
Petroleum and Coal 

  Pet Coal (2024); 66(3): 1085-1098 
ISSN 1337-7027 an open access journal 

Article     Open Access 

Enhancing Porosity Prediction in Reservoir Characterization through Ensemble 
Learning: A Comparative Study between Stacking, Bayesian Model Optimization, 
Boosting, and Random Forest 

Mohamed Riad Youcefi1,2 *, Ayman Inamat Alshokri3, Walid Boussebci1, Khaled 
Ghalem1, Asma Hadjadj1 

1 Department of Process Engineering, Faculty of Technology, University Amar Telidji-Laghouat, 
BP37G 03000 Laghouat, Algeria 

2 Laboratory of Petroleum Equipment’s Reliability and Materials, Faculty of Hydrocarbons and 
Chemistry, University M’hamed Bougara of Boumerdes, Avenue de l’Indépendance, 35000 
Boumerdes, Algeria 

3 Sirte University, Petroleum Engineering Department, Libya 

Received June 6, 2024; Accepted September 4, 2024 

Abstract 
Accurate estimation of porosity is a critical factor in reservoir characterization. This study aims to 
enhance porosity prediction through the implementation and comparison of various stacking ensemble 
learning strategies. A dataset comprising 273 points, which consists of well logs and core 
measurements, was collected from two wells for model development. Four base learners, including 
Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Random Forest Regression (RFR), 
and XGBoost, were trained on this dataset. These models were then integrated using multiple stacking 
ensemble techniques, such as weighted averaging, Bayesian model averaging, and RFR as a meta-
learner. Meta-learners were trained on predictions from the base learners, generated through cross-
validation on leave-out data. Performance evaluations of both base and meta learners were conducted 
on a separate testing dataset using statistical and graphical error analysis. Results indicate that all 
learners demonstrated robust performance, with weighted averaging outperforming other strategies 
on testing data. The stacking ensemble approach, particularly through weighted averaging, effectively 
improved base learner performance on testing data by leveraging individual model strengths and 
mitigating weaknesses. The findings of this study are valuable for geoscientists and reservoir engineers 
in achieving accurate reservoir characterization and facilitating exploration activities. 
Keywords: Reservoir porosity; Stacking ensemble learning; Reservoir characterization; Machine learning; 
boosting; Random forest regression. 

1. Introduction

Reservoir characterization is essential in developing a comprehensive geoscience model
that helps predict the behavior of reservoir fluids under various conditions and identify the 
best production strategies to maximize the hydrocarbons recovery. This process involves a 
detailed analysis of hydrocarbon-bearing reservoirs by integrating precise measurements from 
various sources to optimize performance over time. As a multidisciplinary field, it aims to 
accurately describe petroleum deposits and the geological properties of the rocks containing 
hydrocarbons [1-2]. 

One of the critical factors in reservoir characterization is the accurate estimation of porosity. 
Porosity is the ratio of the volume of void spaces in a rock to its total bulk volume. This 
measure indicates the rock's capacity to store and transmit fluids, such as oil, water, and gas, 
which is crucial for reserve estimation [3-4]. Accurate porosity assessment plays a significant 
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role in making informed decisions during the exploration, development, and production 
phases, ultimately impacting field development strategies. 

Determining rock porosity can be achieved through direct and indirect methods. Direct 
measurements typically involve laboratory testing of core samples taken from subsurface hy-
drocarbon zones [5-6]. This approach is considered highly accurate but is often costly, time-
consuming, and limited to specific intervals within the reservoir [7]. Indirect methods include 
well logging, which is more economical and routinely performed during drilling and well-com-
pletion operations. Various well logs, such as bulk density, neutron porosity, sonic, and nuclear 
magnetic resonance logs, are used to estimate porosity [5,8]. However, these logs can introduce 
errors due to tool calibration issues, borehole conditions, and the impact of drilling mud [9–11]. 

