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Abstract 

The prediction of a progressive pipeline proceeder is an important factor in an offshore drilling 

operation. In this research, the effect of two parameters of differential pressure and depth of well in 
conjunction with seven other parameters related to drilling fluids has been evaluated on the divergence 
rate of drilling pipes for some offshore operation fields in the Persian Gulf as a case study. The artificial 
neural networks were used for multilayer and radial base perceptron To identify the complex 
relationship between those parameters and also pipe trapping. Neural networks, with the imposition 
of the human mind, are able to identify this complex and obscure relationship, and eventually predict 

the objective function of the problem (differential divergence of pipes) in other cases. In this work, 
Particle Swarm Algorithms (PSO), Colonial Competition (ICA), and Genetic Algorithm (GA) will be 
employed as a training algorithm in both networks. The results then compared with each other for the 

accuracy of the algorithms. The outcomes of this study describe how each of the algorithms is being 
applied to investigate the related parameters for piping and fluid flow. 

Keywords: Artificial neural networks; Drilling; Particle swarm algorithm; Colonial competition algorithm; Genetic 
algorithm. 

1. Introduction

One of the most costly and time-consuming problems in offshore drilling operations is the

pipeline prediction. It is an important factor which, needs an appropriate action to avoid some 

problems such as financial losses. 

Investigations on tube trapping began in 1950. In 1985, Kingsboro and Hopkins performed 

a static analysis of pipe bends based on drilling parameters [1]. This was done by comparing 

the wells in which the pipes were pulled, and the wells were unencumbered. So that the pa-

rameters of each of the two wells were compared and then, according to the non-intercepted 

wells, were planned for drilling other wells. The two studied 221 parameters in 131 wells in 

Mexico and surveyed the probability of drilling pipes in the wells surrounding the pipeline. In 

1994, Byjler and the priest analyzed this issue by creating a database for 22 drilling parame-

ters in 73 wells without the Gulf of Mexico and 54 wells with a pipe problem [2].  

In 1994, Howard, Waggler, using statistical techniques, was able to develop telescope bun-

dle models [3]. This was done by experimenting in 100 wells in the Gulf of Mexico. These 

models were used to prevent pipe taps or release operations. Recently, by Halliburton Corpo-

ration, an application of neural networks for the diffusion of tubes has been published differ-

ently in the Gulf of Mexico [1]. 
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The compressive strength mechanism of the drill pipes was expressed by Helmick and 

Langley in 1957 and by Utmansz in 1958 based on laboratory tests [2]. They explained that 

the pressure difference gauge occurs when the pipe stops against a high permeability layer. 

The coating of the drilling bit covers the surface of the pipe, and the pipe is kept by the 

pressure difference between the walls of the well and the formation. Their experiments also 

showed that the force required to move a flushed steel pipe would increase with increasing 

pressure and time difference [4] and [5]. It was costly and time consuming for experiments to 

simulate. It was also very difficult to meet the actual conditions of the laboratory. On the other 

hand, in most statistical relationships, there was a need to isolate different types of stuck, 

eliminating a large number of data due to scattering, and also searching very well for a suitable 

method [5]. 

So far, many methods for predicting and detecting drilling have been introduced. In all of 

the above methods, a reservoir with a particular formation is processed because the parame-

ters of the drilling parameters and variety of mud used in each region are different from the 

formation [6]. Therefore, each method will only provide the desired response for the same 

region where the information is obtained from [7]. One of these predictive methods for pipe 

inflow is the use of an artificial intelligence method, which will be analyzed in this paper using 

data from one of the oil fields in Iran. 

In this paper, the effect of 2 parameters related to drilling naming differential pressure and 

depth of well and 7 parameters related to drilling fluid known as fluid loss rate, solids content, 

the viscosity of drilling fluid filters, viscosity plastic, substrate delivery point, initial gel re-

sistance, and gel resistance after 10 minutes were evaluated on the differential rate of drill 

pipes in 7 fields in the Persian Gulf. The artificial neural networks are used for multilayer and 

radial base perceptron to identify the complex relationship between these parameters and the 

trapping of pipes. Neural networks, with the imposition of the human mind, are able to identify 

this complex and obscure relationship, and eventually predict the objective function of the 

problem (differential divergence of pipes) in other cases. In this regard, Particle Swarm Algo-

rithms (PSO) and Colonial Competition (ICA) and Genetic Algorithm (GA) will be used as a 

training algorithm in both networks. To provide data on training and testing of artificial neural 

network, data from 30 wells in Soroush, Nowrooz, Abu Dhar, Foruzan, Salman, Dena, and 

Dorood fields were studied in Iran.  

