this computation is carried out at the simulated demetallation 
level. Because the software is interactive, in a question-and-answer format, the user provides 
the information that the computer requests. The software may be used in the following ranges: 
5–15 MPa, 320–420 °C, and LHSV 0.5–3.0 h−1. HDS and HDM test results should fall between 
10 and 100%. Yang et al. [46] used Python programming language to code response surface 
methodology (RSM) and backpropagation artificial neural network (BP-ANN) to optimize the 
four critical process parameters of pressure, temperature, time, and the mass ratio of input 
oxygen to wastewater COD to obtain the best possible performance. The model findings and 
experimental data correlation coefficients show that BP-ANN outperforms RSM in both simu-
lation and prediction. All of the parameters are significant for the resulting quadratic model, 
according to the analysis of variance in RSM, but their interactions are not significant. Tem-
perature is the most important parameter, with a relative relevance of 35.61%, followed by 
pressure (29.74%) and time (19.53%). The connection weights technique is used to evaluate 
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the relative importance of these factors for process efficiency. This study aims to develop an 
ANN model using Python to predict the efficiency of the ODS process for highly sour diesel 
fuel. By leveraging experimental data from a continuous ODS process in a TBR, this work 
seeks to demonstrate the model's predictive accuracy and its potential to optimize desulfuri-
zation conditions. The focus will be on key operating parameters such as temperature, pres-
sure, LHSV, and sulfur content in the feedstock, aiming to enhance the overall efficiency of 
the desulfurization process. 

2. Experimental work  

The experimental results that were used in the present study to develop the ANN models 
were obtained via ODS of diesel fuel with molecular oxygen over an activated carbon-based 
homemade catalyst. The details of the experimental work were published elsewhere [49]. The 
operation variables are shown in Table 1.  

Table 1. Experimental variables studied in the ODS process. 

Variables Level Value 
Temperature, ℃ 5 80, 90, 100, 110, 120 
Pressure, bar 5 1, 3, 5, 7, 9 
Liquid hourly space velocity, h-1 5 1, 2, 3, 4, 5 
Wt. % of sulfur content  7 0.1 

In this study, Iraqi sour diesel fuel was used as a feedstock. The diesel fuel is supplied by 
North Refineries Company (NRC), Baiji, Iraq. The main specifications and physical properties 
of diesel fuel are shown in Table 2. 

Table 2: The diesel fuel feedstock specifications 

Specifications Value 
Density @ 15.0℃ 828 
Flashpoint, ℃ 70 
Pour point, ℃ -15 
Viscosity @400 ℃/cSt 2.2 
API 39.4 
Physical form Liquid 
Color 0.5 
Doctor test -ve 
Sulfur concentration, wt% 0.7361 
Salt content, mg/L 10 

3. Methodology of prediction of ODS efficiency  

3.1 Data preprocessing 

The dataset contains three categories of data based on the effects of Temperature, Pres-
sure, and LHSV and there are five columns such as LSHV, P, T, S %wt, and sulfur conversion. 
The sulfur conversion is the target column that is going to be predicted from the ANN Model. 
First of all, all of the data have to be compiled from the raw dataset and make a CSV file to 
feed into the ANN Model. All the raw data was preprocessed and placed in the ‘TBR_Com-
bined.csv’ file, which is attached as a supporting file S1. All the data in TBR_Combined.csv 
were used to train and evaluate the ANN Model performance. There were 368 rows in the 
dataset, 80% of them were used for training and 20% were used for evaluation tasks. More 
clearly, all the LSHV, P, T, and S %wt data were placed in the CSV file to feed into the model 
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and they predicted the sulfur conversion percentage. Then, another CSV file was used to pre-
dict the sulfur conversion percentage from the raw data. The file was ‘raw_data_for_predic-
tion.csv’ where all the raw data were stored. To check how accurately the model can perform, 
7 values were separated from the original dataset to feed into the model and later matched 
with the experimental results.  

3.2. Import necessary modules 

The necessary modules were imported from some Python Libraries; Numpy and Pandas facil-
itate analysis and manipulation of the data, and Matplotlib and Seaborn for data visualization 
to find any anomaly in the dataset. Additionally, some other Python Libraries were needed to 
build the present ANN model, in that case, Tensorflow, Keras, and Scikit-Learn were utilized.  

3.3. Read the dataset 

The complete dataset was read and loaded with Python. A CSV format file was used to 
make Pandas read and load the dataset. Five columns and 368 rows were created. The ANN 
model was trained with these data and after that, the trained model predicted the sulfur con-
version percentage.  

