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Abstract 

Geomechanical characterization plays a critical role in drilling and production design. The traditional 
methods for estimation of mechanical rock properties, such as experimental techniques, are expensive 
and time-consuming. Hence, fast and accurate computing tools such as Artificial Neural Networks 
(ANN) should be developed for this purpose. This study aims to develop an efficient computational tool 
to estimate geomechanical parameters based on well logging data. We present a robust approach to 

calculate the borehole geomechanical parameters using a machine learning technique. The ANFIS 
approach is utilized to estimate the geomechanical parameters, such as Young's modulus, Poisson's 
ratio, bulk modulus, shear modulus, etc., based on well logging data. Two classes of the ANFIS approach, 
including C-mean and subtractive clustering algorithms, are applied to estimate rock elastic 
parameters. The comparison of the outcomes to conventional methods shows a reasonable estimation 
of these parameters with significant accuracy. Although there are slight differences between the 

accuracies of these two systems, this methodology is quite fast applying the inexpensive tool to 
determine the mechanical rock parameters. 

Keywords: Geomechanics; Well log; Parameter estimation; Neural-fuzzy system; Machine Learning; Petroleum drilling. 

1. Introduction

Recent studies have shown that Artificial Intelligence (AI) is an effective computational

method, which has been mostly inspired by biological systems. AI is used in a wide range of 

tasks in different fields [1]. Two major applications of AI are data analysis and prediction [2]. 

Machine learning methods can be applied in seismic inversion, log analysis, 3D reservoir mod-

eling, and geomechanical studies [3]. 

Stress state is a piece of vital knowledge in the oil and gas fields for safe drilling and 

production operations.  Accurate estimation of the elastic parameters and pressure leads to a 

more reliable prediction of field behavior. Geomechanics is intertwined with rock characteri-

zation and mechanics [4]. Therefore, many correlations can be used to derive the dynamic and 

static rock properties and UCS. AI can help obtaining better results for rock elastic parameters 

to develop functional relationships for data and can provide a powerful toolbox for nonlinear 

and multidimensional interpolations [5].  

The next step is estimating pore pressure at which the fluid is contained within the pore 

space of the rock at a specific depth  [6]. The pore pressure is either reduced or increased 

during the production or injection of the hydrocarbon fluids. Due to the significant hydrocar-

bons production, and the consequent reservoir pressure decline, the overburden weight is 

successively transferred to the rock matrix and effective stress in the reservoir increases. The 
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growth of compressive stress can lead to reservoir compaction [7]. Many methods have been 

proposed to predict sandstone reservoir pore pressure using well-logs and seismic data, but 

there is no widely accepted technique for carbonate reservoirs [8]. 

Previous studies on the pore pressure prediction were made by Hottmann and Johnson 

derived from well log data for shale formations [9]. This approach is based on the deviation of 

the measured properties from the normal trend line. Afterward, many researchers have suc-

cessfully used several logs, including resistivity, sonic transit time, porosity, and other well 

log data for pore pressure estimation [10].  

Furthermore, wellbore instability is a common problem during drilling due to variations of stress 

concertation, causing casing collapse, lost circulation, etc. In order to avoid this issue, some pheno-

mena such as induced fractures or breakouts need to be prevented by adjusting the stress with an 

appropriate mud weight window. There are many failure criteria for wellbore stability analysis, 

and Mohr-Coulomb is the most common method [11]. To obtain these criteria, accurate infor-

mation about the rock's elastic parameters, pore pressure, and field stress is essential [12]. 

In this study, a machine learning method, namely Adaptive Network-based Fuzzy Inference 

System (Adaptive Neuro-Fuzzy Inference Systems: ANFIS), was applied to estimate the pore 

pressure, the rock elastic parameters, and the principal stresses in carbonate reservoirs in Iranian 

oil fields. Also, traditional correlation and ANFIS results were compared favorably, and the results 

were classified based on the best model. The database used in this study, consists of several 

different reports such as geophysics, geology, petrophysics, drilling, fracture study, zonation, 

static and dynamic modeling, and production. In each section, all data were analyzed and 

studied; however, comprehensive well log data were the most critical information comprised 

of the gamma-ray, density, and sonic logs that are fundamental for geomechanical modeling. 

