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Abstract 
In oil well drilling, the rate of penetration (ROP) is a crucial factor that affects drilling safety, entire 
cost, and time management. Many models and approaches have been developed to predict ROP, with 
the Bourgoyne and Young model (BYM) currently being the most widely used, accurate, and 
comprehensive method. However, some studies indicate BYM limitations, such as its inability to capture 
complex parameter interactions and outlier point effects. This study proposed a new approach. It 
integrates ensemble regression techniques with BYM equations to analyse and predict ROP. This 
methodology enhances ROP prediction by integrating physics-based equations with ensemble 
regression. Real-time data collected from drilling logs of three oil wells in the southern part of Iraq are 
examined. Each data point is for a 0.25-meter increment and includes drilling parameters necessary 
for employing BYM. The results demonstrate that this approach provides an accurate ROP prediction, 
with an excellent statistic R2 value of almost 1, zero P-value, and low residuals. This indicates an overall 
improvement in this approach and its ability to be an accurate tool in future drilling plans. 
Keywords: : Ensemble regression; Bourgoyne and Young model; Rate of penetration; Iraqi field. 

1. Introduction

Numerous optimization studies focused on the rate of penetration (ROP), trying to manage
drilling costs and time, and decreasing risks, which are critical aspects of the oil industry. To 
achieve this goal utilizing various approaches, including the prior studies about the selection 
of optimal drilling parameters [1-3] and by statistical regression optimization that Bourgoyne 
and Young developed, it is a numerical model specifically for the oil industry to analyse and 
predict the ROP by taking into account eight factors that are impacting drilling efficiency in-
cluding formation strength, normal compaction of the formation, under-compaction of the 
formation, downhole differential pressure, bit diameter and weight on bit, drill pipe rotary 
speed, bit tooth wear, and bit hydraulics [4]. 

BYM is widely used in drilling optimization studies at various oil well locations around the 
world, including the Arabian Gulf Area, Canadian Offshore well [5], Khangiran Iranian Gas Field, 
Iraqi Oilfields [6-11,32], Shadegan Oilfield, Kinabalu East Field, Persian Gulf Area [7], Volcanic 
geothermal field in Indonesia [8], Presalt layer [9] and MW-17 Well in Menengai, Kenya, and 
Gachsaran formation of Ahwaz oil field [10]. 

Although the BYM has demonstrated its efficacy in predicting and simulating drilling behav-
ior, certain studies [12-13,30] indicate that it may not always offer accurate outcomes. This could 
be due to various factors, including the number of data points utilized for regression and multi-
collinearity problems. Prior researchers have endeavored to improve the BYM's precision by 
improving the regression methodology or adjusting the model. 

The oil industry has witnessed the emergence of new computerized technologies and ap-
plied them in drilling optimization. These advancements have paved the way for various meth-
ods to enable real-time ROP optimization. Among these techniques are mechanical specific 
energy [14], mathematical optimization [15-16], remote systems [17-18], automated systems [19-20], 
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artificial neural networks (ANN) [21-24], machine learning methods, pattern recognition [25], 
and support vector machines (SVM) [26-31].  

Various studies have explored diverse ensemble models and their efficacy [27-29]. Although 
previous research did not study the potential advantage of using the BYM equation in ensemble 
regression, the BYM equation with its eight sub-equations depends on comprehensive hypoth-
eses based on extended prior studies; each equation establishes a clear connection between 
drilling variables and ROP, and using it as a training dataset feeds to ensemble regressions 
has high benefits. 

The ongoing study suggested integrating ensemble regression methods with BYM equa-
tions. MATLAB programming scripts estimate and predict ROP in oil wells from the southern 
Iraq field using multiple offset data points gathered from accurate drilling log records. Different 
case studies are employed with different conditions depending on various data points and 
depths. These techniques enhance ensemble accuracy and the advantage of BYM equations 
to generate more precise ROP predictions, highlighting the benefits of employing ensemble 
models for BYM equations with real-world examples. 

2. BYM and Ensemble  

Burgoyne and Young proposed and developed the most comprehensive and accurate math-
ematical model for predicting ROP in 1974. The model considers the impact of various drilling 
variables on the penetration rate and assumes that the effect of each parameter, such as 
weight on bit, drilling pipes rotation, bit tooth wear, and other factors, is independent of one 
another. 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑎𝑎1 + � 𝑎𝑎𝑗𝑗𝑒𝑒𝑗𝑗
8

2
� (1) 

a1 to a8 represent BYM constants derived by employing MLR based on offset data for the well 
at the same local drilling conditions. 

