Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 56(4) 383-394, 2014

EVALUATING THE INVESTMENT AND EXPECTED REVENUE IN AN OIL DEPLETED UNDERGROUND GAS STORAGE RESERVOIR WITH WATER INFLUX

C. I. C. Anyadiegwu¹, C. M. Muonagor²

¹ Department of Petroleum Engineering, Federal University of Technology, Owerri, Nigeria. <u>drcicanyadiegwu@yahoo.com</u>

² Institute of Petroleum Studies, Port Harcourt, affiliated to Institut Francais du Petrole (IFP), France. <u>tissadeking@yahoo.com</u>

Received May 19, 2014, Accepted July 28, 2014

Abstract

Evaluating the investment and expected revenue in an oil depleted underground storage reservoir with water influx is analysed in this work. Data on a depleted oil reservoir located in the Niger Delta were used for the analysis. An economic analysis on the reservoir was performed by considering water influx in case 1 and no water influx in case 2. Economic factors as NPV, IRR, Pay-out and Break-even point were determined using model equations and Microsoft Visual Basic Computer Programs. From the analysis and computations made, it was shown that the water influx into the reservoir often reduces the storage capacity of the reservoir, and subsequently affects the internal rate of return on the investment.

Keywords: economics, net present value, internal rate of return, pay-out, storage capacity, depleted reservoir

1. Introduction

The water inflows resulting from gradual expansion of the aquifer continue in transient conditions over a relatively long period. The recovery from many oil/gas reservoirs is affected by water influx, either from the perimeters of the reservoirs or from below, or from both. An understanding of the interplay between aquifers and the oil/gas reservoirs is important to properly perform recovery calculations ^[13].

Water influx results from a reservoir pressure following oil/gas production. Water influx tends to maintain, either partially or wholly, the reservoir pressure. In general, both effectiveness of the pressure support system and the water influx rates are governed by the aquifer characteristics, which principally include permeability, thickness, areal extent and the pressure history along the original reservoir/aquifer boundary ^[6].

Before the effects of water influx on oil/gas reservoir behavior were completely understood, early derivations from a straight line on a plot of P/Z vs G_p often were attributed to measurement errors. In some instances, errors in the field pressure measurements can mask the effects of water influx, especially if a weak water drive is percent ^[4].

In the effort to understand the fundamentals of natural gas storage, and the underlying motivations of the owners, it is often asked how much does the project cost and what is the profit ^[3].

Natural gas storage unit cost for various storage systems are ^[7]:

- UGS in depleted fields: 0.70 1.75 dollars per m³.
- Gas storage in water layers: 1.88 dollars per m³.
- Gas storage in salt cavern (formation): 5.00 dollars per m³.
- LNG storage: 4.60 dollars per m³.
- Gas storage in propane: 1130 dollars per m³.
- Natural gas storage in pipeline at 1600 psia: 1700 dollars per m³.

2. Procedure

2.1 Costs Analysis

The economic flow chart for underground gas storage in depleted oil reservoir consists of the various costs at different stages: acquisition cost, development cost, cost of gathering facilities and cost of cushion gas, which are summed up to get the total cost of investment which will be added to the annual storage cost to get the total storage cost as shown in Fig 2.1 below

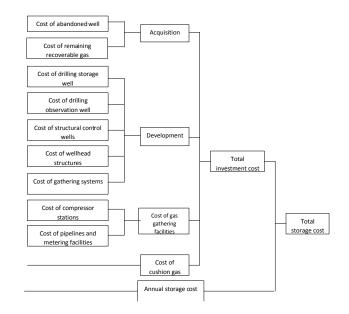


Fig 2.1 Economic flow chart for natural gas storage in depleted reservoir

As with all infrastructural investments in the energy sector, developing storage facilities is capital intensive. Investors usually use the return on investment as a financial measure for the viability of such projects. It has been estimated that investors require a rate of return between 12 percent to 15 percent for regulated projects, and close to 20 percent for unregulated projects. The higher expected return from unregulated projects is due to the higher perceived market risk. In addition significant expenses are accumulated during the planning and location of potential storage sites to determine its suitability, which further increases the risk ^[1].

The capital expenditure to build the facility mostly depends on the physical characteristics of the reservoir. First of all, the development cost of a storage facility largely depends on the type of the storage field. As a general rule of thumb, salt caverns are the most expensive to develop on a billion cubic feet (Bcf) of working gas capacity basis. However one should keep in mind that because the gas in such facilities can be cycled repeatedly, on a deliverability basis, they may be less costly. The wide price range is because of some region difference which dictates the geological requirements.