2. Methodology 

Two approaches were used to estimate the geomechanical parameters, including conven-

tional correlation and ANFIS methods. First, the elastic parameters were calculated, and then 

pore pressure was modeled based on the Eaton method and calibrated by the Modular For-

mation Dynamics Tester (MDT) test. Then, an ANFIS model was used to estimate these prop-

erties. The ANFIS is based on the Takagi–Sugeno fuzzy inference system. A wide range of 

data was required for borehole geomechanics.  

2.1. Overburden stress 

The upper layers' predominant heaviness can cause overburden or vertical stress (σv), 

which is one of the three principal stresses. Density-log used to estimate and analyze the 

cuttings at the surface can lead to a robust result. The vertical stress (σv) can be obtained 

using Eq. 1. 

𝜎𝑉 = 𝑔 ∫ 𝜌(𝑧)𝑑𝑧                 
ℎ

0
                            (1) 

where σv is the vertical stress; ρ (z) represents the bulk density at depth z; and g stands for 

the gravitational constant.  

 

Figure 1. Overburden stress versus depth 

The overburden stress was evaluated by deriv-

ing bulk density data. Figure 1 shows overburden 

stress as a function of depth. The trend of stress 

variation and well depth is linear and reaches 96 

MPa in 3800 ft. 
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2.2. Elastic properties 

Based on the available log data, it was recognized that shear wave velocity, one of the 

essential parameters, did not exist. Therefore, share delay time mode was calculated based 

on Greenberg and Castagna’ relations. Figure 2 shows DT (us.ft) and calculated DTSM (us.ft) 

vs. depth (m). Shear-wave velocity can be estimated in brine-saturated composite lithology 

by a simple average of the arithmetic and harmonic means of the pure constituent lithology 

shear velocities as given by Eq. 2 [13]: 

Vs = 
1

2
 {[∑ 𝑥𝑖

𝐿
𝑖=1 ∑ 𝑎𝑖𝑗𝑣𝑝

𝑗𝑁𝑖
𝑗=0 ] + [ ∑ 𝑥𝑖

𝐿
𝑖=1 (∑ 𝑎𝑖𝑗𝑣𝑝

𝑗𝑁𝑖
𝑗=0 )−1]-1}           (2) 

∑ 𝑥𝑖
𝐿
𝑖=1  = 1    

where L is the number of pure mono-mineralic lithologic constituents; xi represents the volume 

fraction of lithological constituent; aij stands for the empirical regression coefficients; Ni is the 

order of polynomial for constituent I; and 𝜈𝑃 and 𝜈𝑆 represent the P- and S-wave velocities 

(km.s), respectively. 

There are several correlations to obtain the static elastic parameters from the dynamic 

parameters. The dynamic elastic rock parameters are converted to static based on Mordales 

and Marcinew and Bradford equations [14]. The geomechanical elastic parameters as function 

of depth were calculated from well log data, as shown in Figure 3.  

  

Figure. 2. Green line is 
DT (us/ft) and blue line is 
calculated DTSM (us/ft) 
vs. depth (m) 

Figure3. Calculated geomechanical elastic parameters vs. depth (m) 

2.3. Rock strength parameters 

A uniaxial test is used to measure rock strength. There are several equations proposed to 

calculate UCS. A work by Asef et al. [14] (Eq.3) and Militzer and Stoll [15] (Eq.4) were used for 

estimating this parameter for carbonate reservoirs, and the results are shown in Figure 4 [15-16]. 

UCS = 2.65 ∗ (
𝐸𝑠𝑡𝑎𝑡𝑖𝑐0.8

𝜑0.2 ) ……                 (3) 

UCS = (
7682

∆𝑡
)

1.82

. 145 …….                 (4) 
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2.4. Pore pressure 

The actual pore pressure values were obtained from care-

fully conducted and recorded flow checks, properly docu-

mented kicks, or pressure measurements using the RFT or 

MDT tool; they can be used to calibrate the pore pressure 

analysis from the offset log data [17]. Eaton's method relies 

on this assumption that overburden pressure is supported by 

pore pressure and effective vertical stress emanating from 

Terzaghi's equation (Eq.5) [18]. 

PPG = OBG – (OBG – HG) x (
Δ𝑡𝑛𝑜𝑟𝑚

Δ𝑡𝑜𝑏𝑠
)x           (5) 

where PPG is the pore pressure gradient (psi.ft). 

In this study, X is assumed 0.5 in the carbonate fields, 

and the hydrostatic gradient is assumed 10.5 kPa.m ac-

cording to the overall studies in the Middle East, especially 

in Iran [19]. The MDT data were reported in intended well 

between 3204 m to 3394 m. The estimated Eaton`s pore 

pressure was calibrated with the MDT data.  
 