3.4. Split the dataset into train and test sections 

The dataset was split for processing. The sulfur conversion column was kept in the 'Y' var-
iable and the rest of the data in the 'X' variable. This is because the sulfur conversion column 
is the target column that the present ANN Model is going to predict. Scikit-Learn was used to 
split again our dataset into the Train and Test section. We have 368 rows and will take 20 % 
that is 368 * 0.2 = 73 Rows for our Testing purpose. More clearly, 80% of the total data was 
used to train the present ANN model, and the remaining 20% of the data will be used to 
evaluate the model's performance.  

3.5. Normalization 

The train and twist data were trained, for this MinMaxScaler function was used from Scikit-
Learn. Fit and Transform functions were used to scale the train.  

3.6. Building of ANN model 

Up to this stage, the dataset has been preprocessed to feed into the ANN Model. Now  
Tensorflow and Keras were used to build the ANN model. Here, 5 layers with 5 Neurons along 
with Activation, Optimizer, and Loss functions were created to facilitate the evaluation of the 
ANN model performance. Figure 1 shows the ANN model layers and neurons. 

 
Figure 1. The ANN model layers and neurons. 
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In machine learning and deep learning analysis, the most used activations are step func-
tion, sigmoid function, hyperbolic tangent, and Rectified Linear Unit (ReLU). The activation 
function is chosen based on the problem. In the present work that is based on a regression 
process, ReLU was used as it provides better performance compared to others. ReLU works 
on the principle of: 
f(x) = max(0,z) (1) 

It means if the output is negative, it is considered as 0, if the output is greater than zero 
then go ahead and process the output. Also, it was used as an activation function popular 
because it’s simple and fast, and its ability to introduce non-linearity into neural networks 
enables them to learn complex patterns and relationships in data, making it an essential tool 
in various applications [47]. The Rectified Linear Unit is the most commonly used activation 
function in deep learning models [48].  The function returns 0 if it receives any negative input, 
but for any positive value $x$, it returns that value.  

Surprisingly, such a simple function (and one composed of two linear pieces) can allow a 
model to account for non-linearities and interactions so well. However, the ReLU function 
works great in most applications, and as a result, it is very widely used in diverse engineering 
applications [49].  Activation functions serve two primary purposes;  
1) Help a model account for interaction effects: The interactive effect is when one variable 
such as A affects a prediction differently depending on the value of another variable such as 
B. For example, if my model wanted to know whether a certain body weight indicated an 
increased risk of diabetes, it would have to know an individual's height.  Some body weight 
indicates elevated risks for short people while indicating good health for tall people.  So, the 
effect of body weight on diabetes risk depends on height, and we would say that weight and 
height have an interaction effect. 
2) Help a model account for non-linear effects: This just means that if I graph a variable on 
the horizontal axis, and my predictions on the vertical axis, it isn't a straight line.  Or said 
another way, the effect of increasing the predictor by one is different at different values of 
that predictor. 

The ReLU captures interactions and non-linearities via the following mechanism; for a single 
node in a neural network model.  For simplicity, assume it has two inputs, called A and B.  The 
weights from A and B into our node are 2 and 3 respectively.  So the node output is f(2A + 
3B). We'll use the ReLU function for our f.  So, if 2A + 3B is positive, the output value of our 
node is also 2A + 3B. If 2A + 3B is negative, the output value of our node is 0. For concrete-
ness, consider a case where A=1 and B=1.  The output is 2A + 3B, and if A increases, then 
the output increases too.  On the other hand, if B=-100 then the output is 0, and if A increases 
moderately, the output remains 0.  So, A might increase our output, or it might not.  It just 
depends on what the value of B is. This is a simple case where the node captured an interac-
tion. If more nodes and more layers were added, the potential complexity of interactions only 
increases.  However, it is required to see how the activation function helped capture an inter-
action. For non-linearities; a function is non-linear if the slope isn't constant.  So, the ReLU 
function is non-linear around 0, but the slope is always either 0 (for negative values) or 1 (for 
positive values).  That's a very limited type of non-linearity.  However, two facts about deep 
learning models allow us to create many different types of non-linearities from how we com-
bine ReLU nodes. First, most models include a bias term for each node.  The bias term is just 
a constant number that is determined during model training.  For simplicity, consider a node 
with a single input called A, and a bias.  If the bias term takes a value of 7, then the node 
output is f(7+A).  In this case, if A is less than -7, the output is 0 and the slope is 0.  If A is 
greater than -7, then the node's output is 7+A, and the slope is 1.  So the bias term allows 
us to move where the slope changes. So far, it still appears we can have only two different 
slopes. However, real models have many nodes. Each node (even within a single layer) can 
have a different value for its bias, so each node can change the slope at different values for 
our input.  When we add the resulting functions back up, we get a combined function that 
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changes slopes in many places. These models have the flexibility to produce non-linear func-
tions and account for interactions well (if that will give better predictions).  As more nodes in 
each layer (or more convolutions if we are using a convolutional model) were added, the model 
gets even greater ability to represent these interactions and non-linearities. 

