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Abstract 

This study is intended to provide a one-dimensional inverse nonlinear problem to investigate molecular 

diffusion of CO2 in CH4 in a hydrocarbon reservoir. Generally, boundary fluxes at the top and the bottom 

of the reservoir are non-zero. Furthermore, it is not practically possible to identify the exact boundary 
conditions, therefore we are faced with an inverse problem which is discussed with two non-zero and 

unknown boundary conditions via the auxiliary problems. We will consider the case where the govern-

ing boundary conditions are defined as )),0(( tuf and )),1(( tuf so that u  and f  are unknown . We 

will provide the conditions for f  where the desired problem has a unique solution. Assuming an over-

specified data )(),0( ttu   with several admissible conditions for  , we will prove the existence 

and uniqueness of solution ),( ** fu  for the problem. In order to achieve this goal, we will demon-

strate that a defined transfer T  has a unique fixed point. Accordingly, we need to prove that T  is 

a contraction. During this process, we will apply the other governing equations and functions such as 

Abel integral equation, Jacobi function, Volterra operators, Lipschitz function and Holder function on 

the discussed inverse problems.  

Keywords: Molecular Diffusion; Fick's first law; Fixed point; Contraction; Jacobi function; Volterra operator; Abel 

equation; Lipschitz function. 

 

1. Introduction 

One of the most practical methods for EGR (Enhanced Gas Recovery) from a hydrocarbon 
reservoir, is  CO2 injection in the reservoir. In this method, high pressure CO2 is injected in 
the reservoir, and the remaining hydrocarbon flows into the wellbore. About 80% (or more) 
of natural gas is methane (CH4). Therefore a molecular diffusion between CO2 and CH4 can be 
introduced. At 0t  under the known temperature and pressure, the density of CO2 is more 

than CH4 , thus a vertical diffusion will occur between the gases. When the gas equilibrium is 
reached, the process will stop.  

In this study, we assume that the reservoir is horizontal and uniform. Also, its upper half 
and lower half are respectively filled by pure methane and pure carbon dioxide. Uniformity of 
the reservoir means that the pressure and temperature are constant, so the gases have the 

same and fixed temperature.  
Fick's first law will govern the behavior of each of the gases. On the other hand, we are 

faced with a vertical diffusion in the reservoir so the resulted diffusion equation will be one-
dimensional nonlinear equation (ODE) which along with the governing boundary conditions 
will show a type of nonlinear inverse problems (NIP). In addition, it is not practically possible 

to identify the exact boundary conditions, thus this problem will be discussed with unknown 
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boundary conditions. In recent years, an important mathematically challenging and well-stud-
ied class of these problems is, to prove the existence and uniqueness of solution and investi-
gate the unknown functions that appear in the partial differential equations. In this regard, 
one may find some studies in the literature which have been often carried out on heat con-
duction problems. For example, Rosch has investigated the identification of unknown boundary 

functions as optimal control problems [1-2]. Some researchers have employed the boundary 
element method to approximate the unknown boundary functions [3-4]. 

2. Mathematical formulation [5-6] 

We consider that: 
a) Attribute 1 is for CO2 and attribute 2 is for CH4. 

b) l :  Thickness of the reservoir 

c) 
12D : Effective diffusion coefficient of the composition of two gases. 

d)  : Mass density of the composition of two gases. 

e) 
i  : Mass density of 

thi the gas             2,1i  

f) 
i

C : Concentration of 
thi gas                   2,1i  

g) C  : Concentration of the gas composition          

h) 
*
iJ : Molar concentration of 

thi gas                 2,1i  

i) z  : Height  

j) 
ix  : Mole fraction of 

thi gas                          2,1i  

k) 
i

v : Speed of 
thi gas                                         2,1i  

l) 
i

N : Molar flux of 
thi gas                                   2,1i  

m)  
iV : Partial molar volume of 

thi gas                     2,1i  

n) 
*v : Molecular velocity 

Generally,
12D is a function of temperature and pressure of the gas composition. When we 

ignore the changes in pressure and temperature and assume that the reservoir is uniform, we 

actually consider 
12D is constant. We follow the problem assuming that 

12D is constant. 