 
 
Figure 4. Calculated uniaxial compressive strength (UCS) vs. 

Depth (m). The Red line is Militzer and Stoll [15], and the violet 

line is Asef [14] 

2.5. In-situ horizontal stresses 

  

In an area with different 

faulting regimes, knowing the 

amount and direction of 

stresses can lead to a 

conscious decision. In 

homogeneous regions, the 

minimum and maximum 

horizontal stresses are the 

same. However, in the 

presence of fractures and 

faults, these values are 

affected by active tectonics 

and will not be the same 

anymore [20-21]. In this study, 

the poroelastic horizontal 

strain model was used to 

determine the magnitude of 

the minimum and the 

maximum horizontal stress. 

Figures 5a and 5b show the 

pore pressure calibration using 

MDT data and comparison of 

different stress profiles. 

Figure 5a. Calibration of pore pressure with MDT data between 3200 to 3400 m 

Figure 5b. Comparison of stress profile. The dark brown color is pore pressure; the Blue line is hydro-
static, the green line is min. hor. stress, the red line is max. hor. stress, and the black line is vertical 
stress 
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3. Mars Method 

3.1. Artificial intelligence modeling   

ANFIS method based on  the  Takagi–Sugeno fuzzy inference system with two types of clus-

tering, including Fuzzy C-mean clustering and Subtractive clustering was used. In this study, 

porosity-neutron (NPHI), density (RHOB), sonic (DTs), and gamma-ray logs versus depth were 

utilized as a fuzzy-neural system input data for estimating Young's modulus, Poisson's Ratio, 

UCS, vertical overburden, and minimum and maximum horizontal stress as an output. Also, 

70% of the data were used as training data and 30% as testing and evaluation data. It should 

be noted that the test data were not involved in the system training process. 

3.2. ANFIS method with C-meaning clustering 

The general structure of ANFIS for predicting the rock geomechanical properties is shown 

in Figure 6.  

 

Figure 6. The general structure of ANFIS 

Mean Square Error (MSE) and Coefficient of Determination were used for performance eval-

uation as given by Eq. 6. 

𝑀𝑆𝐸 =
∑ (𝑌

𝑖

𝑒𝑥𝑝
𝑖
𝑝𝑒𝑟

()2)
𝑛∑
𝑖=1

𝑛
                    (6) 

where 𝑌𝑒𝑥𝑝 and 𝑌𝑝𝑒𝑟are experimental results and estimated value, respectively. 

Table 1 shows the MSE for the various parameters for the optimized test data separately . 

Table 1. Mean squared error for the geomechanical parameters 

Max. Hori-

zontal Stress 

Min. Horizon-

tal Stress 

Overbur-

den Press 
UCS 

Static 
Young 

modulus 

Poisson's 

Ratio 

Young 

modulus 

 

0.34 0.32 0.47 0.06 0.39 0.01 0.14 MSE 

As can be seen from the results reported in the table, the highest estimation error is related 

to the uniaxial compressive strength parameter, and the least error belongs to the minimum 

Poisson's ratio. The system with C-clustering shows acceptable average performance in esti-

mating the reservoir geomechanical parameters. The quality charts for the target data and 

the estimated data for the various parameters were plotted in Figures 7a to 7e. The coefficient 

of determination is expressed as an important parameter for evaluating system performance 

for each parameter. 
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Figure 7a. Quality diagram related to Young's 
modulus (Gpa); R2 = 0.9754 

Figure 7b. Quality diagram related to UCS; R2 = 
0.9983 

 
 

Figure 7c. Quality diagram related to Static Young 
modulus (Gpa); R2 = 0.9780 

Figure 7d. Quality diagram related to Max. Hori-
zontal Stress (Mpa); R2=0.9532 

 

 

Figure 7e. Quality diagram related to Overburden 
Pressure (Mpa); R2 = 0.6373 
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Although there are desirable correlation and regression values for Young's modulus, Pois-

son's Ratio, Static Young modulus, UCS in scatter plots, still it is not good enough as much as 

the other parameters for overburden pressure yet. Thus, the ANFIS method with subtractive 

clustering was employed in the section ahead. The fuzzy C means system results, and its 

comparison are given in Tables 2 and 3. Due to the random selection of test data, the data 

reported in the tables are not in in-depth order. 

