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Abstract 

In the study of an incompressible fluid in a hydrocarbon reservoir, developing a reliable model to 

predict the fluid behavior in the reservoir, based on diffusion mechanism and some mathematical pa-

rameters is necessary. In the present study, we have tried to develop a nonlinear model of parabolic 
type to estimate some parameters such as volumetric capacity and diffusion coefficient of an incom-

pressible fluid under layer diffusion in a homogeneous hydrocarbon reservoir. Initially for this type of 

fluid, Darcy’s law is applied along with a continuity equation to create a nonlinear differential equation 
of parabolic type under boundary conditions. Via an auxiliary problem and based on Schauder fixed-

point theorem and concepts of Banach spaces, we demonstrate the existence and uniqueness of solu-

tion for the aforementioned model. Afterward, we assume that the diffusion coefficient of the fluid is a 
polynomial function of degree n  with unknown coefficients, accordingly a numerical algorithm is pro-

posed for estimating the function as well as volumetric capacity of the fluid, so that the given error 

function becomes minimum.  

Keywords: Diffusion; Auxiliary problem; Banach space; Fixed point; Pre-compact set; Inverse problem. 

 

1. Introduction 

Classical solutions for a nonlinear diffusion equation, have been catalogued for many im-
portant problems [1-2]. Furthermore, this type of equation with several admissible boundary 
conditions have been employed as inverse nonlinear problem in order to numerically analyze 
the problems arising from the oil and gas processes. This work has been motivated by a class 
of important problems caused by the reservoir processes, such as layer diffusion of incom-

pressible fluid in a hydrocarbon reservoir. The diffusion equations of these problems can be 
characterized by parabolic differential equations along with the governing boundary condi-
tions. 

Determining unknown parameter in a parabolic differential equation has been previously 
treated by some authors [3-8]. Usually an over-specified data at the boundary 0x  is applied in 

determining the unknown parameter. Such problems typically arise in oil and gas reservoirs [9-10].  
As previously mentioned, in this work we consider a diffusion problem which occurs in a 

hydrocarbon reservoir. We assume that [11]: 
1. The desired fluid is incompressible such as oil and water whose density does not change 

under the pressure change. 
2. The problem is considered before well drilling and production operations.  
3. Regarding (2), the incompressible fluid can be in layer diffusion in reservoir rock. 

Darcy's law will govern the analysis of the fluid motion. It must be noted that we ignore 
the deposition of some materials such as asphaltene, so the reservoir rock can be considered 
completely homogeneous in terms of physical properties such as permeability and porosity. If 
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the volumetric capacity and the diffusion coefficient of the fluid, are respectively shown as u  

and a  then, in the most applied problems, a  will be a function of u  and the governing partial 

differrential equation will be nonlinear. Considering the boundary conditions and by using an 
over-specified data at 0x , we will prove the existence and uniqueness of  solution for this 

mathematical model in order to estimate the unknown parameters a  and u  which is impos-

sible in most cases. 

2. Mathematical formulation 

As the hydrocarbon reservoir has been completely homogeneous, viscosity and porosity 

degree   are constant. Also, volumetric capacity u  is a function of time and place, also 

 u0 . 

As mentioned earlier, the equation governs the fluid motion, is Darcy's law which along 
with the continuity equation are respectively as follows: 

)()( ugraduaq                                     u0                                                                (1) 

0)( 



qdiv

t

u
                                                                                                                           (2) 

q : volumetric flux of the fluid.  

In particular, by combining them we will have a one-dimensional, nonlinear, parabolic equa-

tion as below: 

))((
x

u
uadiv

t

u









                                                                                                                           (3) 

Supposing a time 0T we define:  TtxtxQT  0,10),( 2      

We assume that the volumetric flux of fluid )(q at the beginning and the end of the reservoir 

is known and respectively denoted by )(tg and )(th , then based on Darcy's law: 

)(),0()),0((),0( tgtu
x

tuatq 



                                                       (4) 

)(),1()),1((),1( thtu
x

tuatq 



  

Assuming that the initial distribution of volumetric capacity is zero:           
0)0,( xu                                                  10  x                                                               

So, we will have the following nonlinear inverse problem:     