As we know  
i

N and 
*
iJ are respectively defined as follows: 

iii
vCN                                                 2,1i                                      (1) 

)( ** vvCJ
iii                                       2,1i                                              (2) 

We put in the recent equation the following relation: 

C

j
v

j
C

v
j






2

1*                                                                                          (3) 

And then, we have: 





2

1

*

j
jj

i

iii vC
C

C
vCJ                            2,1i                                     (4) 
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Regarding 
C

C
x i

i  , 2,1i  and (1): 





2

1

*

k
kiii NxNJ                                   2,1i                                     (5) 

Now, if   is constant (uniform mass density), Fick's first law will be defined according to 

the following equation: 

z
DJ i

i 






12
*                                         2,1i                                                                         (6) 

In the case that   is not constant, the law will be stated as follow: 

z

i
x

i CDJ





12
*                                                     2,1i                                                                           (7) 

In the more general case, we assume that   is not constant. According to equations (5) 

and (7): 

 
z

i
x

ii
CDNNxN





 1221
                    2,1i                   (8) 

In addition, the following equation is for 
i

N and 
iV : 

02211  NVNV                                                                                            (9) 

Using equations (8) and (9), we have: 























2

1

1
1

1
12

11
V

V
x

z

x
CD

N                                                                 (10) 

Similarly: 























1

2
2

12

2

11

2

V

V
x

z

x
CD

N                                                                                       (11) 

If the concentration of each of the gases is shown as ),( tzCC ii  , 2,1i , as the concen-

tration of the gas composition is fixed, we can write  

CtzCtzC  ),(),( 21
.                                                                                            (12) 

On the other hand 
ii CxC   so 121  xx .Therefore, equations (10) and (11) can be writ-

ten: 























2

1

1
1

1
12

11
V

V
x

z

C
D

N            and         

1

2

2
12

2

)1( 11
V

V
xx

z

C
D

N








                          (13) 

Regardless of chemical reactions, Molar balance equation would be: 

0









z

N

t

C
ii                                                                                         (14) 

Substituting equation (13) in equation (14), we have: 
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0
2

11

1

1

1

12

1 



























 























z

V

V
x

z

C
D

t

C
      and       0

)1(

1

2

11

2

12

2 



























 























z

V

V
xx

z

C
D

t

C
        (15) 

As for the ideal gases, 
iV  is constant: 

P

RT
Vi                                                      2,1i                                 (16) 

So (15) can be written as: 

0
12












 













z

z

C
D

t

C
i

i                             2,1i                                  (17) 

Finally, we have the diffusion equation as follow: 

2

2

12
z

C
D

t

C ii









                                        2,1i                     (18) 

Now, we consider boundary flows at the top and the bottom of the reservoir. In other words, 
we have the following boundary conditions (fluxes at the top and bottom of the reservoir is 
not zero): 

)(0
0

tg
z

C
i

z

i 






     and    )(1 tg
z

C
i

lz

i 






   2,1i                   (19) 

In real terms, )(0 tgi
and )(1 tgi

 cannot be accurately identified. So, in this case, we are faced 

with an inverse problem with the boundary conditions. Assuming t
l

D
t 12~
  and z

l
z

1~  , we de-

fine iC
~

so that ),()
~

,~(
~

tzC
C

l
tzC ii  . Now we can write: 

t

C

l

CD

t

C ii
~

~

2
12









     and     

z

C

l

C

z

C ii
~

~









                 2,1i                   (20) 

On the other hand: 

2

2

2
12

122
12

~

~

~

~

~
1

~

~

z

C

l

CD

z

C

l

C
D

zlt

C

l

CD

t

C iiii





































   2,1i                   (21) 

Regarding equation(20) we can result: 

2

2

~

~

~

~

z

C

t

C ii









                                                             2,1i                     (22) 

Also, the boundary conditions (19) will change as follows: 

)
~

(~
~

~

0
0~

tg
z

C
i

z

i 






     and           )
~

(~
~

~

1
1~

tg
z

C
i

z

i 






        2,1i                (23) 

In an optimistic mode, we assume that: 

))
~

,(
~

()
~

(~
00 tCftg ii     and        ))

~
,(

~
()

~
(~

11 tCftg ii       2,1i                 (24) 
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where f  is an unknown function. We provide the conditions in which, the problem has a 

unique solution. 

3. Existence and uniqueness of the solution 

Consider the following inverse problem: 

2

2

x

u

t

u









                               10  x           Tt 0                          (25) 

)()0,( xxu                            10  x                                        (26)

)(),0( tgt
x

u





                                                  Tt 0                               (27) 

)(),1( tht
x

u





                                                   Tt 0                                       (28) 

We consider the solution of this problem as wvu  , where v  and w  are respectively 

the solutions of the following inverse problems as auxiliary problems. 