Table 2. Comparison between C-mean neural network outputs and target data for Young Modulus Pois-

son's Ratio and Static Young Modulus 

Depth 

(m) 

Young Mod-
ulus Target 

(Gpa) 

Young Mod-
ulus Output 

(Gpa) 

Poisson's 
Ratio 
Target 

Poisson's 
Ratio 

Output 

Static Young 
Modulus 
Target 

(Gpa) 

Static Young 
Modulus Out-

put 

(Gpa) 

3368/99 56/64 57/28 0/32 0/32 22/42 22/20 

3348/88 55/59 55/16 0/31 0/32 21/98 22/25 

3369/75 53/16 53/18 0/31 0/31 20/97 20/75 

3227/26 33/54 34/50 0/29 0/29 12/84 12/53 

3189/77 47/32 46/34 0/31 0/30 18/56 18/42 

3263/68 38/83 41/35 0/30 0/30 15/03 14/21 

3360/46 68/32 70/81 0/32 0/32 27/26 27/24 

3286/70 33/76 34/53 0/29 0/29 12/94 12/58 

3345/37 48/23 48/64 0/31 0/31 18/93 19/07 

3334/40 47/96 45/35 0/31 0/31 18/82 18/89 

3197/39 53/56 53/70 0/31 0/31 21/14 23/07 

3198/91 45/19 45/15 0/30 0/30 17/67 18/71 

3276/64 36/81 34/83 0/30 0/29 14/20 14/47 

3190/08 45/21 44/66 0/30 0/31 17/68 18/79 

3223/76 31/28 32/38 0/29 0/29 11/91 11/21 

3297/36 42/57 43/84 0/30 0/30 16/59 17/27 

3322/21 62/44 62/93 0/32 0/32 24/82 24/09 

3209/58 49/63 53/41 0/31 0/31 19/51 20/80 

3247/53 28/17 27/89 0/28 0/29 10/62 10/53 

3294/32 32/56 30/37 0/29 0/29 12/44 11/50 

3312/76 52/08 53/31 0/31 0/31 20/53 20/38 

3311/23 51/75 52/05 0/31 0/31 20/39 19/62 

3221/01 37/96 39/54 0/30 0/30 14/68 14/44 

3323/43 54/90 54/08 0/32 0/31 21/70 22/45 

3233/81 34/59 33/30 0/29 0/29 13/28 14/78 

3353/14 54/77 51/91 0/31 0/32 21/64 21/53 

3308/64 46/07 46/37 0/31 0/31 18/04 18/22 

3239/45 36/78 34/83 0/30 0/30 14/18 13/78 

3367/16 64/92 65/40 0/32 0/33 25/85 25/94 

3274/66 36/03 36/28 0/29 0/30 13/88 14/76 

3319/62 54/21 54/11 0/31 0/31 21/41 21/62 

3234/73 35/63 35/28 0/29 0/29 13/71 12/60 

3257/13 43/48 44/07 0/30 0/30 16/97 16/98 

3363/20 55/55 54/71 0/32 0/32 21/97 21/87 

As shown in Table 2, the estimated values are very close to the target values, which con-

firms the accuracy of the C-mean method in estimating the desired parameters.  

Table 3 compares the estimated performances of uniaxial compressive strength parame-

ters, vertical stress, minimum horizontal stress, and maximum horizontal stress with target 

values. The outputs show that the results are very close to the target values, and the C-mean 

neural system results good average accuracy. 
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Table 3. Comparison between C-mean neural network outputs and target data for UCS, vertical stress, 

Min. Hor. Stress, and Max. Hor. Stress 

Depth 
(m) 

UCS Tar-
get 

(Mpa) 

UCS 
Output 
(Mpa) 

Vertical 
Stress 
Target 
(Mpa) 

Vertical 
Stress 
Output 
(Mpa) 

Min. Hor. 
Stress 
Target 
(Mpa) 

Min. Hor. 
Stress 
Output 
(Mpa) 

Max. Hor. 
Stress 
Target 
(Mpa) 

Max. Hor. 
Stress Output 

(Mpa) 