In this study, 20% of the available data was tested, and the rest of the data (80%) was 

allocated to the network education department. The advantage of a neural network is the 

direct learning of data without the need to estimate their statistical characteristics. The neural 

network, regardless of any initial hypothesis and previous knowledge of the relationships be-

tween the parameters studied, is able to find the relationship between the set of inputs and 

outputs to predict each output corresponding to the desired input. Such algorithms can be 

used to study the number of attachments. In one sentence, the tightness of the pipes can be 

defined as the forces inside the well that prevent the pipe from rotating or exiting the well. 

One of the main problems in digging oil chains is pipe seals. After grabbing a string in drilling 

operations, there is a lot of effort to pull it out. One of the well-known methods of drill-down 

liberation is the upward pull-up and downward weight-increasing method, which are somewhat 

time-consuming and costly, but in most cases, they release the drilling field from the well. 

The difficulty of the drilling field becomes more important when it is not possible to remove 

the drill from the well for some reason. In seaworthy operations, tubing can only increase the 

cost of a well by 30% [8]. 

2. Detailed expression of an algorithm solving   

The pipe clogging can lead to many problems, such as cutting drilling, residual operations, 

blocking wells, increasing non-useful life (NPT), and increasing the cost of developing a well. 

Therefore, it is important to recognize and predict the flow of pipes before occurrence and 

minimize the economic problems associated with them. In this regard, multi-layer perceptron 

(MLP) and radial base (RBF) artificial neural networks can be very useful and effective in 

predicting the objective function of pipe-laying and determining the non-linear relationship 
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between input parameters. It is possible to accurately predict the pipes to be considered be-

fore major problems, and thus avoid proper occurrence by making appropriate decisions using 

these networks, While the performance of these networks is heavily dependent on the learning 

algorithm, the choice of the most accurate and precise algorithm is also a topic that is very 

significant because it can play a significant role in making decisions. Therefore, the selection 

of the optimal algorithm is also essential and very important. It should be noted that the input 

values include the properties of rock and fluid, and the output is the differential rate of the 

tubes. Using the MLP and RBF would need to use some algorithm which is described in follow.  

2.1. Optimization algorithms and practices genetic algorithm 

Since the genetic algorithm is a random search method, it is difficult to provide a specific 

formula for its ending. The fitting of the population for a number of generations may have 

remained constant, suggesting that we have reached the final answer. One common way of 

ending the algorithm is to stop it after generating a certain number of generations. Because 

some operators need to know the total number of generations, this seems appropriate. After 

completion of the algorithm repetition to the number of generations given as input to the 

algorithm, the quality of the final solutions is considered, which, if the answers are not satis-

fied, the algorithm continues to a certain number, or from the beginning and By arranging a 

different initial population and possibly some new settings, it is implemented [10]. 

2.2. Particle swarm algorithm 

For the first time in 1995, by Eberhart and Kennedy, the PSO term was inspired as an 

indeterminate search method for functional optimization. This algorithm is inspired by the 

collective movement of birds seeking food [9]. 

After finding the best values, the speed and location of each particle are updated using 

equations (1) and (2) [10]. 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)]           (1) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                   (2) 

The right side of equation (1) consists of three parts: the first part is the current velocity 

of the particle and the second and third parts of the change of the velocity of the particle and 

its rotation towards the best personal experience and the best experience of the group. If the 

first part is not taken into account in this equation, then the particle velocity is determined 

only by the current situation and the best experience of the particle and the best-accumulated 

experience. In this way, the best aggregate particle stays in place, and the others move toward 

that particle. In fact, the mass motion of particles without the first part of the equation (1) 

will be a process in which the search space gradually becomes smaller and a local search 

around the best particle forms. In contrast, if only the first part of equation (1) is taken into 

account, particles move their normal way to reach the boundary wall and perform a kind of 

global search [9]. 

2.3. Colonial competition algorithm 

The colonial competition algorithm is a method in the field of evolutionary computing that 

addresses the optimal answer to various optimization problems. This algorithm provides an 

algorithm for solving mathematical optimization problems by mathematical modeling of the 

socio-political evolution process. In terms of application, this algorithm falls into the category 

of evolutionary algorithms. Like all algorithms in this category, the colonial competition algo-

rithm is also the first set of possible solutions. The initial results of genetic algorithm called 

"chromosomes", in the particle swarm algorithm called "particle" and the imperialist compet-

itive algorithm, also known as "country" known. 

3. Outcome result analysis and discussion 

The data on the divergence of tubes from 30 different wells of offshore fields in the Persian 

Gulf naming Soroush, Nowrooz, Abuzar, Forouzan, Salman, Dena, and Dorood were presented 

and presented in tabular form in Table 1. Later, using artificial neural network code and genetic 
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algorithms, colonial competition, and particle swarm, the objective function of the problem is 

addressed, and the corresponding accuracy is mentioned. Finally, the basic radial network 

performance was analysed, and the results are presented in the following sections. 