Numerous theoretical and empirical correlations for reservoir properties prediction have 
been proposed in the literature [12–14]. These models aim to provide quick and cost-effective 
estimates of porosity by investigating the relationships between various rock properties such 
as porosity, permeability, resistivity, pore throat size, and water saturation. However, their 
applicability is often limited by the specific conditions and parameters for which they were 
developed, making it challenging to apply them universally across different reservoir types, 
particularly in complex systems like naturally fractured carbonate rocks with dual porosity [15]. 
Given the limitations of both direct core measurements and indirect well log methods, there 
is a pressing need to develop and refine porosity estimation techniques. Such methods must 
be reliable, cost-effective, and time-efficient, providing accurate results even in the face of 
reservoir heterogeneity and incomplete data sets.  

Recently, the Machine Learning (ML) techniques have been merged as a reliable tool for 
predicting various parameters and properties in the oil and gas industry. This wide implemen-
tation of ML algorithms contributed to solving several technical issues such as predicting res-
ervoir fluid properties [16–19], rock properties [20–22], and geo-mechanical properties [23]. This 
successful and widespread application of ML models stems from their ability to analyze large 
datasets, extract insights from field data, and identify patterns and correlations that might be 
difficult or impossible to discern through traditional methods.   

Given the promising capabilities of ML in addressing these challenges, a growing body of 
research has focused on leveraging ML techniques for predicting rock porosity in hydrocarbon 
reservoirs. Zhang et al. [24] implemented hybrid models such as Support Vector Machine (SVM) 
optimized with Particle Swarm Optimization (PSO), to predict the permeability and the porosity 
in a heterogeneous dolomite reservoir. The authors revealed that combining ML approaches 
with the flow zone indicator method provides a more accurate continuous estimation of per-
meability and porosity. Ahmadi and Chen [25] employed hybridization of multiple algorithms 
methodologies, including Conventional Neural Network (CNN), Genetic Algorithm (GA), fuzzy 
decision tree, the Imperialist Competitive Algorithm (ICA), and PSO for predicting permeability 
and porosity. Okon et al. [26] applied Artificial Neural Network (ANN) to predict porosity, per-
meability, and water saturation based on well logging data. Gamal et al. [27] proposed a new 
methodology for predicting the porosity in real time based on drilling data by employing Ran-
dom Forest (RF) and Decision Tree (DT) algorithms. Abdulaziz et al. [28] implemented Proba-
bilistic Neural Network (PNN) to predict total porosity using seismic attributes. Chen et al. [29] 
developed a multilayer Long Short-Term Memory (LSTM) model to predict the porosity based 
on well log data. The authors reported that compared with conventional neural networks, 
LSTM reduce the porosity prediction errors when data is insufficient and logs have varied 
depths. Ifrene et al. [30] proposed a hybrid model that combines SVM classification and ANN 
regression for an improved fracture porosity prediction. Other recent studies were introduced 
by [31–33] investigated the application of various machine learning for predicting reservoir po-
rosity based on well logging data. 

The present study aims to leverage core measurements, well logging data, and the power 
of ML to identify patterns and correlations, ultimately building a robust model that can predict 
porosity with high accuracy based on well logging data. Unlike previous studies that applied 
various machine learning models and then selected the best models based on prediction er-
rors, this study implements stacking ensemble learning. This approach combines base model 
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predictions to capitalize on the strengths of each individual model while mitigating their weak-
nesses, thereby enhancing the overall accuracy of porosity prediction. Additionally, this work 
conducts a comparative study of different ensemble learning techniques, including Weighted Avera-
ging, XGBoost, Bayesian Model Averaging (BMA), and using Random Forest as a meta-learner. 

2. Material and methods 

2.1. Data acquisition and analysis 

To develop high-performance machine learning (ML) models for predicting formation po-
rosity based on well logging data, comprehensive data were collected from Well-A and Well-
B. Core samples extracted from these wells were subjected to routine core analysis in a la-
boratory, where they were cleaned, dried, and their porosity were measured using a gas po-
rosimeter based on Boyle’s law. Concurrently, corresponding measurements of the formation's 
physical properties, namely, gamma ray (GR), neutron porosity (NPHI), photoelectric factor 
(PEFZ), bulk density (RHOZ), and shallow resistivity (RXOZ), were recorded as functions of 
depth via well logging operation. The well logs were calibrated to core data through depth-
shifting to ensure that the physical measurements from the well log data were accurately 
aligned with the experimentally measured porosities. Fig. 1 illustrates the well logs and core 
porosity against depth.  