 
Figure 2. Algorithm of developing 
and validation of the ANN model by 
Python. 

3.7. Training of the model 

The crucial part here is to set batch size and number 
of epochs. Batch size means how much data we allow the 
model to train at a time. The performance of the present 
ANN model can be checked by changing the parameters. 
Of course, it is required to make sure to use the Graphics 
Processing Unit (GPU) to make faster training.  

3.8. Loss function 

Below plot the true loss and validation loss. The good 
thing is it doesn't fluctuate much. If the deviation is more 
then we should rebuild the model until the result is good. 

3.9. Prediction 

For the prediction of sulfur conversion percentage and 
optimization of the operations conditions to drive the con-
version to a higher value, 20% of the dataset that was left 
untrained was used to predict the sulfur conversion per-
centage from the developed and well-trained ANN model. 
Also, the accuracy of the model can be predicted in terms 
of regression coefficient (R2). Also, another metric used to 
evaluate the model performance is Mean Absolute Error 
(MAE). Figure 2 shows the algorithm of the model devel-
oping, running, and validation. 

For reusing the Python ANN model, all new data 
('LSHV', 'P', 'T', and 'Wt') in the CSV file S3 can be added 
and the Google Colab with GPU can be run to obtain the 
predicted sulfur conversion percentage. 

For the prediction of sulfur conversion percentage and 
optimization of the operations conditions to drive the con-
version to a higher value, 20% of the dataset that was left 
untrained as used to predict the sulfur conversion per-
centage from the developed and well-trained ANN model. 
Also, the accuracy of the model can be predicted in terms 
of regression coefficient (R2). Also, another metric used to 
evaluate the model performance is mean absolute error 
(MAE). Figure 2 shows the algorithm of the model devel-
oping, running, and validation. For reusing the Python 
ANN model, all new data ('LSHV', 'P', 'T', and 'Wt') in the 
CSV file S3 can be added and the Google Colab with GPU 
can be run to obtain the predicted sulfur conversion per-
centage. 
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4. Results and discussion  

Statistical insights of the dataset present a brief but informative overview of the data using 
mean, standard deviation, minimum, maximum, and percentile as shown in Table 3.  

Table 3. Statistical insights of the dataset. 

 LHSV, h-1 Pressure, atm Temperature, 
°C 

Wt.% sul-
fur 

Sulfur conversion, 
% 

Mean 2.991 4.3 99.7 0.2958 59.8 
STD 1.415 2.6 14.1 0.0966 13.1 
min 1.0 1.0 80.0 0.0737 40.0 
25% 2.0 2.0 90.0 0.213 48.0 
50% 3.0 4.0 100.0 0.294 60.0 
75% 4.0 7.0 110.0 0.382 71.0 
Max 5.0 9.0 120.0 0.441 90.0 

Successfully identifying outliers, correlation, grouping, and clustering the data always play 
a pivotal role. If data points belong to different groups or clusters, scatterplots can reveal these 
groupings. Different colors or shapes can be used to distinguish between groups, making it easy to 
identify patterns within each subgroup. Figure 3 shows the clustering and grouping of the data. 

 
Figure 3. Clustering and grouping the data. 

A clear and defined correlation among temperature, pressure, weight of sulfur, liquid hourly 
space velocity(LHSV), and sulfur conversion paves a greater path to the next level of analysis. 
Figures range between (4 to 7) draw the actual picture indicating the effect of each operation 
variable on the sulfur conversion rate. 

  
Figure 4. Effects of temperature on sulfur conver-
sion. 

Figure 5. Effects of pressure on sulfur conversion. 
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Figure 6. Effects of the weight of sulfur content in 
diesel fuel on sulfur conversion. 

Figure 7. Effects of liquid hourly space velocity 
on sulfur conversion. 