Table 1. Input and output data used for differential pressure pipes for the training of artificial neural 
networks MLP and RBF 

Differen-
tial pres-
sure (psi) 

Well 
depth 
(m) 

Fluffy 
fluid 

(cc/min) 

Viscosity 
filter, 
(cP) 

Percentage 
of  

solids 

Viscose 
plastic 
(cP)) 

Submission 
point 

(lb/100ft2) 

Primary 
gelatin 

(lb/100ft2) 

Jelly Power 
10 Minutes 
(lb/100ft2) 

Pipe 
cap 

700 3200 2.8 55 4 20 19 2 11 1 

560 2500 1.5 62 13 50 25 7 10 1 

230 1840 3.2 71 7 13 11 3 6 0 

400 725 4.6 42 8 21 15 5 7 0 

940 3325 3.3 81 9 42 16 3 4 1 

821 2950 4.1 32 7 54 21 8 15 1 

790 4113 2 69 14 49 20 1 11 1 

261 1404 4.5 39 6 17 13 5 7 0 

231 1021 2.9 57 8 16 24 4 8 0 

756 3120 2.4 80 3 61 16 13 3 1 

845 3150 3.7 42 4 31 22 10 14 1 

250 1700 4.9 35 6 10 26 3 11 0 

490 2540 3 50 1 43 27 13 5 1 

831 2980 2.1 67 16 51 28 3 13 1 

740 4053 1 61 19 52 17 6 8 1 

132 941 5.1 37 7 25 13 5 9 0 

150 1980 6 52 10 15 12 3 5 0 

362 700 5 37 9 10 24 3 6 0 

900 3790 1.3 83 3 17 28 1 14 1 

766 2342 4.3 70 3 31 30 5 3 1 

151 2000 5.4 32 9 12 10 4 5 0 

268 1715 6 21 7 25 22 5 5 0 

896 3910 4 47 16 52 20 1 17 1 

933 3100 2.8 73 9 2 51 13 3 1 

459 2934 3 40 9 20 37 15 4 1 

685 2220 2.9 52 10 22 28 6 8 1 

367 1915 5 36 9 11 12 4 6 0 

146 850 2.8 58 7 23 25 4 8 0 

582 2450 3 75 17 32 18 9 12 1 

812 2302 2 49 15 14 29 11 13 1 
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Figure 1. Normalized data on actual data (Target) and network output (Output) of pipe holders for data 

on Soroush, Nowrooz, Abuzar, Foruzan, Salman, Dena and Dorood fields, and error in each Experiment 
with GA algorithm 

3.1. Analysis of data on the divergent diameters of tubes with ICA algorithm 

This section examines the role of an artificial neural network trained by the ICA algorithm 

on the research results. The number of primary countries, the number of primary colonial 

countries, the number of decades, and the rate of the revolution were estimated at 100, 10, 

20, and 30, respectively. As previously mentioned, in order to predict the differential frequency 

of tubes in the marinas, the artificial neural network trained with the colonial competition 

algorithm used data from 30 wells in seven fields in the Persian Gulf as input for consideration 

were taken. 80% of the data were randomly used as training data, the result of which is shown 

in Figure 2. 

 

Fig. 2. Normalized data. Target and Output data. Taps for data for Soroush, Nowrooz, Abuzar, Foruzan, 
Salman, Dena, and Dorood fields and error in each. Experiment with the ICA algorithm 

3.2. Analysis of data and results of prediction of radial artificial neural network (RBF) 

In this section, we study the performance of the base radial network, which is trained with 

different training algorithms and is analyzed under different scenarios of network accuracy. 

As already mentioned, the radius-based function (RBF) is a function whose value is related 

to the input distance from a central point. So, the general form of this function can be written 

as follows [10]: 

𝑦(𝑥) = ∑ (𝑤𝑗
𝑁
𝑗=1 𝜑𝑗)(‖𝑥 − 𝑥𝑗‖)                   (3) 
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where:𝑦(𝑥): weighted by an appropriate coefficient; 𝑤𝑖: each associated with a different cen-

ter; 𝑥𝑗:  differentiable with respect to the weight. With open 

𝜑𝑟=𝑓(𝑥) = { 𝑒
(

1

1−(𝛿𝑟)2)
   , 𝑟 <

1

𝛿

𝑥                ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑡 
 

where j φ is a different inverse function, the most important of which is the Gaussian function. 

As defined by the definition of the rbf function, the distance between all the data with the 

specified centers (x0) is an issue that matters in this type of network. Additionally, the correct 

selection of weights (wj), as well as kernels (centers), is one of the most important issues in 

these networks. 