 
Fig. 1. Coring and well logging raw data: (a) well-A, (b) well-B. 
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After data processing, which included discarding outliers and unrealistic values such as null 
and negative readings caused by sensor malfunctions, a dataset comprising 273 points was 
assembled to construct and test the accuracy and reliability of the proposed ML models. This 
dataset includes porosity as the output variable and the aforementioned physical properties 
as input variables. Table 1 presents the statistical indices of the input and output parameters. 

Table 1. Statistical description of the input/output data. 

Statistical parameter GR NPHI RHOZ PEFZ RXOZ Porosity 
Unit API V/V g/cm3 b/e Ohm % 
Maximum 38.3388 0.1819 2.4401 1.9250 24.3868 23.97 
Minimum 14.2955 0.0401 2.2584 1.6271 0.9673 13 
Mean 20.4561 0.0976 2.3711 1.7517 3.0369 16.9678 
Standard deviation 3.2574 0.0313 0.0374 0.0557 2.2964 2.3362 

2.2. Stacking ensemble 

Stacking is an ensemble learning technique introduced by Wolpert [34]. This method has 
been extensively applied across various domains due to its ability to enhance model perfor-
mance by reducing both bias and variance, effectively mitigating overfitting. Stacking operates 
on a hierarchical framework consisting of two levels: base learners and a meta-learner. The 
first level, or level 0, comprises diverse machine learning models which are trained on the 
original dataset [35]. These base learners generate predictions that form a metadata. The sec-
ond level, or level 1, features the meta-learner, which should be a relatively simple model to 
prevent overfitting and to handle correlated inputs effectively, is trained using the metadata.  

The use of diverse algorithms at the base level enhances the model's generalization ability 
by leveraging the complementary strengths of each algorithm. A key aspect of stacking is the 
use of cross-validation to prevent overfitting [36-37]. The predictions from the base models are 
not directly learned by the meta-learner; instead, techniques such as leave-one-out cross-
validation or K-fold cross-validation are employed to generate a new dataset for the meta-
learner. This strategy ensures that all original datasets participate in the training process, 
enhancing the robustness of the final model. The meta-learner, often a multiple linear regres-
sion model, combines the outputs of the base learners to make the final prediction. Stacking 
differs from other ensemble methods like bagging and boosting, which typically involve com-
bining models of the same algorithm. Instead, stacking combines various regressors, such 
random forests, support vector regressors, artificial neural networks, naive Bayes, and logistic 
regression, to improve modeling accuracy [36]. By integrating the outputs from diverse base 
models through a meta-learner, stacking capitalizes on the mutual complementarity among 
the base models to achieve superior predictive performance. 

2.3. Extreme gradient boosting (xgboost) 

Extreme Gradient Boosting (XGBoost) developed by Chen and Guestrin [38], is a supervised 
ensemble machine learning approach based on an ensemble of boosted trees. It represents a 
scalable and advanced application of the gradient boosting technique. It gradually combines 
weak base learners into a more powerful model by fitting the training data to the base model 
and subsequently fitting a second model to the residuals to enhance learning [38]. This process 
of iteratively addressing residuals continues until the specified criteria are met, with the final 
result being an aggregation of all base models' outputs. To prevent overfitting, XGBoost in-
corporates a regularization term in its objective function [38-39]. Unlike gradient boosting's 
negative loss criterion for tree splitting, XGBoost uses a depth-first approach, pruning trees in 
reverse using the maximum depth option. Sequential tree construction in XGBoost is achieved 
through parallel implementation, with the algorithm's inner loop computing tree characteristics 
and the outer loop enumerating leaf nodes, thereby enhancing algorithm efficiency. 
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2.4. Random forest regressor 

Random Forest Regressors (RFR) is an ensemble-based machine learning technique used 
for regression task. It consists of multiple decision trees, each trained on randomly selected 
subsets of features and data samples [40]. The training process begins with creating a boot-
strap sample from the original dataset by randomly selecting samples with replacement. Each 
bootstrap sample is used to build an unpruned decision tree, considering a random subset of 
features at each node to identify the optimal split. This process is repeated to construct mul-
tiple decision trees. The advantages of random forests include their ability to handle high-
dimensional data without the need for feature selection, robustness to outliers and noise, and 
efficient processing of large-scale datasets. A key characteristic is the use of out-of-bag (OOB) 
error estimation, which provides an unbiased error estimate during training [41]. The predic-
tions from individual trees are averaged to produce the final prediction, enhancing the model's 
accuracy and performance. The combination of bootstrap sampling, random feature selection, 
and full-depth tree construction ensures that random forests are versatile and powerful for 
various machine learning applications. 