 
The heatmap is extremely useful for vis-

ually assessing the strength and direction 
of the relationship between two variables 
(Figure 8). A positive correlation implies 
that as one variable increases, the other 
also tends to increase, while a negative 
correlation suggests an inverse relation-
ship. 
 
 
 
Figure 8. Heatmap provides the correlation 
score using color combination. 

 
The bar chart shown in Figure 9 provides a visual representation of how temperature, pres-

sure, weight of sulfur and Liquid hourly space velocity(LHSV) positively and negatively affect 
the sulfur conversion rate and this result is in line with previously published works [50,51]. 

A distribution plot is frequently used to visualize the distribution of a single variable as 
shown in Figure 10. It can show the frequency or probability distribution of values, providing 
insights into the central tendency and spread of the data. It can be used to visually assess 
normality or test distributional assumptions. This is particularly useful in statistical analyses 
where assumptions about the underlying distribution are important. It also allows users to 
overlay multiple distributions in a single plot, making it easy to compare distributions across 
different groups or conditions. 

Grouping data helps visualize how well data is separated based on the values of two or 
more continuous features. This aids in understanding the discriminative power of the chosen 
variables. When analyzing the importance of features in a machine learning model, a scatter-
plot with hue can illustrate how the importance of two features varies across different catego-
ries. It helps visualize trends or patterns in the relationship between two variables within 
different subgroups, providing insights into potential interactions. Figure 11 shows this trend. 
Figure 12. Line plots of the training and validation loss of the dataset for 400 epochs. 
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Figure 9. Correlation of the ODS reaction pa-
rameters. 

 
 
Figure 10. Distribution of sulfur conversion pro-

cessing in the ANN model. 

 

 
 

Figure 11. Visualizing trends of temperature vs. 
sulfur conversion across subgroups of ODS pres-
sure. 

Figure 12 shows the training and validation of the 
loss function of the ANN model.  

Here red line represents the predicted results from our ANN model and the blue dots rep-
resent the experimental results and they were trained for 400 epochs. It can be seen that 
both data results are pretty close. That means the model developed predicts nearly experi-
mental results. Figure 13 shows the parity chart between experimental and ANN-predicted 
data obtained in the present work. Thus, it can be considered that the Python ANN model can 
predict sulfur conversion with around 98% accuracy and it can be seen that the outstanding 
matching between the trained and validated regression coefficient (R2) is 0.999. 

The optimum operating conditions for the highest possible sulfur conversion percentage 
can be obtained by running the ANN model on the Google Colab website with GPU with a 
target objective function of sulfur conversion percentage approaches 100%. The predicted 
optimum operating conditions and the sulfur conversion percentage are shown in Table 4.  
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Figure 13. Prediction vs experimental sulfur conversion in trickle bed reactor. 

Table 4. Results of experimental ODS of sour diesel fuel by AC-based catalyst in TBR at different opera-
tion conditions. 

LSHV, 
h-1 

Pressure, 
atm 

Temperature, 
°C 

Sulfur compounds, 
%wt. 

Sulfur conversion, 
% 

4 5 110 0.234 68.210 
5 5 110 0.257 65.000 
1 5 120 0.076 97.851 
2 5 120 0.1103 85.022 
3 5 120 0.147 80.037 
4 5 120 0.191 74.017 
5 5 120 0.206 72.006 

Here, it can be found that the MSE is 1.5 % which is an outstanding precision of prediction. 
The highest sulfur conversion percentage obtained in the present study using the Python ANN 
model was 97.851 in the ODS process of the highly sour diesel fuel processed in the trickle 
bed reactor. The optimum operating conditions to achieve that conversion were; liquid hourly 
space velocity= 1 h-1, temperature=120°C, pressure= 5 atm, and sulfur content Wt.%= 
0.076. 

5. Conclusions  

The application of Python programming language in developing an artificial neural network 
(ANN) model for predicting sulfur conversion in the oxidative desulfurization (ODS) process 
demonstrated significant potential. The model, developed with ReLU function and trained using 
experimental data, effectively simulated the optimization process. During testing, the ANN 
model estimated sulfur conversion with a high degree of accuracy, achieving a correlation 
coefficient (R²) of 0.99 and a mean square error of 1.5%. This study highlights the novel use 
of ANN in the ODS of sour diesel fuel, providing a robust tool to assess the relationships 
between process parameters and predict sulfur removal. The model and related data can be 
confidently employed as an expert system in ODS trickle bed reactors, minimizing the need 
for complex and time-consuming laboratory tests. 
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