In this section, we discuss the role of the trained artificial neural network with the PSO 

algorithm trained by the particle swarm algorithm. To do this, the newrb command is used in 

MATLAB software that generates the network as follows: 

Network = newrb (P, T, Goal, Spread, MN, DF) 

In which P represents the input data vectors (pipe holders for wells in Soroush, Nowrooz, 

Abuzar, Foruzan, Salman, Dena and Dorood fields), T represents the output data obtained 

from the fields (snug or non-stop pipes), GOAL represents the theoretical error that specifies 

the end of the grid, Spread represents the amount of dispersion of the rbf functions, which 

indicates more dispersion numbers, MN represents the maximum number of nerve for basic 

radial network training, which is at most equal to the number Problem inputs (9 inputs) and 

DF represent the number of repetitions in which the error network is displayed. 

3.3. Analyzing the data on the trapping rate with the PSO algorithm 

The results of the basic radial network results are discussed in follow by using the particle 

swarm algorithm. As previously mentioned, in order to predict the flow rate of the pipes by 

an artificial neural network trained by the particle swarm algorithm, The wells of Soroush, 

Nowruz, Abuzar, Foruzan, Salman, Dena, and Dorood fields were considered as inputs. 

 

Fig. 3. Normalized data. Target and Output data for pipe data rate for Soroush, Nowrooz, Abuzar, Fo-
ruzan, Salman, Dena and Dorood fields, and error in each Experiment with PSO algorithm and RBF 
network 

3.4. Analyzing the data with the GA algorithm 

As in the previous state, the condition for the termination of the network was selected using 

a genetic algorithm, reaching a certain number of courses (number of generations equivalent 

to 50 courses). In this way, 20% of the rounded input data is considered as a test for the 

trained network with the GA algorithm, and the rest of the data is assigned randomly to the 

network education section. Therefore, for the basic radial network, the GA algorithm was at-

tempted to improve the network structure and, finally, a network that was selected to have 

the lowest RMSE associated with the test data. The parameters of the survey and optimization 
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in this network were spread (kernel functions dispersion) and the number of neurons needed, 

which eventually reached 90 and 4, respectively. Optimization parameters were selected using 

the genetic algorithm, such as the table for the mlp network. 

 

Fig. 4. Normalized data. Target and Output data of pipe holders for Soroush, Nowrooz, Abuzar, Fo-
ruzan, Salman, Dena and Dorood fields and error in each Experiment with GA algorithm and RBF net-

work 

4. Results 

The results obtained from artificial neural networks belonging to artificial neural networks 

of the multilayer and radial base perceptron showed that it should be the basis for decision 

making based on network testing and validation data, not training data, since data from the 

Overtrained Education section Have been. 

Undoubtedly, one of the important factors in the accurate prediction of MLP artificial neural 

networks was the use of randomly based algorithms. In this case, the possibility of trapping 

the network in the local minima will be reduced, and the results will be better targeted to the 

actual values. 

The accuracy of about 100% obtained from the PSO algorithm indicates the reliability of 

the neural network in the performances of this algorithm. In other words, the use of the 

simulator in other scenarios is unnecessary and can be used instead of networks. 

Particle swarm algorithms were more accurately able to predict pipeline data in offshore 

wells than colonial and genetic competition algorithms so that the RMSE error of this algorithm 

was 0/001 for test data. While this amount was 0/009 and 0/004 for genetic algorithms and 

colonial competition, respectively. Therefore, the function of the network under the use of 

genetics is much weaker than the colonial competition algorithm. 

Since the number of generations and the initial population for all algorithms are a key 

parameter in optimizing the structure and accuracy of the network, in this thesis, the initial 

population (particles for PSO and countries for ICA) all algorithms are equal and equal to 100 

was considered. 
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Attachments: 
 

Artificial neural network code: 
 

%% Start of Program 

clc  
clear 
close all 

%% Data Loading 
Data = xlsread('Mansoori.xlsx'); 
 
X = Data(:,1:end-1); 
Y = Data(:,end); 
 
DataNum = size(X,1); 

InputNum = size(X,2); 
OutputNum = size(Y,2); 
 

%% Normalization 
MinX = min(X); 
MaxX = max(X); 

 
MinY = min(Y); 
MaxY = max(Y); 
 
XN = X; 
YN = Y; 
for ii = 1:InputNum 

    XN(:,ii) = Normalize_Fcn(X(:,ii),MinX(ii),MaxX(ii)); 
end 
 
for ii = 1:OutputNum 
    YN(:,ii) = Normalize_Fcn(Y(:,ii),MinY(ii),MaxY(ii)); 
end 

 

%% Test and Train Data 
TrPercent = 80; 
TrNum = round(DataNum * TrPercent / 100); 
TsNum = DataNum - TrNum; 
 
R = randperm(DataNum); 

trIndex = R(1 : TrNum); 
tsIndex = R(1+TrNum : end); 
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Xtr = XN(trIndex,:); 