2

2

x

v

t

v









                               10  x            Tt 0                                          (29) 

0)0,( xv                               10  x                                                                    (30)

)(),0( tgt
x

v





                                                  Tt 0                                         (31) 

)(),1( tht
x

v





                                                  Tt 0                                          (32) 

And: 

2

2

x

w

t

w









                             10  x            Tt 0                         (33) 

)()0,( xxw                           10  x                                                                 (34)

0),0( 



t

x

w
                                                       Tt 0                                  (35) 

0),1( 



t

x

w
                                                       Tt 0                                      (36) 

Now, we discuss one of the basic properties of Jacobi function which will be used in this 
topic [7-9]. Jacobi function is defined as follows: 







n

tnxKtx ),2(),(         x               0t                                                  (37) 

Or: 

 





1

),2(),2(),(),(
n

tnxKtnxKtxKtx         x          0t             (38)  

  









11

),2(2),0(),2(),2(),0(),0(
nn

tnKtKtnKtnKtKt  0t          (39) 

If we define the function H so that 







1

2

1
)(

n

t

n

e
t

tH


then:                    

)(
4

1
),0( tH

t
t 


                 0t                                                                (40)  

In this case, the function H  is located in the set ),0( C  such that: 
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0)0( nH                                  Nn                                             (41) 

The following theorem is an important application of Jacobi function: 
Theorem 1: Problem (29) to (32) has a solution as follow [8]: 

 

tt

dhtxdgtxtxv
00

)(),1(2)(),(2),(                   (42) 

Therefore, the solution of problem (25) to (28) will be: 

 

tt

dhtxdgtxtxwtxu
00

)(),1(2)(),(2),(),(                (43) 

And then for 0x : 

 

tt

dhtdgttwtu
00

)(),10(2)(),0(2),0(),0(                    (44) 

Now we define: 

   

tt

dgtdhttutwtS
00

)(),0()(),1(),0(),0(
2

1
)(          (45) 

Equation (45) is an Abel integral equation. According to equation (40) we can write the 
recent equation as:  

 





















ttt

dgtH
t

d
gdgtH

t
tS

000

)()()(
4

1
)()(

)(4

1
)( 










    (46) 

If )(tS  is absolutely continuous and )(tS   is bounded then, as equation (46) is an Abel in-

tegral equation it can be written as follow: 



















 

tt

dgtEd
t

S

t

S
tg

00

)(),(
)()0(2

)( 





                                             (47) 

where: 










t

d
t

tH

t
tE











)(1
),(                                                                           (48) 

Now, Let us consider the case where functions g  and h  are defined as: 

)),0(()( tuftg            and         )),1(()( tufth                                                  (49) 

where the function f  is unknown. For problem (25) to (28), over-specified data )(),0( ttu   

is considered so that function   is true in conditions (I) and (II): 

(I) Function   in ],0[ T  is absolutely differentiable and )0()0(    also   is monotonic 

on ],0[ T . Now, we write equation (45) as follow: 

   

t

duftttwtS
0

)),1((),1()(),0(
2

1
)(                                          (50) 

Based on equation(34), it is clear that: 

  0)),1((),1()0()0,0(
2

1
)0(

0

0

   dufwS                (51) 

On the other hand: 

   




0

)),1((),1()(),0(
2

1
)( duftwS                                    (52) 

By substituting equations (52) and (51) in equation (47), we will have: 
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





























 



t

d
duftw

dftEtftuf

t

t

0 0

0

)),1((),1(2)(),0(
1

))((),(
2

))(()),0((

                             (53) 

The right side of the above equation is a nonlinear function of )(tf . Since the final term 

includes )),1(( tuf  and also ),1( tu  depends on f , therefore the value of u  is depends on x  , 

t  and f . In other words );,(),( ftxutxu  .In addition, );,( ftxu  should be located in the do-

main of f , in other words we consider the following condition: 

(II) Regarding  is monotonic on ],0[ T then ],0[ Tt , )](),0([);,1( Tftu  . 

We write the left side of equation (53) as below: 

)]([)( tfoTtfo                                                                                         (54) 

Assuming yfo  , we will have: 

)]([)( tyTty                                                                       (55) 

We mean to demonstrate T  has a unique fixed point. In order to achieve this goal, we 

need to prove that T  is a contraction. The following operators are defined: 




dftEtfd

t


0

1 )(),(
2

)]([                                                      (56) 




dfttfd

t

 
0

2 )(),1(
2

)]([                                                  (57) 





d

t

f
tfa

t






0

)(
)]([                                                                                 (58) 

where 
1d  and 

2d  are Volterra linear operators  and a  is Abel linear operator. Also, function 

3d is defined as: 

)](),0([
1

)(3 ttwatd 


                                                                        (59) 

With regards to the above definitions, equation (53) can be written as below: 

  )(]][[)()]([)]([)( 221 tyTdatdtydtyTty                                      (60) 

To continue the discussion, we need some of the following lemmas. Before referring to the 
lemmas, we refer to the following definition. 