According to American Gas Association ^[1], these factors include the amount of comprehensive horsepower required, the type of surface and the quality of the geologic structure to name a few. A depleted reservoir costs between 800 million naira (\$5million) to 1.12 billion naira (\$7million) per Bscf of working gas capacity.

The conversion rate from naira to dollar as at October, 2012 is given as:

\$1 = N 160

(2.1)

Finally, another major cost incurred when building new storage facilities is that of base gas. The amount of base gas in a reservoir could be as high as 50% for depleted reservoirs making them unattractive to develop when gas prices are high. The expected cash flows from such projects depend on a number of factors. These include the services the facility provides as well as the regulatory regime under which it operates. Facilities that operate primarily to take advantage of commodity arbitrage opportunities are expected to have

different cash flow benefits than the ones primarily used to ensure seasonal supply reliability. Rules set by regulators can on one hand restrict the profit made by storage facility owners and on the other hand guarantee profit depending on the market model.

Several items contribute to the total investment necessary to put an underground storage field into operation, ^[16]. They include:

- i. Cost of acquisition of the old well and/or reservoir, Acquisition cost involves the: cost of acquiring the abandoned well, cost of purchase of the remaining recoverable gas or oil in the formation, cost of acquiring the right to use the formation for storage.
- ii. Cost of development of the storage facility, consisting of: cost of drilling storage wells, cost of drilling observation wells, cost of structural control wells, cost of wellhead structures, cost of gathering system.
- iii. Cost of gas gathering system.
- iv. Cost of base or cushion gas.

The total investment cost is given by the equation below:

Total investment cost = Acquisition cost + Development cost + Gas gathering cost + Cost of

cushion gas	(2.2)
It is represented mathematically as:	

I = A + D + G + C

The total storage cost = initial investment cost + annual storage cost (2.3) This is represented mathematically as:

(2.2a)

(2.5)

(2.7)

(2.6)

$$S = I + N = A + D + G + C + N$$
 (2.3a)

The price of Natural Gas as at October, 2012 was \$4.06/MMBtu = \$4.06/1000scf ^[8]

A Microsoft Visual Basic Program was developed using eqs 2.2 – 2.17, and was used to perform the economic analysis of the storage reservoirs, considering the different costs ranging from the cost of drilling a well to cost of installation of surface facilities. The results of the economic analysis are presented in this work.

2.1.1 Acquisition cost, (A)

Acquisition cost is the cost of acquiring the abandoned oil/gas well from the oil/gas producing company. It is always negotiable between the gas storage system operator and the oil producing company that produced oil from the well. The agreement is always on a lease arrangement. Acquisition cost is the sum of the cost of abandoned well and cost of the remaining gas in formation. It is expressed mathematically as:

$$A = C_{Wa} + C_{Grem}$$
(2.4)

2.1.1.1 Cost of acquiring abandoned well, (C_{Wa})

This equals salvage value of 20% of initial well cost.

Initial cost of well = Drilling cost (\$/ft) * Depth Salvage value of remaining oil well = 20% of Initial cost of well

2.1.1.2 Cost of purchase of remaining recoverable gas in formation, (C_{Grem})

 C_{Grem} = Gas price * amt of remaining recoverable gas

2.1.2 Development cost, (D)

The development cost is the cost of drilling new wells and related activities like installation of wellhead structures required for the reconditioning of the depleted reservoir for underground storage facility. Six new wells are to be drilled in the course of developing the storage facility. One storage well would be needed: for injection withdrawal.

Five observation wells are also necessary, observation wells permit the measurements to verify that injected gas is confined to the designated area and has not migrated away. They control gas bubble evolution from the storage wells and observe leakage if gas leaks from the storage reservoir.

The development cost covers: i. Drilling cost, (C_D) , ii. Cost of installing wellhead structures, C_{ws} , and iii. Cost of installing gathering systems, C_{gs} . It is mathematically expressed as: For developing one well,

$$D = C_D + C_{ws} + C_{qs}$$

(2.8)

2.1.3 Cost of Gas Gathering System

Gathering systems are defined as the flowline network and process facilities that transport and control the flow of oil or gas from wells to a main storage facility, processing plant or shipping point.

A gathering system includes some or all of these put together: pumps, headers, separators, emulsion treaters, tanks, meters and regulators, compressors, dehydrators, valves, pipelines and other associated equipment ^[2].