2.5. Multilayer perceptron 

A Multilayer Perceptron (MLP), a type of ANN, is inspired by the neural architecture of the 
human brain [42-43]. This feedforward neural network consists of an input layer, one or more 
hidden layers, and an output layer. The input layer receives training data, which is processed 
through the hidden layers before producing the final output. Each hidden layer consists of 
multiple neurons, computational units, that take inputs from other interconnected neurons. 
These inputs are weighted and then subjected to a nonlinear transformation via an activation 
function, such as Sigmoid, ReLU, or Tanh. The activation function processes the linear combi-
nation of inputs, facilitating the nonlinear transformations necessary for complex problem 
solving [43-44]. During the training process, the weights of the connections between neurons 
are adjusted using a backpropagation algorithm to minimize the model’s prediction error [43–45]. 
The MLP model has been widely implemented in various fields due to its versatility and capa-
bility to analyze complex problems [46–48].  

2.6. Support vector regression 

Support Vector Regression (SVR), a branch of the SVM framework, is designed for regres-
sion tasks [49]. Unlike SVM, which focuses on classification by separating data points into 
distinct classes, SVR aims to identify a hyperplane that minimizes the global deviation of sam-
ple points from it. This optimal hyperplane maximizes the margins by including support vec-
tors, which are the data points closest to the hyperplane that defines the margin. In addition, 
SVR achieves its functionality by nonlinearly mapping the input features into a high-dimen-
sional feature space using a kernel function. This mapping allows SVR to handle complex, 
nonlinear relationships in the data. The Radial Basis Function (RBF) kernel is particularly ef-
fective in SVR applications, as it enables SVR to achieve superior performance in estimating 
complex regression tasks. Further details of the SVR model refer to [49-50]. 

3. Methodology 

To enhance robustness in predicting porosity based on well logging, a stacking ensemble 
learning was employed in the present work. The proposed stacking framework consists of four 
base models: SVR, MLP, RFR, and XGBoost. Fig 2. illustrates the implemented stacking frame-
work utilized in this paper. Initially, the dataset was split into two subsets: training and testing. 
To ensure a representative distribution of data points into these subsets, Latin Hypercube 
Sampling (LHS) was utilized. 80% of the collected data was dedicated to building both the 
base and meta-learners, while 20% was reserved as unseen data for the meta-learner to 
make predictions and undergo evaluation. Each base model was trained on the training dataset 
using the k-fold cross-validation approach, and their predictions were used to generate a new 
dataset for the meta-learner. 
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Fig. 2. Flowchart of the stacking ensemble methodology used in this study. 

3.1. Hyperparameter tuning 

To optimize the performance of the machine learning models, we employed Bayesian opti-
mization for hyperparameter tuning using the Optuna library [51]. Unlike traditional random 
search, Bayesian optimization is more efficient tool as it employs a probabilistic model to 
choose the most promising hyperparameters, reducing the number of evaluations needed [52]. 
For the SVR model, we tuned parameters such as the regularization parameter C, the epsilon 
parameter ε, the kernel function, and the kernel coefficient. The MLP model's hyperparameters 
included the number of hidden layers and neurons, the activation function, the initial learning 
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rate, and the solver for weight optimization. The XGBoost model's hyperparameters consists 
of defining the number of estimators, the maximum depth of a tree, the learning rate, the 
minimum loss reduction, and regularization terms. For the RFR model, we adjusted the number 
of estimators, the maximum depth of trees, the minimum number of samples required to split a 
node, and the minimum number of samples required at each leaf node. Optuna's “create_study” 
function was used to define the optimization process, with each trial representing a different 
combination of hyperparameters. The objective function evaluated the performance of each 
set of hyperparameters using cross-validation to ensure robust and unbiased estimates of 
model performance. 