Function f   
0xx   is a continuous Holder function of order   if there is a constant num-

ber such as r  and a small sized neighborhood of 
0x , so that for each x  of this neighborhood 

we have: 


00 )()( xxrxfxf                                                               (61) 

The space of single-variable functions whose thm  derivative is  a continuous Holder function 

of order 10   on ],[ ba  is shown by ],[ baCm 
. When 1  we are faced with the con-

tinuity of Lipschitz . The space of single-variable continuous functions of Lipschitz on ],[ ba  is 

shown by ],[ balip . Also, the below relations respectively define a half-norm and a norm in 

this space: 
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21

21

21
1

)()(

xx

xfxf
Supf

bxxa 






                                         (62) 


 fff

11
                                                                                         (63) 

The space of functions with a half-power fractional derivative on ],[ ba  is shown by ],[ baH  

, and we define a half-norm in this space as follow: 

2
1

1

21

21
2

)()(

xx

xfxf
Supf
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



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                                                                 (64) 

Also, the below relation defines a norm in this space: 


 fff

HH
                                                                                                (65) 

Lemma 1: If functions  , 
1h  and 

2h belong to space ],0[ Tlip , then there will be a constant 

number such as c  so that 


 2121 )]([)]([ hhchaha
H

 . 

Proof: First, we define: 

)]()([))](([))](([)( 2121 hhathathatP                                            (66) 

According to equation (58), we can write: 
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And then: 
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On the other hand: 
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

 )()( 21 hhA                                                                        (69) 

According to equations (65), (68) and (69) we can write: 
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 is a continuous Lipschitz function, so: 


 2121 )()( hhBhh                                                                  (71) 

Finally, from (70) and (71) we will have:  


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Lemma 2: We assume that 
1f  and 

2f
 are Lipschitz functions .The following problem is con-

sidered: 

2

2
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u ii
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
                10  x            Tt 0            2,1i            (73) 

)()0,( xxui               10  x                                       2,1i                (74)
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x

u i
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i





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u i
i

i





                                      Tt 0                                     (76) 

)(),0( xtui              10  x                                       2,1i                      (77) 

The solution of above problem is true in the following inequality: 


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H
                                                                         (78) 

where T  is sufficiently small and constant c  depends on T and Lipschitz norms of 
1f  & 

2f
. 

Proof: Function q is defined as below: 
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where )(TL  is single kernel at coordinates origin. Assuming Ttt  120 , we write: 

  
1

0

)2(
2

)1(
1121 )),1(()),1(()()()(

t

dufuftLtqtq                 

                           
2

0

)2(
2

)1(
12 )),1(()),1(()(

t

dufuftL   

                            
2

0

)2(
1

)1(
121 )),1(()),1(()()(

t

dufuftLtL   

                            
2

0

)2(
2

)2(
121 )),1(()),1(()()(

t

dufuftLtL   

                        +∫ 𝐿(𝑡1
𝑡1

𝑡2
-𝜏) (𝑓1(𝑢

(1)(1, 𝜏)) − 𝑓1(𝑢
(2)(1, 𝜏))) 𝑑𝜏 

                           
4321

1

2

)2(
2

)2(
11 )),1(()),1(()( IIIIdufuftL

t

t

    
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With respect to the recent relations: 
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If we define  )(,).(max 4211315 ccfccc   then, according to equation (64): 
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On the other hand, regarding equation (64) we can conclude: 
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Therefore: 
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Eventually,we have: 
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As mentioned earlier, we mean to demonstrate that T  is a contraction. We consider equation 

(60) and define 
1y  and 

2y  so that )()]([)( 111 toftyTry   , )()]([)( 222 toftyTry   . 

where 
1f  and 

2f
 are true in lemma 2. Regarding equation (60) we can write: 
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In according to Lemma 1, the right side of the above relation can be written: 
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where  
110 ,max fcc   

Therefore, with regards to equation (86) we can write equation(85) as: 
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On the other hand, according to equation (64) we can generally conclude that: 
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Now, regarding the recent relation and equation (84) we can write: 
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Or: 
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Therefore, for T  which is small enough ( 12  Tc ), T  is a contraction in space H . Ac-

cording to the principle of contraction Mapping, T  has only and only a unique fixed point 

such as 
*y and there is only and only one 

*f corresponding to 
*y s.t Ofy **  . In other 
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words, if conditions (I) and (II) are established then problem (25) to (28) assuming equa-

tion(49) will has a pair of unique solution ),( ** fu  in ],0[ *t  s.t Tt  *0 . 

4. Conclusion 

The present study has shown that a molecular diffusion problem is arisen in a hydrocarbon 
reservoir, under the unknown boundary conditions as )),0(( tuf  and )),1(( tuf  (u  and f  are 

unknown) with considering an over-specified data as )(),0( ttu   has a unique solution as 

),( ** fu  in ],0[ T . In according to the below conditions, the problem can be extended on all 

the time:  

1- we limit f  to uniform Lipschitz functions. 

2- f  is limited to non-negative functions so that 0)0( f , by applying the Maximum principle 

[10], u  remains uniformly bounded. 

It is very interesting to extend the discussion on the above problem when the temperature 
and pressure are not constant, e.g. when the reservoir is not uniform 
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