The cost of gas gathering system in this text is the sum of the costs of compressor stations, pipelines and metering stations. It is represented mathematically as:

 $C_{ggs} = C_{comp} + C_{pipeline} + C_{meter}$

(2.9)

(2.11)

(2.12)

2.1.3.1 Compressor station:

A reciprocating compressor of 200 - 1000billion hp whose daily input and output is 50 MMscf/day is chosen.

2.1.3.2 Pipelines and metering stations:

Pipeline diameters of 12', 14' and 18' and length of about 40 miles are commonly used, and 4 metering stations are installed ^[9].

2.1.4 Cost of cushion gas

Cost of cushion	gas is estimated	usina	50cent/MMscf o	f workina	gas volume ^{[15}	а <u>.</u> –
	940 .0 000				900	

Cost = 50cent/MMscf working storage gas * working gas volume (2.10)

2.2 Financial Analysis

Based on the Energy Information Administration (EIA) standards, 1031Btu of average heat content is equivalent to 1 ${\rm ft}^3$

Average gas price = \$4.06/MMBtu

1031Btu = 1scf

According to Zachmann and Neumann ^[16]:

Reservoir Storage Cost per MMBtu = \$0.48

Annual Operating cost = Labour costs + Maintenance costs + Management costs (2.13)

Annual storage cost = Annual reservoir storage cost + Annual Operating cost (2.14)

Total storage cost = total investment cost + annual storage cost (2.15)

Gross Revenue = \$4.06 * Working gas capacity, Bcf/1000scf (2.16)

Net revenue for subsequent years of operation =Gross revenue - Annual Storage cost (2.17)

3. Results

3.1 CASE 1: Reservoir Z-16T without Water Influx

The storage capacity of reservoir Z-16T with $W_e - W_p = 0$, $N_p = 0.5825$ MMstb, N = 1130000, $B_o = 1.405$, $B_g = 0.004156$, $R_p = 3200$, $R_s = 847$ was estimated as 8.8 Bscf and the total storage capacity was also estimated as 17.07 Bscf^[3].

3.1.1 Storage Economics

According to Philips ^[10];

- Cost of drilling a well per foot = \$150
- Cost of wellhead structures = \$10 000

- Cost of gas gathering system = \$50 000

Cost of compressor station = 9600000^[11].

Cost of pipeline and metering stations = 1040000^[9].

According Latvian Business Guide, ^[5] (2006);

- Annual labour costs = \$4 800 000
- Annual maintenance costs = \$7 240 000
- Annual management cost = \$804 000

The storage economics for reservoir Z-16T is computed using Microsoft Visual Basic Program as shown in Figs 3.1 and 3.2 (see Amendment) and the results summarized in Table 3.1.

YEAR	INV	REV	EXP	NCR	CUM. NCR	PV @ 5%	PV @ 10%
0	\$59.1M	-	-	(\$59.1M)	(\$59.1M)	(\$59.1M)	(\$59.1M)
1	-	\$35.7M	\$17.15M	\$18.55M	(\$40.55M)	\$17.67M	\$16.86M
2	-	\$35.7M	\$17.15M	\$18.55M	(\$22.0M)	\$16.82M	\$15.33M
3	-	\$35.7M	\$17.15M	\$18.55M	(\$3.45M)	\$16.02M	\$13.94M
4	-	\$35.7M	\$17.15M	\$18.55M	\$15.1M	\$15.26M	\$12.67M
5	-	\$35.7M	\$17.15M	\$18.55M	\$33.65M	\$14.53M	\$11.52M
6	-	\$35.7M	\$17.15M	\$18.55M	\$52.2M	\$13.84M	\$10.47M
7	-	\$35.7M	\$17.15M	\$18.55M	\$70.75M	\$13.18M	\$9.52M
8	-	\$35.7M	\$17.15M	\$18.55M	\$89.3M	\$12.56M	\$8.65M

Table 3.1 Summary of the cash flows for reservoir Z-16T

3.1.1.1 Calculation of Net Present Value and Internal Rate of Return

Net Present Value, NPV is a measure of profitability of any project. The net present value (NPV) or net present worth (NPW) of a time series of cash flows, both incoming and outgoing, is defined as the sum of the present values (PVs) of the individual cash flows. NPV compares the value of a dollar today to the value of that same dollar in the future, taking inflation and returns into account. If the NPV of a prospective project is positive, it should be accepted. However, if NPV is negative, the project should be rejected because cash flows will also be negative ^[14].