3368/99 98/30 97/05 85/68 86/32 62/60 61/92 63/45 63/66 

3348/88 102/45 102/07 85/16 84/14 61/88 61/47 62/72 62/35 

3369/75 114/00 113/83 85/70 84/33 61/96 60/70 62/76 63/53 

3227/26 47/88 48/15 82/18 82/53 55/95 56/26 56/45 57/45 

3189/77 72/92 72/97 81/24 84/17 57/80 59/87 58/51 60/04 

3263/68 50/52 51/49 83/05 83/16 57/59 57/64 58/17 57/91 

3360/46 125/17 123/81 85/46 85/36 64/00 63/18 65/03 64/90 

3286/70 45/78 44/03 83/60 83/02 56/94 56/79 57/45 56/78 

3345/37 74/50 74/45 85/07 84/79 60/70 60/64 61/42 60/56 

3334/40 78/34 77/39 84/79 84/25 60/42 59/86 61/14 60/92 

3197/39 95/72 95/99 81/43 81/51 58/78 58/55 59/58 60/26 

3198/91 64/61 64/44 81/47 81/20 57/42 58/05 58/10 58/30 

3276/64 54/43 54/01 83/36 82/98 57/44 57/10 57/98 57/44 

3190/08 67/97 67/12 81/24 81/14 57/41 57/71 58/09 57/93 

3223/76 45/96 45/85 82/10 82/27 55/49 56/32 55/95 55/93 

3.3. ANFIS method with subtractive clustering 

In this section, the performance of the neuro-fuzzy system was investigated based on clus-

tering. The impact radius of the subtractive clustering factor was analyzed as an influencing 

factor in the system's performance and accuracy. As Figure 8 shows, the lowest total estima-

tion error is when the impact radius of the system is 0.15. In this case, the mean square error 

is 0.6977. Therefore, it can be concluded that the optimal impact radius for each dataset must 

be found, and having a low or high impact radius does not necessarily mean the more desirable 

accuracy of the system. 

 
 

Figure 8. Impact radius effect on prediction accu-
racy of Subtractive neuro-fuzzy system 

Figure 9. The time required for predicting the geo-
mechanical parameters by the subtractive neuro-

fuzzy system in terms of the impact cluster radius 

Table 4 shows the performance of the subtractive neuro-fuzzy system in estimating differ-

ent geomechanical parameters.  

Table 4. Subtractive neuro-fuzzy system for predicting different geomechanical parameters 

Max. Horizon-
tal Stress 

Min. Horizon-
tal Stress 

Overburden 
Press. 

UCS 

Static 
Young 

modulus 

Poisson's 
Ratio 

Young 
modulus 

 

0.36 0.34 0.47 0.22 0.37 0.00 0.13 MSE 
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The least error value achieved for Poisson’s ratio, nearly 0, while overburden pressure has 

the most value of 0.47. 

Figure 9 illustrates the time changes required to complete the estimation process in terms 

of the impact radius of the clustering method. Based on this figure, the greater the impact 

radius, the faster the estimation process.  

 
Figure 10. Changing the number of fuzzy system 
rules (clusters) in terms of the impact radius 

Also, the radius of impact can change the 

number of fuzzy rules or, in other terms, the 

number of clusters used in the estimation 

operation. Figure 10 shows that by changing 

the impact radius from 0.1 to 0.5, the num-

ber of fuzzy inference systems rules in the 

neuro-fuzzy system decreases from 14 to 3. 

Figure 11 shows the structure of the neuro-

fuzzy system for estimating the Young's 

modulus parameter with the impact radius 

of 0.1 and 14 set rules, which were deter-

mined by the neuro-fuzzy system. 

The fuzzy interface system with 14 rules 

for estimation of Young’s modulus is pre-

sented in Figure 11, in which NPHI, RHOB, 

and DT versus depth feed as the main inputs 

of the model. 

 

Figure 11. The fuzzy inference system's structure lies in the neural-fuzzy system for predicting Young's 
modulus when the number of fuzzy system rules is 14 

4. Results and discussion  

The trained ANFIS model was used to estimate geomechanical parameters. The training 

and test data, actual and estimated geomechanical properties versus depth are shown in Figure 

12. Blue and red lines stand for target and output, respectively. The trends present a perfect 

match between target and output data, which proves the efficiency of the ANFIS model for 

estimating rock mechanic parameters, as demonstrated in Figure 12.  Overall, it can be seen 

that the ANFIS model can accurately estimate the geomechanical parameters very fast.  
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(a) (b) 

(c) (d) 

(e) (f) 
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(g) 

 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 12. ANFIS output for rock mechanic pa-
rameters and stress magnitude 

Based on the results in the C-mean neuro-fuzzy system, R-squared for the vertical stress 

was lower than the other parameters. This phenomenon was repeated in this section. It is 

probably due to the sensitivity of the vertical stress to the depth, and it is the crucial missing 

parameter in the inputs of the neuro-fuzzy system. Thus, we decided to develop and evaluate 

a new neuro-fuzzy system in the presence of the depth selected as input to improve estimation 

of this parameter.  