3.2. Cross-validation for training base learners 

To ensure the reliability and generalizability of our base models, we utilized k-fold cross-
validation during their training process. In k-fold cross-validation, the training data is parti-
tioned into k equal-sized folds. Each model is trained on k-1 folds and validated on the re-
maining fold, rotating through all k folds. This technique helps in assessing the model’s per-
formance across different subsets of data, thereby reducing the risk of overfitting and ensuring 
that the model performs well on unseen data. 

For each base learner, including SVR, MLP, RF, and XGBoost, the following steps were per-
formed: 
• Data splitting: The training dataset was divided into 5 folds. 
• Training and validation: Each model was trained on 4 folds and validated on the remaining 

fold. This process was repeated 5 times, with each fold serving as the validation set once. 
• Performance aggregation: The performance metrics from each fold were averaged to obtain 

an overall performance estimate for the model. 
This approach provided a more robust evaluation of the base models, ensuring that the se-
lected hyperparameters and the trained models were not biased towards a particular subset 
of the data. 

3.3. Training the meta-learner 

In the process of constructing the meta-learner, predictions generated by the base models 
-SVR, MLP, RF, and XGBoost- based on the leave-out data during cross-validation were har-
nessed. After that, the meta-learner, also known as second-level model, was trained on the 
predictions made by the base models. In the present study, diverse set of approaches were 
investigated to combine the outputs of the base models. The goal was to enhance the overall 
prediction accuracy while avoid overfitting during the stacking ensemble. These approaches 
included: 
• Weighted averaging: In this approach distinct weights are assigned to the predictions of 

each base model to emphasize the contributions of certain models while mitigating the 
influence of others. The determination of these weights was achieved through quadratic 
programming, optimizing them to minimize the mean squared error between the meta-
learner predictions and the measered values. 

• Bayesian Model Averaging (BMA): Employing BMA, we computed the posterior probabilities 
of each base model's predictions based on their respective marginal likelihoods [53]. By 
incorporating these probabilities into the prediction aggregation process, BMA facilitated 
the optimal combination of base model outputs, accounting for their respective uncertain-
ties [53]. 

• Random Forest as Meta-Learner: In a distinct approach, we utilized a RFR as the meta-
learner. Trained on the predictions generated by the base models, the Random Forest meta-
learner learned to predict the target variable more accurately by capturing the complex 
interactions between the base models' outputs. 

4. Results and discussion  

In the present section, the performance of the base models, and the mate learners were 
assessed. Predictions are made based on testing data that were not seen by the models during 
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the training process. Three statistical indices, namely root mean square error (RMSE), mean 
absolute percentage error (MAPE), and the correlation coefficient R2, were employed in this 
study to quantify the performance achieved by each model on both training and validation 
data. Table 3 highlights the model’s performance. The expressions for these statistical indices 
are shown below: 
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where ∅𝑖𝑖,𝑒𝑒𝑒𝑒𝑒𝑒 and ∅𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 represent the experimental and predicted values of porosity, respec-
tively, while 𝑛𝑛 stands for the number of data. 

Table 2. Performance analysis of the meta and base learners on both training and testing data. 

Table 3. Probability distribution of MAPE for meta and base learners. 

Error Stacking SVR MLP RFR XGBoost 
MAPE <1 0.2407 0.1666 0.1481 0.2222 0.1851 
MAPE <2.00 0.4259 0.3703 0.3703 0.3703 0.3703 
MAPE <3.00 0.5555 0.574 0.4814 0.5 0.5370 
MAPE <4.00 0.7037 0.6851 0.6296 0.6111 0.6111 
MAPE <5.00 0.7592 0.7592 0.6481 0.6851 0.6851 
MAPE <10.00 0.9444 0.9444 0.9259 0.9259 0.9074 
MAPE <15.00 1 1 1 1 1 