Ytr = YN(trIndex,:); 
 
Xts = XN(tsIndex,:); 
Yts = YN(tsIndex,:); 

 
%% Network Structure 
pr = [-1 1]; 
PR = repmat(pr,InputNum,1); 
MSEtsmin=100; 
kkmin=100; 
kkkmin=100; 

 
for kk=6:6; 
for kkk=6:6; 
Network = newff(PR,[kk kkk OutputNum],{'tansig' 'tansig' 'tansig'}); 
 
%% Training 

Network = TrainUsing_PSO_Fcn(Network,Xtr,Ytr); 
 
%% Assesment 
YtrNet = sim(Network,Xtr')'; 
YtsNet = sim(Network,Xts')'; 
 
 

MSEtr = mse(YtrNet - Ytr) 
MSEts = mse(YtsNet - Yts) 
if MSEts < MSEtsmin 
   MSEtsmin=MSEts; 
   kkmin=kk; 
   kkkmin=kkk; 
end 

 
end 

end 
MSEts = MSEtsmin 
kk = kkmin 
kkk = kkkmin 

RMSEts=sqrt(MSEts)/2*100 
 
trainPerformance = perform(Network,Ytr,YtrNet) 
testPerformance = perform(Network,Yts,YtsNet) 
errors = gsubtract(Yts,YtsNet); 
 
%% Display 

 
figure(1) 
plot(Ytr,'r-') 
hold on 
plot(YtrNet,'bo') 

legend('Targets','Outputs') 
    title('Real train data Vs Network train data' ) 

     
 
hold off 
 
figure(2) 
plot(Yts,'-or') 

hold on 
plot(YtsNet,'-sb') 
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legend('Targets','Outputs'); 

    title('Real test data Vs Network test data' ); 
hold off 
 
figure(3) 

t = -1:.1:1; 
plot(t,t,'b','linewidth',2) 
hold on 
plot(Ytr,YtrNet,'ok') 
legend('Targets','Outputs'); 
    title('YtrNet Vs Ytr'); 
hold off 

 
figure(4) 
t = -1:.1:1; 
plot(t,t,'b','linewidth',2) 
hold on 
plot(Yts,YtsNet,'ok') 

legend('Targets','Outputs'); 
    title('Yts Vs YtsNet' ); 
hold off 
 
 
plot(Yts-YtsNet, 'linewidth',3) 
plotfit(Network,Ytr,YtrNet) 

plotfit(Network,Yts,YtsNet) 
figure, plotregression(Yts,YtsNet) 
figure, plotregression(Ytr,YtrNet) 
figure, ploterrhist(errors) 
 
PlotResults(Ytr,YtrNet,'Train Data'); 
 

PlotResults(Yts,YtsNet,'TestData'); 
 

Code of particle swarm algorithm : 
 
 

%% Problem Statement 
IW = Network.IW{1,1}; IW_Num = numel(IW); 
LW1 = Network.LW{2,1}; LW1_Num = numel(LW1); 
LW2 = Network.LW{3,2}; LW2_Num = numel(LW2); 

b1 = Network.b{1,1}; b1_Num = numel(b1); 
b2 = Network.b{2,1}; b2_Num = numel(b2); 
b3 = Network.b{3,1}; b3_Num = numel(b3); 
TotalNum = IW_Num + LW1_Num + LW2_Num+  b1_Num + b2_Num + b3_Num; 
 
NPar = TotalNum; 

 
VarMin = -1*ones(1,TotalNum); 
VarMax = +1*ones(1,TotalNum); 

 
CostFuncName = 'Cost_ANN_EA'; 
 
%% Algorithm's Parameters 

SwarmSize = 100; 
MaxIteration = 70; 
C1 = 2; % Cognition Coefficient; 
C2 = 4 - C1; % Social Coefficient; 
%% Initial Population 
GBest.Cost = inf; 
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GBest.Position = []; 

GBest.CostMAT = []; 
for p = 1:SwarmSize 
    Particle(p).Position = rand(1,NPar) .* (VarMax - VarMin) + VarMin; 
    Particle(p).Cost = feval(CostFuncName,Particle(p).Position,Xtr,Ytr,Network); 

    Particle(p).Velocity = []; 
    Particle(p).LBest.Position = Particle(p).Position; 
    Particle(p).LBest.Cost = Particle(p).Cost; 
     
    if Particle(p).LBest.Cost < GBest.Cost 
        GBest.Cost = Particle(p).LBest.Cost; 
        GBest.Position = Particle(p).LBest.Position; 

    end 
end 
 
%% Start of Optimization 
for Iter = 1:MaxIteration 
    %% Velocity update 

    for p = 1:SwarmSize 
        Particle(p).Velocity = C1 * rand * (Particle(p).LBest.Position - Particle(p).Position) + C2 * rand * 
(GBest.Position - Particle(p).Position); 
        Particle(p).Position = Particle(p).Position + Particle(p).Velocity; 
         