))((
x

u
ua

xt

u













                                    10  x                   Tt 0            (5) 

0)0,( xu                                                10  x                                             (6) 

)(),0()),0(( tgtu
x

tua 



                                                       Tt 0                    (7) 

)(),1()),1(( thtu
x

tua 



                                                        Tt 0                    (8) 

As we will faced with many errors and problems during calculating diffusion coefficient a , 

so calculation and definition of a on TQ  is limited to the boundary of this area. Let us consider 

the following over-specified condition: 

)(),0( tftu                                                                            Tt 0                                  (9) 
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3. Auxiliary problem 

In this section, for the above problem we consider an auxiliary inverse problem. Assume 

that q  at the bottom of the reservoir )1( x  is zero. Therefore: 

))((
x

u
ua

xt

u













                                    10  x                   Tt 0                 (10) 

0)0,( xu                                               10  x                                           (11) 

)(),0()),0(( tgtu
x

tua 



                                                       Tt 0          (12) 

0),1( 



tu

x
                                                                         Tt 0       (13) 

)(),0( tftu                                                                           Tt 0       (14) 

Now, we assume that 
10 )(0 asaa   and 0s  also 

0a  and 1a  are constants. Consider 

the following transformation introduced for the first time by Cannon [12]: 


s

a dzzasC
0

)()(                                     0s                      (15) 

Note that 0)()( 0  asasCa , therefore aC  is strictly increasing and invertible. Per so-

lution ),( txu  of the problem (10) to (14) we define ),( txv : 


),(

0
)()),((),(

txu

a datxuCtxv                                         (16) 

Then the auxiliary problem will be as follows: 

),()(ˆ),(
2

2

txv
x

vatxv
t 







                      10  x                   Tt 0     (17) 

0)0,( xv                                                 10  x                     (18) 

)(),0( tgtv
x





                                                                     Tt 0   (19) 

0),1( 



tv

x
                                                                          Tt 0    (20) 

)()())((),0(
)(

0
tFdatfCtv

tf

a                                  Tt 0  (21) 

where: )(()(ˆ 1 vCava a
                                                                (22) 

It is clear that determining )(ˆ va  results in )(ua , also in according to equation (16) there is 

one-to-one correspondence between the original problem solution and the auxiliary problem 
solution. 

4. Existence and uniqueness of solution for model 

We consider the auxiliary problem (17) to (21) as well as the following hypothesis:  

A. )(2

TQCv . 

B. Mtv
x





),0(

2

2

، ],0[ Tt and 0M  . 

C. ],[ˆ 1 BACa   where ),(min txv
Q

A
T

 and ),(max txv
Q

B
T

 . 

D.  ],[ BAs  0)(ˆ sa  ،and â  is true on ],[ BA  in Lipschitz condition. 

E. )(ˆ sa  in (17) to (21), is true. 
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F. ],0[, 1 TCgF  and 0)0()0(  gF . 

G. 0)(),(  tgtF ، ],0[ Tt . 

   Now we define: 

),(
,0

txvSupu
T

QT
Q

                             (23) 

  2)
2

,
2

(),
1

,
1

(, 2

21

2

21

2211
),(),(

)( 
ttxx

txvtxv
SupvR

T
Qtxtx

T
Q







        (24) 

Also: 
C Banach space of functions v ، continuous on TQ . 

1C Banach space of functions v ، with continuous first partial derivatives on TQ . 

2C Banach space of functions v ، with continuous second partial derivatives on TQ . 

Above spaces are respectively with the following norms: 

T
QT

Q
T

Q
vRvv

,,0,
)(


             (25) 

T
QT

Q
T

Q x

v
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
 





                    (26) 

T
Q

T
QT

QT
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T
Q t

v

x

v

x

v
vv

,,,
,,2 2

2


 















            (27) 

Now for 0x we have: 

),0()),0((ˆ),0(
2

2

tv
x

tvatv
x 







                                                              (28) 

Regarding the condition (21): 

),0())((ˆ)(
2

2

tv
x

tFatF



                                                                                                     (29) 

Now we set: 

)(tFs   

As 0)(  tF  , so function F is invertible and can be written as: 

)(1 sFt  , )](),0([ TFFs  

Hence, according to equation (29) we have: 