The eight functions in Eq. 1 are based on Bourgoyne's assumptions, which are built upon 
previous studies in the field, regarding each drilling variable's influence on the drilling rate 
(ROP): 
𝑒𝑒1 = 1   (2) 
𝑒𝑒2 =  𝑒𝑒𝑎𝑎2 (10000−𝐷𝐷)          (3) 
𝑒𝑒3 = 𝐷𝐷0.69(𝑔𝑔 − 9)   (4) 
  𝑒𝑒4 = 𝐷𝐷 ( 𝑔𝑔𝑒𝑒 − 𝜌𝜌𝜌𝜌 ) (5) 
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1000
�          (9) 

Ensemble regression is a technique that combines the knowledge of multiple and various 
regression models and gets the benefits and advantages from all the models concerned to 
improve the accuracy and precision of the overall predictive. This approach is based on the 
"wisdom of crowds" principle, which works better than individual models. Ensembles have 
three methods:   
•  The first method, bagging, builds models by training data models from the original data 

set. Each model works independently from other models and produces its predictions, which 
are combined to make a final prediction. This approach helps to reduce variability by im-
proving consistency and reducing the impact of outliers and noisy data. Boosting, Eq.10 is 
often considered homogeneous weak learners. It learns them independently and in parallel 
and combines them by following a deterministic averaging process.  
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𝐹𝐹(𝑒𝑒) =  �
1
𝑀𝑀
� ∗  𝛴𝛴 𝑓𝑓𝑚𝑚(𝑥𝑥) (10) 

• The second method, boosting, is a method in which all the weak models are successively 
trained, and each model corrects the deficiencies and limitations of the previous models. 
The final forecast is a composite of weights from all the models' images. This method helps 
to overcome limitations and increase accuracy through the model adjustments iteration; 
boosting Eq.11 is often considered homogeneous weak learners, learns them sequentially 
in a very adaptive way (a base model depends on the previous ones), and combines them 
following a deterministic strategy). 

𝐹𝐹(𝑒𝑒) =  𝛴𝛴 𝛼𝛼𝑚𝑚 ∗  𝑓𝑓𝑚𝑚(𝑥𝑥) (11) 
• The stacking method's third approach improves forecasts by combining models. It involves 

training a meta-model on the results of individual samples for each sub-model. The meta-
learner then uses the predictions of the initial models to make a final prediction. The idea 
is to harness the power of models to understand complex relationships; stacking, Eq.12 is 
often considered heterogeneous weak learners, learn them in parallel and combine them 
by training a meta-model to output a prediction based on the different weak model's pre-
dictions. 

𝐹𝐹(𝑒𝑒) =  𝑔𝑔�ℎ1(𝑥𝑥), ℎ2(𝑥𝑥), . . . , ℎ𝑀𝑀(𝑥𝑥)� (12) 
Ensemble offers several advantages over traditional regression models. It can provide: 

• A framework for improving prediction accuracy. 
• Increasing model robustness. 
• Capturing complex relationships. 
• Selecting and combining different models. 

The ensemble methods use models trained on different data subsets or algorithms for oil 
well movement, including the number that can be predictive. Various factors, such as drilling 
parameters, geological conditions, and operational variables, produce accurate and reliable 
forecasts. 

3. Data and methodology 

The study analyses data from three wells within recorded data at each 0.25m depth inter-
val; the considered recorded parameters include measured depth (m) with true vertical depth 
(m), weight on Bit (Kpsi) with pipe rotation (RPM), standpipe pressure (psi) with pump flow 
(bbl), initial mud weight (lb/gal) with equivalent mud weight (lb/gal), bit size (inches) with 
nozzle size (1/32-inch), formation pressure (lb/gal), and bit jet impact force at each data. 

The depth and data points for the three wells are as follows; 
Oil Well #1 depth range is from 31 to 2641 meters, with 10,440 data points. 
Oil Well #2, depth range: 32 to 2946 meters, data points: over 11,650. 
Oil Well #3, depth range: 33 to 3025 meters; data points: over 11,960. 

Integrating the Bourgoyne and Young model equations with ensemble regression involves 
collecting and pre-processing relevant data, such as many drilling parameters, formation prop-
erties, and penetration rates, using advanced monitoring techniques instead of solely relying 
on daily or final drilling reports. The 'ROP log' was the primary data source during drilling 
operations. Computer systems and digital encoders linked to the drilling rig were employed to 
monitor parameters such as ROP, WOB, rotary speed, and depth, among others.  