NPV = PV at 1yr + PV at 2yrs + PV at 3yrs + PV at 4yrs + PV at 5yrs + PV at 6yrs + PV at 7yrs + PV at 8yrs - PV at 0yr (3.1)

From Table 3.1, the Net Present Value, NPV at an expected rate of return/discount rate of 10% which is the sum of all the Present Values in that column = \$8.65M + \$9.52M + \$10.47M + \$11.52M + \$12.67M + \$13.94M + \$15.33M + \$16.86M - \$59.1M = \$39.86M

The internal rate of return (IRR) on investment for a project is the rate of return that makes the net present value of all cash flows from a particular investment equal to zero. The higher the IRR of a project, the more desirable it is to undertake the project. Table 3.2 is a table of the net present values for reservoir Z-16T at various discount rates, which was used in generating a plot of NPV against discount rate as shown in Fig 3.3 for the determination of the IRR which is 26.8%. This value is the discount rate at which the NPV equals zero.

Discount Rate (%)	NPV (\$)	Discount Rate (%)	NPV (\$)
5	60.79M	25	2.65M
10	39.86M	30	(4.85M)
15	24.14M	35	(10.90M)
20	12.08M		

Table 3.2 NPV at various discount rates, reservoir Z-16T

Fig 3.3 Plot of NPV against Discount rate, reservoir Z-16T

3.1.1.2 Pay-out, PO, for Reservoir Z-16T

The pay-out for a project refers to the time (years) at which the initial investment on the project is just recovered. It is the time at which cumulative NCR becomes zero. From Table 3.1, cumulative NCR becomes zero between the 3^{rd} and 4^{th} year. In this project work, 3 and 4 years were used as the initial point (IP) and final point, (FP) respectively. Applying interpolation:

(PO - IP) / (FP - IP) = (0 - CUM NCR at IP) / (CUM NCR at FP - CUM NCR at IP) (3.2) (PO - 3yrs) / (4yrs - 3yrs) = (0 - (-3.45)) / (15.1 - (-3.45)) PO= 3.19yrs which is also shown in Fig 3.4 below.

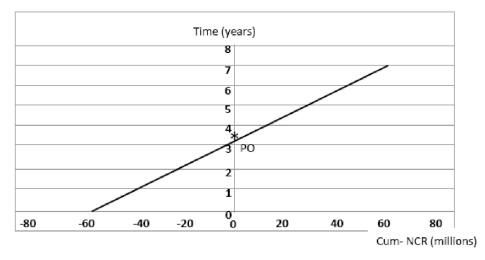


Fig 3.4 Plot of Time in Years Against Cum-NCR in Millions of Dollars, Reservoir Z-16T

3.2 CASE 2: Reservoir Z-16T with Water Influx

The storage capacity of reservoir Z-16T with $W_e - W_p = 0$, $N_p = 0.5825$ MMstb, N = 1130000, $B_o = 1.405$, $B_g = 0.004156$, $R_p = 3200$, $R_s = 847$, $W_e = 17.55$ MMscf, $W_p = 1.56$ MMscf was estimated as 6.69 Bscf and the total storage capacity was also estimated as 13.7 Bscf ^[3].

3.2.1 Storage economics of reservoir Z-16T with water influx

The storage economics of reservoir Z-16T with water influx has been evaluated to determine the NPV, Break-even point and Pay-out using Figs. 3.5 and 3.6 (see amendment). The values generated thereof were used to make plots of time against cumulative NCR and time against cumulative Net Revenue as shown in Figs. 3.7 and 3.8 respectively.

YEAR	INV	REV	EXP	NCR	CUM. NCR	PV @ 5%	PV @ 10%
0	59	0	0	(59.00)	(59.00)	(59.00)	(59.00)
1	0	27.14	16.11	11.03	(47.97)	10.50	10.02
2	0	27.14	16.11	11.03	(36.94)	10.00	9.11
3	0	27.14	16.11	11.03	(25.91)	9.52	8.27
4	0	27.14	16.11	11.03	(14.88)	9.07	7.54
5	0	27.14	16.11	11.03	(3.85)	8.64	6.84
6	0	27.14	16.11	11.03	7.18	8.23	6.22
7	0	27.14	16.11	11.03	18.21	7.83	5.66
8	0	27.14	16.11	11.03	29.24	7.46	5.14