)

))(,0(

))((
()(ˆ

1

2

2

1

sFv
x

sFF
sa










                                              (30) 

Now, we consider the following required lemma: 

Lemma: We assume that )ˆ,( av  is a solution for problem (17) to (20). In this case, ),( txv  

is true for equation (21) if and only if )(ˆ va is true in the condition (30): 

Proof: As )ˆ,( av  has been assumed as a solution for problem (17) to (20),  so  if ),( txv is 

true for (21), (according to the previous process) )(ˆ va will be true for (30).Also, if )(ˆ va is true 

for condition (30) and ),( txv  is a solution for problem (17) to (20) then we must show that 

)(),0( tFtv  . 

By subtracting equation (29) from equation (28): 
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  ),0())((ˆ)),0((ˆ)(),0(
2

2

tv
x

tFatvatFtv
t 







                                                                  (31) 

Now we define the following function: 

)(),0()( tFtvt                                                                                                                       (32) 

So, we can write: 

),0())((ˆ)),0((ˆ)(
2

2

tv
x

tFatvat



                                                                                (33) 

On the other hand, according to the assumption D, a positive number 1k  can be found:  

)(),0())((ˆ)),0((ˆ tFtvktFatva                                                                                   (34) 

So, we have: 

),0()()(
2

2

tv
x

tkt



                                                                                                        (35) 

However, according to the assumptions D, E and the equation (29) we can conclude that:       

0),0(
2

2





tv

x
                                                                                                           

Therefore, equation (35) can be written: 

)()()( tMtkMt                                                                                                          (36) 

Or: 

)()( tMt                                                                              

By integrating the above inequality, we have: 


t

dzzMt
0

)()0()(                                                                                                                   (37) 

According to Gronwall inequality, we conclude that: 





t
dzzM

et 0

)(

)0()(



                                                                                                                   (38) 

But, regarding assumption F and equation (18), 0)0(   so ],0[ Tt 0)( t , in other 

words 

],0[ Tt , )(),0( tFtv  . 

We have shown that if )(ˆ va  is true in equation (30) then v  is true in equation (17) to (21).  

Now, we consider the following problem: 

),(

))(,0(
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x
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FF
txv

t 







































                             in 

TQ                                        (39) 

0)0,( xv                                               10  x                                                                 (40) 

)(),0( tgtv
x





                                                                   Tt 0                                   (41) 

0),1( 



tv

x
                                                              Tt 0                                   (42) 

)(),0( tFtv                                                                Tt 0                                  (43) 

where rC with norms 
TQ,1 

and 
TQ,1 

that 10     and we show these 

norms by symbols 1
rC and 1

rC . Also,   1
rC  is true in the following conditions:  
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1. 

T
Q,1 




, 0r  

2. ),( tx  in conditions (40) to (43) is true. 

Per   1

r
C , problem (39) to (43) has a unique solution [13]. Now we consider transfor-

mation P  so that Pv   and   1

r
C , also v is a solution for problem (39) to (43).  

Theorem 1: Assume that )(tg and )(tF  are true in F and G. Then per   1

r
C , Pv 

 has a fixed point. 
Proof: First, we can mention the Schauder fixed-point theorem. According to this theorem, if 

Y is a subset of the Banach space X and S  is a continuous function on Y and SY is located in

Y and pre-compact, then S  has a fixed point e.g. Yy  0
so that 

00 ySy  . 

It must be noted, a set is a pre-compact set if and only if that is a subset of a compact set.  

First, we show that 1

r
PC  is in 1

r
C , then   function is defined as: 

  v                                                                                                                                   (44) 

where   1

r
C , so we have: 

),(),( txvtx                   in 
TQ                                                                                    

Now we write: 
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Therefore, according to equation (39) we have: 
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              in

TQ   (45) 

Also, it is clear that: 

0)0,( x                                               10  x                                 (46) 

0),0( t                                                                                Tt 0           (47) 

0),1( t                                                                                 Tt 0              (48) 

According to the theorem, there is a positive integer such as k  that for 1  the following 

inequality is true [14]: 
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
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
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








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


                                        (49) 

Also, in definition of 
1

r
C we can choose r  so that: 
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Accordingly, we will have: 
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In other words, P  transforms 1

r
C  to itself. Similarly, P  transforms 

1

r
C  to itself as 

well. Now, we can state the following theorem: 

Theorem 2: Let D  is a bounded set of n space, also p
C is a set of functions with htm  

order partial derivatives. These derivatives are locally continuous Holder functions. Also, we 

assume that 10   and qp 0 . In this case, the bounded subset of q
C is a       

pre-compact subset of q
C  [15]. 