An ensemble regression was applied to the BYM equation. Each model was trained within 
the ensemble using training data extracted from the three wells in the southern Iraqi field. 
The penetration rate is predicted from BYM using ensemble boosting, aggregation, and stack-
ing methods. The ensemble's performance was evaluated based on testing data using appro-
priate metrics, and the ensemble was iteratively improved until a satisfactory level of predic-
tion accuracy was achieved. Subsequently, multiple linear regression (MLR) was conducted 
for the BYM equation on the same dataset as an individual model. The three methods of 
ensemble regression employed in the BYM equation are compared with linear multiple regres-
sion on a diverse set of data points. 
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The performance of the three ensemble model methods for predicting ROP by BYM is eval-
uated using different statistical metrics, such as mean squared error (MSE), root mean 
squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R2).  

4. Results and discussion  

Plots and statistics for four study cases are presented to comprehensively analyse the study 
objectives across different wells, depths, and intervals. The first case pertains to the first well, 
the second case to the second well, and the third case to the third well. The fourth case 
involves a composite data analysis from all three wells at the same depth and depth interval. 
In the fourth case, data points are derived by sequentially selecting data points from the 
respective wells, starting with the first point from well 1, the second point from well 2, the 
third point from well 3, and so on, repeating this pattern for all data points within the depth 
interval. 

The number of data points increases when the depth intervals are expanded since each 
0.25-meter data point is included. Additionally, since there are three ensemble methods be-
sides MLR, the plots may appear cluttered, but they follow the same pattern as those for the 
four short-interval study cases. 

Table 1. Case 1 details and statistic. 

Case Well Number From Depth, m To Depth, m P-value 
1 J38P 1831.25 1931.25 0 

Models || Statistic MSE RMSE MAE R2 
MLR 10.515 3.2426 2.3765 0.7167 
Bagging 3.9372 1.9842 1.3739 0.8939 
Stacking 1.4125 1.1885 0.8464 0.9619 
Boosting 0.0070 0.0842 0.0551 0.9998 

 

  
Figure 1-a. Predicted vs. predicted ROP of the en-
semble methods and MLR, case 1. 

Figure 1-b. Residuals vs. predicted ROP of the en-
semble methods and MLR, case 1. 

 

 

Figure 1-c. Actual and predicted ROP  vs. well 
depth  of ensemble methods and MLR, case 1. 

 

These plots, above and beyond, for the different case studies try to put the predicted ROP 
results for all three ensemble methods besides the BYM in the same plots for all the cases to 
compare with the actual ROP and with each other's predicted ROP. 
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Figures 1-a, 2-a, 3-a, and 4-a clearly compare these methods; the ensemble boosting 
method's predicted ROP almost exactly matches the actual ROP, while the two other ensemble 
methods, bagging, and stacking, have excellent matches with the actual ROP. 

Table 2: Case 2 details and statistic 

Case Well Number From Depth, m To Depth, m P-value 
2 J52P 2232.25 2282.25 0 

Models || Statistic MSE RMSE MAE R2 
MLR 8.1487 2.8546 1.9877 0.5353 
Bagging 3.7848 1.9454 1.2955 0.7434 
Stacking 1.7250 1.3134 0.9413 0.8804 
Boosting 0.00009 0.0099 0.0070 0.9999 

 

 
 

Figure 2-a. Actual ROP vs Predicted ROP of the 
ensemble methods + MLR, case 2. 

Figure 2-b. Residuals vs. Predicted ROP of the en-
semble methods + MLR, case 2. 

 

 

Figure 2-c. Well depth vs. actual + Predicted ROP 
of ensemble methods + MLR, case 2. 

 

Analysing the residuals figures 1-b, 2-b, 3-b, and 4-b, which represent the difference be-
tween actual and predicted ROP for the three ensemble boosting, bagging, and stacking meth-
ods besides the MLR, it is evident that the ensemble boosting method signs are very close to 
the zero line which indicate an almost exact match with actual ROP also the boosting method 
is distributed along with x-axes that represent the predicted ROP giving another evident that 
it almost has exact match with actual ROP; also the boosting least square line is horizontal 
with the zero line meaning the identical of all the positive and negative residual point. 

The bagging and stacking ensemble methods show more residual value than the boosting 
method, meaning their matching is less than that of the boosting method, and their distribu-
tion with the x-exes is less than that of the boosting method, representing excellent matches. 