        Particle(p).Position = max(Particle(p).Position , VarMin); 
        Particle(p).Position = min(Particle(p).Position , VarMax);         

         
        Particle(p).Cost = feval(CostFuncName,Particle(p).Position,Xtr,Ytr,Network); 
         
        if Particle(p).Cost < Particle(p).LBest.Cost 
            Particle(p).LBest.Position = Particle(p).Position; 
            Particle(p).LBest.Cost = Particle(p).Cost; 
             

            if Particle(p).LBest.Cost < GBest.Cost 
                GBest.Cost = Particle(p).LBest.Cost; 

                GBest.Position = Particle(p).LBest.Position; 
            end 
        end 
    end 

    %% Display 
    disp(['Itretion = ' num2str(Iter) '; Best Cost = ' num2str(GBest.Cost) ';']); 
    GBest.CostMAT = [GBest.CostMAT GBest.Cost]; 
end 
 
GBest.Position 
plot(GBest.CostMAT) 

Network2 = ConsNet_Fcn(Network,GBest.Position); 
BestCost = GBest.Cost; 
end 
 

Code of colonial competition algorithm: 
 

function [Network2 BestCost] = TrainUsing_ICA_Fcn(Network,Xtr,Ytr) 

 
%% Problem Statement 

IW = Network.IW{1,1}; IW_Num = numel(IW); 
LW1 = Network.LW{2,1}; LW1_Num = numel(LW1); 
LW2 = Network.LW{3,2}; LW2_Num = numel(LW2); 
b1 = Network.b{1,1}; b1_Num = numel(b1); 
b2 = Network.b{2,1}; b2_Num = numel(b2); 
b3 = Network.b{3,1}; b3_Num = numel(b3); 
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TotalNum = IW_Num + LW1_Num + LW2_Num+  b1_Num + b2_Num + b3_Num; 

 
CostFuncExtraParams.Xtr = Xtr; 
CostFuncExtraParams.Ytr = Ytr; 
CostFuncExtraParams.Network = Network; 

 
ProblemParams.CostFuncName = 'Cost_ANN_EA';    % You should state the name of your cost function 
here. 
ProblemParams.CostFuncExtraParams = CostFuncExtraParams;               % Reserved for the extra pa-
rameters in cost function. In normal application do not use it that is use []. 
ProblemParams.NPar = TotalNum;                          % Number of optimization variables of your objec-
tive function. "NPar" is the dimention of the optimization problem. 

ProblemParams.VarMin = [-1] ;                         % Lower limit of the optimization parameters. You 
can state the limit in two ways. 1)   2) 
ProblemParams.VarMax = [1];                       % Lower limit of the optimization parameters. You can 
state the limit in two ways. 1)   2) 
 
% Modifying the size of VarMin and VarMax to have a general form 

if numel(ProblemParams.VarMin)==1 
    ProblemParams.VarMin=repmat(ProblemParams.VarMin,1,ProblemParams.NPar); 
    ProblemParams.VarMax=repmat(ProblemParams.VarMax,1,ProblemParams.NPar); 
end 
 
ProblemParams.SearchSpaceSize = ProblemParams.VarMax - ProblemParams.VarMin; 
 

%% Algorithmic Parameter Setting 
AlgorithmParams.NumOfCountries = 100;               % Number of initial countries. 
AlgorithmParams.NumOfInitialImperialists = 40;      % Number of Initial Imperialists. 
AlgorithmParams.NumOfAllColonies = AlgorithmParams.NumOfCountries - AlgorithmParams.NumOfIni-
tialImperialists; 
AlgorithmParams.NumOfDecades = 80; 
AlgorithmParams.RevolutionRate = 0.3;               % Revolution is the process in which the socio-politi-

cal characteristics of a country change suddenly. 
AlgorithmParams.AssimilationCoefficient = 2;        % In the original paper assimilation coefficient is 

shown by "beta". 
AlgorithmParams.AssimilationAngleCoefficient = .5;  % In the original paper assimilation angle coeffi-
cient is shown by "gama". 
AlgorithmParams.Zeta = 0.02;                        % Total Cost of Empire = Cost of Imperialist + Zeta * 

mean(Cost of All Colonies); 
AlgorithmParams.DampRatio = 0.99; 
AlgorithmParams.StopIfJustOneEmpire = false;         % Use "true" to stop the algorithm when just one 
empire is remaining. Use "false" to continue the algorithm. 
AlgorithmParams.UnitingThreshold = 0.02;            % The percent of Search Space Size, which enables 
the uniting process of two Empires. 
 