By definition, function f  in 
0xx   is a continuous Holder function of order  , if there are 

a constant number such as r  and a small sized neighborhood of 
0x , so that for each x  in 

this neighborhood we will have:


00 )()( xxrxfxf  [16].  

The space of single-variable functions whose thm  derivative is  a continuous Holder func-

tion of order 10   on ],[ ba , is shown by ],[ baCm 
. 

In according to this theorem, 
 


11

rr
CPC is a pre-compact subset of 

p

r
C . At the 

present, we have to prove the continuity of P .So we put 
mvv  where Pv   and 

mm Pv  are solutions for problem (45) to (48). So it is clear that   is true in the following 

equation: 
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So, when 0
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
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  we have: 
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On the other hand, according to the theorem [14]: 

 0
,1,1


 mm

cPPv
T

Q
T

Q



                           (54) 

So when  m
, we will have: 

0
,1




T
Q

PP
m 

                                                                             (55) 

In other words,  PmP   that means P  is a continuous transformation. So using the 

Schauder fixed-point theorem we conclude that P has a fixed point. 

5. A proposed numerical algorithm 

With considering the problem (10) to (14) we can assume that the diffusion coefficient of 

)(ua  is a polynomial of degree n  with unknown coefficients of 
ncc ,...,0
: 

n

nucuccua  ...)( 10
               Nn                                                        (56) 

The aim is to find degree and unknown coefficients of the above polynomial for any time. 
The equation (10) is written in the form of differential as below: 





















2

22 )
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)
1,

(()
,

)
,

((

2

1

,

1

h

ji
u

ji
ua

ji
u

ji
ua

ji
u

tk

xx 
                              (57) 

Now, according to equations (11) to (13) and assuming 01.0t  for any time, we get the 

following nonlinear equations system: 

0))(22()(2 0011  uuauua                                       0i                                (58) 

0)())(22()( 1111   iiiiii uuauuauua                 9,...,1i                  (59) 

0))(22()(2 101099  uuauua                                        10i                   (60) 

Now we can consider the following steps: 

1. In the first stage, we assume that 
0)( cua  .According to the over-specified data (14), in 

the system of equations (58) and (60), )(ua  is known and 
0c  as unknown , is inserted 

instead of )( iua and then the values of 
0c and 

iu  for 10,...,1i  will be calculated by solving 

a system with 11 equations and 11 unknowns. Now )(ua  is known, so the equations (10) 

to (13) can be solved for Tt 0 and the minimum of function  
T

dttFtuJ
0

2

1 )(),0(

can be obtained. 

2. In the second step, with regards to 
0c  has been obtained at the first step, by assuming

uccua 10)(  ,  coefficient 
1c  can be calculated by solving equations (58) to (60) and we 

calculate the minimum function  
T

dttFtuJ
0

2

2 )(),0( .If the value of 2J  is less than 1J

, degree of the polynomial )(ua will increase in the next step, otherwise we will stop this 

process. 

6. Conclusion 

The present work has put forward a nonlinear model which can be used to study the be-
haviour of an incompressible fluid in layer diffusion in a hydrocarbon reservoir. After proving 
the existence and uniqueness of solution for the problem, we have proposed a numerical 
algorithm in order to estimate the unknown parameters of the problem as described earlier. 
At the first, the mentioned steps in the algorithm, result in estimating the values of )(ua at 
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time 01.0t , afterward, we need to repeat the steps to obtain the diffusion coefficient rates 

at every time level .In these time levels, if the rates are the same then one of them is consid-
ered as the diffusion coefficient, otherwise we have to fit a curve to the obtained diffusion 
rates. This curve is the total diffusion rate. Eventually, it is very interesting to illustrate some 

numerical results for unknown parameters as a numerical experiment. 
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