Table 3.3 Summary of the cash flows for reservoir Z-16T (in millions \$)

3.2.1.1 Pay-out, PO, for Reservoir Z-16T

The pay-out for a project refers to the time (years) at which the initial investment on the project is just recovered. It is the time at which cumulative NCR becomes zero. From Table 3.3, cumulative NCR becomes zero between the 5th and 6th year. In this project work, 5 and 6 years were used as the initial point (IP) and final point, (FP) respectively. Applying interpolation:

(PO - IP) / (FP - IP) = (0 - CUM NCR at IP) / (CUM NCR at FP - CUM NCR at IP) (PO - 5yrs) / (6yrs - 5yrs) = (0 - (-4020681)) / (6985971 - (-4020681)) PO = 5.37yrs which is also shown in Fig 3.7 below.

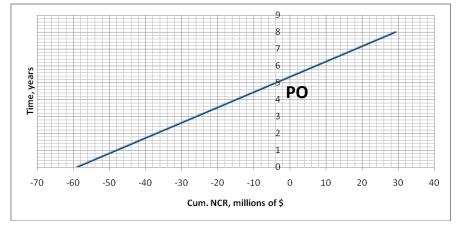


Fig 3.7 Plot of Time in years against Cum NCR in millions of dollars for reservoir Z-16T with water influx

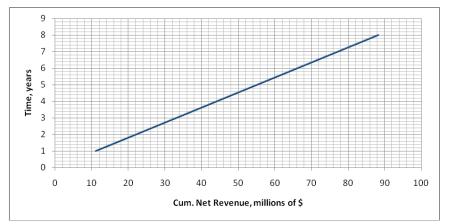


Fig 3.8 Plot of Time in years against Cum Net Rev in millions of dollars for reservoir Z-16T with water influx

3.2.1.2 Calculation of Net Present Value and Internal Rate of Return

From Table 3.3, the Net Present Value, NPV at an expected rate of return/discount rate of 5% which is the sum of all the Present Values in that column = \$10.5M + \$10M + \$9.52M + \$9.07M + \$8.64M + \$8.23M + \$7.83M + \$7.46M - \$59M = \$12.29M

The Net Present Value, NPV at an expected rate of return/discount rate of 10% which is the sum of all the Present Values in that column = \$10.02M + \$9.11M + \$8.27M + \$7.54M + \$6.84M + \$6.22M + \$5.66M + \$5.14M - \$59M = (\$0.156M)

The internal rate of return (IRR) on investment for a project is the rate of return that makes the net present value of all cash flows from a particular investment equal to zero. The higher the IRR of a project, the more desirable it is to undertake the project. Table 3.4 is a table of the net present values for reservoir Z-16T at various discount rates, which was used in generating a plot of NPV against discount rate as shown in Fig 3.9 for the determination of the IRR which is 9.93%. This value is the discount rate at which the NPV equals zero.

Discount Rate (%)	NPV (\$)
5	12.29M
10	(0.16M)
15	(9.51M)
20	(16.68M)

Table 3.4 NPV at various discount rates, reservoir Z-16T

Fig 3.9 Plot of NPV in millions of dollars against Discount Rate in % for reservoir Z-16T with water influx

Table 3.5 Result of Storage Economics for Z-16T

	Reservoir Z-16T without Water Influx	Reservoir Z-16T with Water Influx
Total Storage Capacity	17.07 Bscf	13.7 Bscf
Working gas capacity	8.8 Bscf	6.69 Bscf
Acquisition cost	\$28.79 million	\$28.79 million
Development cost	\$10.26 million	\$10.26 million
Cost of gathering facilities	\$20 million	\$20 million
Cost of cushion gas	\$4 400	\$3 345
Annual storage cost	\$17.15 million	\$16.16 million
Total investment cost	\$59.1 million	\$59.1 million
Gross Revenue	\$35.7 million	\$27.16 million
Annual Net Revenue	\$18.55 million	\$11 million
IRR	26.8%	9.93%
Pay-out	3.19 years	5.37 years
Break-even point	\$59.1 million	\$59.1 million
NPV @ 10% after 8 years	\$39.86 million	\$12.29 million

4. Conclusion

The result of the economic analysis in this work has shown that reservoir Z-16T is suitable for conversion to underground storage purpose. From the economic indicators considered, the following conclusions are made:

- 1. The storage capacity of reservoir Z-16T reduced from 8.8Bscf to 6.69 Bscf without and with water influx respectively.
- 2. The cushion or base gas required for the pressure maintenance already exists in both cases.
- 3. A potential investor in gas storage business can check the profitability of any depleted reservoir using the computer models developed in this work.
- 4. The internal rate of return (IRR) which is used as profit indicator was 26.8% and 9.93% without and with water influx respectively.
- 5. The Net Present Values at expected rate of return of 5% without and with water influx are \$39.86 million and \$12.29 million respectively.
- 6. The pay-outs without and with water influx are 3.19 years and 5.37 years respectively.