The result of this evaluation was positive, and Figure 13 shows the obtained quality chart. 

Figure 14 shows the vertical stress diagram versus depth with the modified method. According 

to these graphs, the improvement of the estimation of this parameter is noticeable. 

 

 

Figure 13. Optimized vertical stress quality chart 
with R2=0.998 

Figure 14. Vertical stress variations vs. depth and 
improvement of neuro-fuzzy system performance 
in prediction 

The estimation was improved by the modified model, and it can be argued variation of 

stress with depth is more sensitive in respect to changing formation type along with well. The 

linear regression of the outputs and the corresponding target of the neuro-fuzzy system 
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performance in estimating vertical stress variations versus depth that provide good correlation 

and regression values is shown in Figure 14. 

4.1. Comparison of the Neuro-Fuzzy Systems methods  

In this section, the performances of the two neuro-fuzzy systems used in this study were 

compared. As can be seen in Tables 5 and 6, there are slights differences between the perfor-

mances of the two systems, and both systems are well enough to estimate the geomechanical 

parameters. The time required to complete the estimation process was 115 seconds for the 

subtractive neuro-fuzzy system and 175 seconds for the C-mean system. 

Table 5. Comparison of the two Neuro-Fuzzy Systems (Section I) 

Static Young modulus Poisson's Ratio Young's modulus  

subtractive C-mean subtractive C-mean subtractive C-mean  

0.37 0.39 0.00 0.00 0.13 0.14 MSE 

0.9812 0.9780 0.9712 0.9717 0.9800 0.9754 R2 

For Young and static Young modules, the neuro-fuzzy system with subtractive clustering is 

a little more accurate than the C-mean clustering, while there are about the same for Poisson’s 

ratio.  

Table 6. Comparison of the two Neuro-Fuzzy Systems (Section II) 

Max. Hor. Stress Min. Hor. Stress Vertical Stress UCS  

subtractive C-mean subtractive C-mean subtractive C-mean subtractive C-mean  

0.36 0.34 0.34 0.32 0.47 0.47 0.22 0.06 MSE 

0.9441 0.9532 0.9438 0.9438 0.6521 0.6373 0.9980 0.9983 R2 

For UCS, minimum and maximum horizontal stresses, both of the methods almost provide 

comparable and sufficient results, but none of them can estimate the outputs or close value 

to the corresponding target, say about 0.63 and 0.65, which are too far from the other results. 

The data-driven model performance compared here confirms the efficiency of the ANFIS 

method as a reliable tool for the geomechanical properties. Overall, the ANFIS models obtain 

R2 over 90% in both subtractive and C-mean clustering.  

5. Conclusions 

A method to estimate the geomechanical parameters based on machine learning technique 

(ANFIS) using well logging data was introduced in this work. First, a borehole geomechanical 

model was developed for an oil well in an Iranian oil field. The dynamic rock mechanical data 

from different lithologies were calculated and converted to static elastic parameters by con-

ventional equations. Pore pressure was estimated based on the Eaton method and calibrated 

by MDT data, which were recorded between 3204 m to 3394 m. Vertical stress was calculated 

based on the density of the layers and minimum, and maximum horizontal stresses were 

determined based on poroelastic horizontal strain. Next, determining the geomechanical pa-

rameters based on Takagi-Sogno neuro-fuzzy systems provided more accurate results than 

conventional methods. However, there are slight differences between the accuracy of these 

two approaches. It is perceived that the Poisson ratio is more accurate, and the vertical stress 

is associated with a higher error due to the sensitivity to the depth. 

Moreover, using depth as one of the inputs can significantly increase the accuracy of the 

results. Furthermore, it is identified that the C-clustering algorithm completes the estimation 

process more rapidly. Moreover, the results show that a normal fault regime can be seen in 

the field, which agrees with the real data. Based on the model output, low pore pressure can 

be observed in this well, which may have led to several challenges. 
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Nomenclature  

OBG overburden gradient (psi.ft) 
HG hydrostatic gradient (psi.ft). 10.5 kPa.m according to the overall studies in the Middle 

East, especially in Iran (Atashbari et al. 2015)  
Δt norm normal sonic log value (us.ft) 

Δt obs observed sonic log value (us.ft) 
X  exponent value, which is dependent on formation properties.  
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