%% Display Setting 
DisplayParams.PlotEmpires = false;    % "true" to plot. "false" to cancel ploting. 
if DisplayParams.PlotEmpires 
    DisplayParams.EmpiresFigureHandle = figure('Name','Plot of Empires','NumberTitle','off'); 
    DisplayParams.EmpiresAxisHandle = axes; 

end 
 

DisplayParams.PlotCost = false;    % "true" to plot. "false" 
if DisplayParams.PlotCost 
    DisplayParams.CostFigureHandle = figure('Name','Plot of Minimum and Mean Costs','Num-
berTitle','off'); 
    DisplayParams.CostAxisHandle = axes;  
end 

 
ColorMatrix = [1   0   0  ; 0 1   0    ; 0   0 1    ; 1   1   0  ; 1   0 1    ; 0 1   1    ; 1 1 1       ; 
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               0.5 0.5 0.5; 0 0.5 0.5  ; 0.5 0 0.5  ; 0.5 0.5 0  ; 0.5 0 0    ; 0 0.5 0    ; 0 0 0.5     ; 

               1   0.5 1  ; 0.1*[1 1 1]; 0.2*[1 1 1]; 0.3*[1 1 1]; 0.4*[1 1 1]; 0.5*[1 1 1]; 0.6*[1 1 1]]; 
DisplayParams.ColorMatrix = [ColorMatrix ; sqrt(ColorMatrix)]; 
 
DisplayParams.AxisMargin.Min = ProblemParams.VarMin; 

DisplayParams.AxisMargin.Max = ProblemParams.VarMax; 
 
%% Creation of Initial Empires 
InitialCountries = GenerateNewCountry(AlgorithmParams.NumOfCountries , ProblemParams); 
 
% Calculates the cost of each country. The less the cost is, the more is the power. 
if isempty(ProblemParams.CostFuncExtraParams) 

    InitialCost = feval(ProblemParams.CostFuncName,InitialCountries);     
else 
    InitialCost = feval(ProblemParams.CostFuncName,InitialCountries,ProblemParams.CostFuncExtraPa-
rams); 
end 
[InitialCost,SortInd] = sort(InitialCost);                          % Sort the cost in assending order. The best 

countries will be in higher places 
InitialCountries = InitialCountries(SortInd,:);                     % Sort the population with respect to their 
cost. 
 
Empires = CreateInitialEmpires(InitialCountries,InitialCost,AlgorithmParams, ProblemParams); 
 
%% Main Loop 

MinimumCost = repmat(nan,AlgorithmParams.NumOfDecades,1); 
MeanCost = repmat(nan,AlgorithmParams.NumOfDecades,1); 
 
if DisplayParams.PlotCost 
    axes(DisplayParams.CostAxisHandle); 
    if any(findall(0)==DisplayParams.CostFigureHandle) 
        h_MinCostPlot=plot(MinimumCost,'r','LineWidth',1.5,'YDataSource','MinimumCost'); 

        hold on; 
        h_MeanCostPlot=plot(MeanCost,'k:','LineWidth',1.5,'YDataSource','MeanCost'); 

        hold off; 
        pause(0.05); 
    end 
end 

 
for Decade = 1:AlgorithmParams.NumOfDecades 
    AlgorithmParams.RevolutionRate = AlgorithmParams.DampRatio * AlgorithmParams.Revolution-
Rate; 
 
    Remained = AlgorithmParams.NumOfDecades - Decade 
    for ii = 1:numel(Empires) 

        %% Assimilation;  Movement of Colonies Toward Imperialists (Assimilation Policy) 
        Empires(ii) = AssimilateColonies(Empires(ii),AlgorithmParams,ProblemParams); 
 
        %% Revolution;  A Sudden Change in the Socio-Political Characteristics 
        Empires(ii) = RevolveColonies(Empires(ii),AlgorithmParams,ProblemParams); 

         
        %% New Cost Evaluation 

        if isempty(ProblemParams.CostFuncExtraParams) 
            Empires(ii).ColoniesCost = feval(ProblemParams.CostFuncName,Empires(ii).ColoniesPosition); 
        else 
            Empires(ii).ColoniesCost = feval(ProblemParams.CostFuncName,Empires(ii).ColoniesPosi-
tion,ProblemParams.CostFuncExtraParams); 
        end 

 
        %% Empire Possession 
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        Empires(ii) = PossesEmpire(Empires(ii)); 

         
        %% Computation of Total Cost for Empires 
        Empires(ii).TotalCost = Empires(ii).ImperialistCost + AlgorithmParams.Zeta * mean(Em-
pires(ii).ColoniesCost); 

     
    end 
     
    %% Uniting Similiar Empires 
    Empires = UniteSimilarEmpires(Empires,AlgorithmParams,ProblemParams); 
 