Nomenclature

BConstant 2nR2ihΦ(Cw + Cp)BoOil formation volume factorBgGas formation volume factorByWater formation volume factorBwWater formation volume factorBwWater formation volume factorBcfBillion standard cubic footBcfBillion standard cubic footBcfBillion cubic footBcfBillion cubic footBcfBillion cubic footBcfBillion cubic footBcfBillion cubic footBcwCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of pipelinesCharterCost of pipelinesCmeterCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion British Thermal UnitMMscfNillion standar	А	Acquisition cost
BoOil formation volume factorBgGas formation volume factorBgiInitial Gas formation volume factorBwWater formation volume factorBscfBillion standard cubic footBcfBillion cubic footBtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of pipelinesCompCost of pipelinesCompCost of pipelinesCompCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet resent ValueNPWNet resent ValueNPWNet resent ValueRpGas oil ratio		
BgGas formation volume factorBgiInitial Gas formation volume factorBwWater formation volume factorBscfBillion standard cubic footBcfBillion cubic footBtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of purchasing remaining gas in formationCDDrilling costCwsCost of firstalling wellhead structuresCgsCost of Compressor stationsCpipelineCost of pipelinesCommetrCost of pipelinesCum NCRCumulative Net Cash recoveryCtablated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentINERInternal Rate of ReturnMMButMillion British Thermal UnitMMScfMillion British Thermal UnitMMScfNull in placeNpCumulative Oil ProductionNP	_	
BgiInitial Gas formation volume factorBwWater formation volume factorBscfBillion standard cubic footBcfBillion cubic footBtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of pipelinesCompCost of pipelinesCmeterCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentINVInvestmentINKMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present ValueNPWNet Present ValueRpGas oil ratio	-	
\vec{Bw} Water formation volume factorBscfBillion standard cubic footBtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of formerssor stationsCpipelineCost of pipelinesCompCost of pipelinesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion stridard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present ValueNPWNet Present ValueREVRevenueREVRevenueREVRevenueRPGas oil ratio	-	
BscfBillion standard cubic footBcfBillion cubic footBtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of purchasing remaining gas in formationCDDrilling costCwsCost of pipelines stationsCpipelineCost of compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIRRInternal Rate of ReturnMMBtuMillion standard cubic footNAnnual storage costNInitial OI in placeNpCumulative Oil ProductionNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	-	
BcfBillion cubic footBtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of installing wellhead structuresCgsCost of gas gathering systemCcompCost of compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPWNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueREPGas oil ratio		
BtuBritish thermal unitCCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of fas gathering systemCcompCost of Compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMScfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpWNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueREVRevenueRepGas oil ratio		
CCost of cushion gasCwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of for gas gathering systemCcompCost of Compressor stationsCpipelineCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointF13Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion standard cubic footNAnnual storage costNInitial Oil in placeNpVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueRevRevenueRpGas oil ratio		
CwaCost of acquiring abandoned wellCgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of gas gathering systemCcompCost of Compressor stationsCpipelineCost of purchasing facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMScfMillion standard cubic footNAnnual storage costNInitial Oil in placeNPVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueRevGas oil ratio		
CgremCost of purchasing remaining gas in formationCDDrilling costCwsCost of installing wellhead structuresCgsCost of gas gathering systemCcompCost of Compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial Investment costINVInvestmentIRRInternal Rate of ReturnMMBtuMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present ValueNPWNet crash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio		
CDDrilling costCwsCost of installing wellhead structuresCgsCost of gas gathering systemCcompCost of Compressor stationsCpipelineCost of Compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present ValueNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Cwa	
CwsCost of installing wellhead structuresCgsCost of gas gathering systemCcompCost of Compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMScfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Cgrem	
CgsCost of gas gathering systemCcompCost of Compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	CD	
CcompCost of Compressor stationsCpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNpCumulative Oil ProductionNPVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio		
CpipelineCost of pipelinesCmeterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNpCumulative Oil ProductionNPVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Cgs	Cost of gas gathering system
CreaterCost of metering facilitiesCum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNPVNet Present ValueNPWNet present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Ccomp	Cost of Compressor stations
Cum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNPVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueREVRevenueRpGas oil ratio	Cpipeline	Cost of pipelines
Cum NCRCumulative Net Cash recoveryCtabulated aquifer function (from time t to time t i)DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNPVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueREVRevenueRpGas oil ratio	Cmeter	Cost of metering facilities
DDevelopment costDP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Cum NCR	Cumulative Net Cash recovery
DP ihalf pressure drop at interface from time (i-1) to (i+1).EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	С	tabulated aquifer function (from time t to time t i)
EIAEnergy Information AdministrationEXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	D	Development cost
EXPExpensesFPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	DP i	half pressure drop at interface from time (i-1) to (i+1).
FPFinal pointFt3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	EIA	Energy Information Administration
Ft3Cubic footIInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	EXP	Expenses
IInitial Investment costINVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	FP	Final point
INVInvestmentIPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Ft3	Cubic foot
IPInitial PointIRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Ι	Initial Investment cost
IRRInternal Rate of ReturnMMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	INV	Investment
MMBtuMillion British Thermal UnitMMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	IP	Initial Point
MMscfMillion standard cubic footNAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	IRR	Internal Rate of Return
NAnnual storage costNInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	MMBtu	Million British Thermal Unit
NInitial Oil in placeNpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	MMscf	Million standard cubic foot
NpCumulative Oil ProductionNPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Ν	Annual storage cost
NPVNet Present ValueNPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	N	Initial Oil in place
NPWNet Present WorthNCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	Np	Cumulative Oil Production
NCRNet cash recoveryPOPay-outPVPresent valueREVRevenueRpGas oil ratio	NPV	Net Present Value
POPay-outPVPresent valueREVRevenueRpGas oil ratio	NPW	Net Present Worth
PVPresent valueREVRevenueRpGas oil ratio	NCR	Net cash recovery
REV Revenue Rp Gas oil ratio	PO	Pay-out
Rp Gas oil ratio	PV	Present value
\mathbf{F}	REV	Revenue
Ps Gas solubility	Rp	Gas oil ratio
KS Gas solubility	Rs	Gas solubility