The MLR predicted ROP with actual ROP has more residual than others. However, it is still 
in a good range, representing a good and optimum match to the whole situation of the actual 
ROP and the related variables for all the points; also, the MLR signs are not distributed along 
with the x-axes but only in the good optimum range. 
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Table 3. Case 3,  details and statistic. 

Case Well Number From Depth, m To Depth, m P-value 
3 J88P 1833 1883 0 

Models || Statistic MSE RMSE MAE R2 
MLR 8.1093 2.8476 2.1917 0.6175 
Bagging 6.0934 2.4684 1.7215 0.6149 
Stacking 2.6994 1.6430 1.0998 0.8394 
Boosting 2.03E-07 0.0004 0.0003 1 

 

 
 

Figure 3-a. Actual ROP vs. Predicted ROP of the 
ensemble methods + MLR, case 3. 

Figure 3-b. Residuals vs Predicted ROP of the en-
semble methods + MLR, case 3. 

 

 

Figure 3-c. Well Depth vs Actual + Predicted ROP 
of ensemble methods + MLR, case 3. 

 

Analysing Figures 1-c, 2-c, 3-c, and 4-c show the ROP curves with oil well depth. The plots 
show that the actual ROP curve is merged with the ensemble boosting method ROP curve, 
which improves the almost exact match between them. 

Other curves representing the ensemble bagging and stacking method do not coincide with 
the actual ROP curve, and inside the excellent ROP limit, these lines show less match than the 
boosting method.  

The BYM predicted ROP curve shows an average behavior almost in the middle of the upper 
and lower limit of the actual ROP curve, which shows a good optimum match with the actual 
ROP. 

Table 4. Case 4,  details and statistic. 

Case Well Number From Depth, m To Depth, m P-value 
4 J(38+52+88)P 2033 2083 0 

Models || Statistic MSE RMSE MAE R2 
MLR 11.665 3.4154 2.2599 0.5796 
Bagging 4.3529 2.0863 1.3264 0.8058 
Stacking 2.9514 1.7179 1.1608 0.8683 
Boosting 0.00018 0.0135 0.0085 0.9999 
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Figure 4-a. Actual ROP vs Predicted ROP of the 
ensemble methods + MLR, case 4. 

Figure 4-b. Residuals vs Predicted ROP of the en-
semble methods + MLR, case 4. 

 

 

Figure 4-c. Well Depth vs Actual + Predicted ROP 
of ensemble methods + MLR, case 4. 

 

The various figure styles utilized in different case studies complement each other, as the 
ensemble regression method proves to be highly advantageous when combined with the BYM 
equation, resulting in an accurate prediction of ROP through the boosting method; the bagging 
and stacking methods also yield excellent matches between actual and predicted ROP, provid-
ing significant benefits for future decision-making in oil well plans when engineers require 
precise predictions.   

5. Conclusions  

The ensemble regression method was successfully employed with the BYM equation to capture 
the ROP in a southern Iraqi oil field at different wells and depths. The model was improved by 
using other methods, such as boosting, bagging, and stacking, in addition to MLR. Analysis of 
the data and results statistics show that the ensemble boosting method accurately predicts 
the ROP. Bagging and stacking methods also effectively predicted ROP but resulted in slightly 
higher residual values. The finding provides valuable insights, helps improve ROP predicting 
techniques, and opens avenues for more studies. 

Nomenclatures 

 [𝑊𝑊
𝑑𝑑𝑏𝑏

]𝑡𝑡  The drilling begins at Threshold WOB 1000lbf/inch. 

D  Oil well, true vertical depth (ft).  
F(x)  the model prediction for input x. 
Fj  Hydraulic jet impact force beneath the drilling bit, force lbf. 
fm(x)  the prediction of the mth base model. 
gp  Formation pore pressure gradient (lbm/ft). 
h  Drilling bit fractional tooth dullness. 
M  the number of base models. 
 N  drilling pipe rotation(RPM) 
x1  Represents the effect of variables not considered in the model on ROP. 
x2  The effect of increased rock strength is due to normal compaction with depth on ROP. 
x3  The impact of under-compaction experienced in abnormally pressured. 
x4  related to the effect of the hydrostatic and formation differential pressure on ROP. 
x5  the impact of bit weight on ROP. 
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x6  related to the drilling pipe rotary speed on ROP. 
x7  Models the impact of tooth wear on ROP. 
x8  Models the effect of bit hydraulics on ROP. 
αm  represents the weight assigned to the mth base model. 
 𝜌𝜌𝜌𝜌  Drilling fluids, Equivalent circulating density.  
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