Table 2 highlights the performance of the models. Based on the analysis of Table 2, it is 
evident that all models demonstrate robust performance when evaluated on unseen testing 
data. The coefficient of determination R2 spans from 0. 8898 to 0. 9128, while the MAPE and 
RMSE range from 3.9373 to 4.2896 and from 0.9401 to 1.0441, respectively. Notably, these 
models showcase consistent performance on data not encountered during the training phase, 
underscoring their capacity for generalization. Among the base learners, MLP emerges as the 
top performer in terms of MAPE, with a value of 4.0429. XGBoost stands out as the best 
performer in terms of RMSE and R², with values of 0.9628 and 0.9118, respectively. While 
SVR exhibits reasonably competitive metrics, its performance lags behind that of RFR, MLP, 
and XGBoost. Regarding the methodologies for combining base learners, weighted averaging 
emerges as the most effective approach, yielding superior prediction accuracy when employed 
to combine base learners and make predictions on unseen data. Although BMA and RFR as a 
meta-learner performs well on training data, they struggles to deal with unseen data and fails 

Model Training data Testing data 
RMSE MAPE R2 RMSE MAPE R2 

B
as

e 
le

ar
ne

rs
 

XGBoost 0.4805 1.263 0.979 0.9628 4.2115 0.9118 

MLP 0.8987 4.0285 0.9242 1.039 4.0429 0.8908 

RFR 0.8284 3.7564 0.93703 1.0008 4.138 0.9005 

SVR 0.84 3.8292 0.9344 1.0441 4.2896 0.8898 

M
et

a 
le

ar
n-

er
s 

Weighted averaging 0.5631 2.2911 0.9722 0.9401 3.9373 0.9128 

BMA 0.4793 1.2625 0.9791 0.9618 4.2088 0.912 

RFR 0.5306 2.4882 0.9950 0.9744 4.0927 0.9087 
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to keep superiority on testing data. Further analysis comparing the performance of base learn-
ers and the meta-learner reveals that the stacking model, achieved through weighted aver-
aging, performed best on the testing data. This indicates that by combining machine learning 
models of diverse structures, the stacking model can outperform all its base models. This 
approach leverages the strengths of each individual model while mitigating their weaknesses, 
leading to enhanced overall prediction accuracy and avoiding overfitting. 

To visually assess the performance results, Fig. 3 illustrates the porosity values predicted 
by various models, including SVR, RFR, XGBoost, MLP, and the stacking model created through 
the weighted averaging approach, plotted against the core porosity values in parity plots. As 
can be obviously seen, the predictions made by the developed models demonstrate strong 
concordance with the measured values. Additionally, it is notable that for the that the out-
comes of the XGBoost model are more closely aligned with the unit slope for the training data, 
whereas the stacking model's outcomes perform exceptionally well on testing data. This ob-
servation confirms the superior performance of the meta learner on unseen data compared to 
the others. 

 
Fig. 3. Parity plot of core porosity and porosity predicted by meta and base learners: (a) Stacking model 
achieved through weighted averaging, (b) SVR model, (c) MLP model, (d) RFR model, (e) XGBoost 
model. 

Another visual representation of performance on the testing data is shown in Fig. 4, which 
depicts the cumulative frequency of MAPE  for both the meta and base learners. Table 3 pro-
vides details of Fig. 4 using the concept of MAPE probability distributions. A thorough analysis 
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of the cumulative frequency distribution of MAPE in Fig. 4 reveals that the meta model created 
through weighted averaging achieves the highest cumulative frequency at most given MAPE 
levels  compared to the base learners. For instance, 24.07% of the stacking model predictions 
have a MAPE below 1%, whereas the corresponding cumulative frequencies for SVR, MLP, 
RFR, and XGBoost are 16.66%, 14.81%, 22.22%, and 18.51%, respectively. This demon-
strates the superior performance of the meta learner. 

 
Fig. 4. Cumulative distribution of MAPE for meta and base learners. 