S Total storage cost

V Storage capacity

- Vinj Volume of gas injected
- *Vw Estimated volume of aquifer water*
- We Water encroachment
- Wp Water Production

References

- [1] American Gas Association (1997): AGA Monograph on Underground Gas Storage, Arlington, V.A.
- [2] Anyadiegwu C.I.C. (2004): Examining the prospects of Natural Gas Liquids Extraction from Nigerian Gas flare stream. Int'l Research Journal in Engineering, Science and Tech (IREJEST) Vol. 1, No 2, pp 60 - 69.
- [3] Anyadiegwu C.I.C. et al., (2012): Estimation of Storage Capacity of an Underground Gas Storage Reservoir, International Journal of Academic Research, Vol 4 No 4, July, 2012, pp 116 122, Azerbaijan.
- [4] Bruns J.R., Fetkovich M.J. and Meitzen V.C., (1965): The Effect of Water on P/Z Cumulative Gas Production Curves, JPT pp. 287-91.
- [5] Latvian Business Guide, (2006): Geological and Economic Study on Possible Underground Natural Gas Storage Development in Latvia, Dubele District, Nr.2006-G130/06-TREN/06/TEN-E-S07.68968, Executive Summary, Final Report, November, 50 pp.
- [6] Lee J. and Wattenbarger R.A., (2002): Gas Reservoir Engineering, SPE Text Book Series Vol 5, Texas, U.S.A.
- [7] Medici M., (1974): The Natural Gas Industry: A Review of World Resources and Industrial Applications, London, Newness – Butterworths, SPE Reprint Series No13 Gas Technology 81, 1977.
- [8] Nigerian Gas Report, (2011): Nigerian Energy Digest, Vol 1, pp. 6-7, 64
- [9] Oilserve Nigeria Limited (Jan, 2004): Ongoing Power Plant Stations and Pipeline Projects Listing, Port-Harcourt, Nigeria.
- [10] Phillips O. (2009): Profitable Carbon dioxide, presented on May 13, at the University of Wyoming Carbon dioxide Conference, U.S.A.
- [11] Revak Amy, (May 26, 2011): Commissioners Advance Lease for Natural Gas Compressor Station, Herald Standard, Posted: Friday, May 27, p.1
- [12] United States Energy Information Administration, (EIA), (2004): The Basics of Underground Natural Gas Storage, Natural Gas Storage Report, August 2004 Update, Retrieved from <u>http://ir.eia.gov/ngs/ngs.html</u>, pp. 1-7.
- [13] William E.B. (1997): Water Influx and it's Effect on Oil Recovery, Part 1, Supri Tr. 103 Report, prepared for U.S. Department of Energy, Tulsa, U.S.A.
- [14] Woodside Petroleum, (2010): Perth, Western Australia, Retrieved from <u>http://en.wikipedia.org/wiki/natural.gas.storage</u>.
- [15] World Bank Publications, (2010): The Future of The Natural Gas Market In Southeast Europe, 1818 H Street, NW., Washington DC 20433, U.S.A.
- [16] Zachmann G. and Neumann A., (2007): Natural Gas Storage, Tales From Two Countries, Drafted May 31, DIW, Berlin.