Finally, the Leverage technique was utilized to confirm the statistical significance of the 
proposed stacking model and to delineate its applicability domain while identifying outliers. 
The Leverage approach is a dependable algorithm for detecting a group of data observations 
that deviate from the main body of the training dataset table . This method considers residual 
values, which indicate the differences between the model's predicted values and the measured 
data points, as well as a matrix known as the Hat matrix. The elements of this matrix are 
computed using the following equation [54]: 
𝐻𝐻 = 𝑋𝑋(𝑋𝑋𝑡𝑡𝑋𝑋)−1𝑋𝑋𝑡𝑡 (4) 

where X is a two-dimensional matrix comprising 𝑛𝑛 data points and 𝑚𝑚 input parameters.  
The diagonal elements of the H matrix are referred to as Hat values. Williams' plot is em-

ployed to visually identify outliers by plotting the Hat values against the model's standardized 
residual values. The warning Leverage value H*  is calculated using the formula 3(𝑚𝑚+1)/𝑛𝑛. 

In the present work, with n=273 and m=5, the warning Leverage value is calculated to be 
0.0659. Most of the data points falling within the ranges − 3 < R < 3  and 0 < H < H* indicates 
that both the data employed for model development and the model's outcomes are within the 
applicability domain, confirming the model's statistical accuracy. Data points with − 3 < R < 
3 and H* < H are considered outside the scope of the model's applicability and are termed 
"Good High Leverage" points. Points within R<−3 or R>3, regardless of whether their Hat 
values are below or above H*, are identified as "Bad High Leverage" points or outliers [54]. 
Fig. 5 illustrates the Williams plot for the employed data in the stacking model.  

 
Fig. 5. The Williams plot of porosity dataset for the proposed stacking model. 
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This plot shows that the majority of data points fall within 0 < H < 0. 0659 and − 3 < R < 
3. Additionally, two data points (0.7326% of the data) lie outside the model's applicability 
range, while only six data points (2.1978% of the data) are identified as outliers. Conse-
quently, the Leverage method demonstrates that the stacking model developed in this study 
for predicting the reservoir porosity and the used data are statistically reliable. 

5. Conclusions 

In this study, four base learners, including SVR, MLP, RFR, and XGBoost, were trained were 
trained using well logging and core measurements. Subsequently, these base learners were 
integrated through various stacking ensemble strategies, including weighted averaging, 
Bayesian model averaging, and RFR as a meta-learner. Different meta-learners were trained 
on predictions made by the base learners on leave-out data during cross-validation. The per-
formance of both the meta and base learners was then evaluated on a separate testing da-
taset, unseen during the training process, and compared using statistical and graphical error 
analysis. The key findings are summarized as follows: 
• All base and meta learners demonstrated good performance on both training and testing 

datasets for porosity prediction. This underscores the importance of the comprehensive 
methodology implemented in the current study to mitigate overfitting. 

• Among the implemented stacking ensembles, the weighted averaging approach outper-
formed the others on the testing data, although Bayesian model averaging and RFR exhib-
ited better results on the training data. This suggests that simpler models for combining 
base learner outcomes may provide better generalization capabilities compared to more 
complex models, which can lead to overfitting. 

• The stacking ensemble learning approach, achieved through weighted averaging,  effec-
tively enhanced the performance of the base learners, particularly on the testing data, 
highlighting its ability to leverage the strengths of each individual model while mitigating 
their weaknesses. 

• Overall, this study underscores the effectiveness of machine learning, particularly stacking 
ensembles, in accurately predicting porosity. These findings are valuable for geoscientists 
and reservoir engineers in achieving accurate reservoir characterization and facilitating ex-
ploration activities. 

Nomenclature 

ANN Artificial Neural Network 
BMA Bayesian Model Averaging 
CNN Conventional Neural Network 
DT Decision Tree 
GA Genetic Algorithm 
GR Gamma Ray 
ICA Imperialist Competitive Algorithm 
LHS Latin Hypercube Sampling 
LSTM Long Short-Term Memory 
MAPE Mean Absolute Percentage Error 
ML Machine Learning 
MLP Multilayer Perceptron 
NPHI Neutron Porosity 
OOB Out-Of-Bag 
PEFZ Photoelectric Factor 
PNN Probabilistic Neural Network 
PSO Particle Swarm Optimization 
R2 Correlation Coefficient 
RBF Radial Basis Function 
RF Random Forest 
RFR Random Forest Regressors 
RHOZ Bulk Density 
RMSE Root Mean Square Error 
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RXOZ Shallow Resistivity 
SVM Support Vector Machine 
SVR Support Vector Regression 
XGBoost Extreme Gradient Boosting 
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