Amendment: Figures

STORAGE ECONOMICS FOR PAYOUT CALC	
PAYOUT CA	LCULATION
Enter Value for Initial Point (IP):	3
Enter Value for Final Point (FP):	4
Enter Value for Cum NCR at IP:	-3467832
Enter Value for Cum NCR at FP:	15061224
Pay-Out = 3.1871564314	19872
Compute Back	Print Exit

Fig 3.1 Payout Calculation for reservoir Z-16T

STORAGE ECONOMICS DESIGN CALCULATION						
	COMPUTATOR FOR ST	FORAGE ECONO	MICS I			
Preliminary Data Input		Calculated Paramet	ers (Result)			
Enter Value for Depth:	11 000	hitial Cost of Well =		1650000		
Enter Value for Cost of Drilling per Foot:	150	Acquisition Cost of Aba	ndoned Well, Cwa	= 3300	0	
Enter Value for Percentage Salvage:	02	Cost of Remaining Gas is	n Formation, CGr	em = 28460	1600	
Enter Value for Remaining Gas in Formation (Grem):	7 010 000 000	Total Acquisition Cost =		28790600		
Enter Value for Gas Price (\$/Nscf):	4.06	Development Cost =		10260000		
Enter Value for Cost of Wellhead Structures (Cws):	10 000	Cost of Gas Gathering S	ystem =	2000000		
Enter Value for Cost of Gathering System (Cgs):	50 000	Cost of Cushion gas =		4400		
Enter Value for Cost of Compressor Stations:	9 600 000	Total Investment Cost =		59055000		
Enter Value for Cost of Pipeline and Metering Station	s: 10 400 000	Top Storage (mmBtu) =		9072800		
Enter Value for Top Storage:	8 800 000 000	Reservoir Storage Cost		4354944		
Enter Value for Annual Labour Cost.	4 800 000	Annual Operating Cost =	12844000		Annual Storage Cost =	17198944
Enter Value for Annual Maintenance Cost.	7 240 000	Gross Revenue =	35728000		Annual Net Revenue =	18529056
Enter Value for Annual Management Cost.	804 000	NCR at 0 yr =	-59055000		NCR (Annual) =	18529056
Enter Value for Discount Rate ()):	01	Cum NCR at 1yr =	-40525944		Cum NCR at 2yrs =	-21996888
Calculate	Clear	Cum NCR at 3yrs =	-3467832		Cum NCR at 4yrs =	15061224
Print	Close	Cum NCR at 5yrs =	33590280		Cum NCR at 6jts =	52119336
		Cum NCR at 7yrs =	70648392		Cum NCR at 8yrs =	8.917745E+07
Calculate Pay-Out		NIV after 8yrs =	39796145.7405	706		

Fig 3.2 Computed Storage Economics of reservoir Z-16T

Fig. 3.5 Storage Economics of reservoir Z-16T with water influx

P	AYOUT CA	ALCULATIO	ON
Enter Value for Init	ial Point (IP):	5	
Enter Value for Fina	al Point (FP):	6	
Enter Value for Cur	n NCR at IP.	-4020681	
Enter Value for Cur	n NCR at FP:	6985971.8	
Pay-Out =	5.365295517	17493	
Compute	Back	Print	Exit

Fig 3.6 Pay-back calculation for reservoir Z-16T with water influx