    %% Imperialistic Competition 

    Empires = ImperialisticCompetition(Empires); 
     
    if numel(Empires) == 1 && AlgorithmParams.StopIfJustOneEmpire 
        break 
    end 
 

    %% Displaying the Results 
    DisplayEmpires(Empires,AlgorithmParams,ProblemParams,DisplayParams); 
     
    ImerialistCosts = [Empires.ImperialistCost]; 
    MinimumCost(Decade) = min(ImerialistCosts); 
    MeanCost(Decade) = mean(ImerialistCosts); 
 

    if DisplayParams.PlotCost 
        refreshdata(h_MinCostPlot); 
        refreshdata(h_MeanCostPlot); 
        drawnow; 
        pause(0.01); 
    end 
     

end % End of Algorithm 
BestCost = MinimumCost(end) 

BestIndex = find(ImerialistCosts == min(ImerialistCosts)); BestIndex = BestIndex(1); 
BestSolution = Empires(BestIndex).ImperialistPosition; 
Network2 = ConsNet_Fcn(Network,BestSolution); 
 

Genetic Algorithm Code 
 

function [Network2] = TrainUsing_GA_Fcn(Network,Xtr,Ytr) 

  
%% Problem Statement 
IW = Network.IW{1,1}; IW_Num = numel(IW); 

LW = Network.LW{2,1}; LW_Num = numel(LW); 
b1 = Network.b{1,1}; b1_Num = numel(b1); 
b2 = Network.b{2,1}; b2_Num = numel(b2); 
  
TotalNum = IW_Num + LW_Num + b1_Num + b2_Num; 
  

NPar = TotalNum; 
  
VarLow = -1; 
VarHigh = 1; 
FunName = 'Cost_ANN_EA'; 
  
%% Algorithm Parameters 

SelectionMode = 3; % 1 for Random, 2 for Tournment, 3 for .... 
PopSize = 20; 
MaxGenerations = 10; 
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RecomPercent = 15/100; 
CrossPercent = 50/100; 
MutatPercent = 1 - RecomPercent - CrossPercent; 
  

RecomNum = round(PopSize*RecomPercent); 
CrossNum = round(PopSize*CrossPercent); 
if mod(CrossNum,2)~=0 
    CrossNum = CrossNum - 1; 
end 
  
MutatNum = PopSize - RecomNum - CrossNum; 

  
%% Initial Population 
Pop = rand(PopSize,NPar) * (VarHigh - VarLow) + VarLow; 
  
Cost = feval(FunName,Pop,Xtr,Ytr,Network); 
[Cost Inx] = sort(Cost); 

Pop = Pop(Inx,:); 
  
%% Main Loop 
MinCostMat = []; 
MeanCostMat = []; 
  
for Iter = 1:MaxGenerations 

    %% Recombination 
    RecomPop = Pop(1:RecomNum,:); 
     
    %% CrossOver 
        %% Parent Selection 
        SelectedParentsIndex = MySelection_Fcn(Cost,CrossNum,SelectionMode); 
     

        %% Cross Over 
        CrossPop = []; 

        for ii = 1:2:CrossNum 
            Par1Inx = SelectedParentsIndex(ii); 
            Par2Inx = SelectedParentsIndex(ii+1); 
  

            Parent1 = Pop(Par1Inx,:); 
            Parent2 = Pop(Par2Inx,:); 
             
  
            [Off1 , Off2] = MyCrossOver_Fcn(Parent1,Parent2); 
             
            CrossPop = [CrossPop ; Off1 ; Off2]; 

        end 
    %% Mutation 
    MutatPop = rand(MutatNum,NPar)*(VarHigh - VarLow) + VarLow; 
     
    %% New Population 

    Pop = [RecomPop ; CrossPop ; MutatPop]; 
    Cost = feval(FunName,Pop,Xtr,Ytr,Network); 

    [Cost Inx] = sort(Cost); 
    Pop = Pop(Inx,:); 
    
    %% Display 
    MinCostMat = [MinCostMat ; min(Cost)]; 
    [Iter MinCostMat(end)] 

    MeanCostMat = [MeanCostMat ; mean(Cost)]; 
    subplot(2,1,1) 
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    plot(MinCostMat,'r','linewidth',2.5); 

    xlim([1 MaxGenerations]) 
%     hold on 
%     plot(MeanCostMat,':b','linewidth',2) 
%     hold off 

     
    subplot(2,1,2) 
    plot(Pop(:,1),Pop(:,2),'rp') 
    axis([VarLow VarHigh VarLow VarHigh]) 
    pause(0.05) 
     
end 

%% Final Result Demonstration 
BestSolution = Pop(1,:); 
BestCost = Cost(1); 
Network2 = ConsNet_Fcn(Network,BestSolution); 
 

Basic artificial radial neural network code trained with GA 
 

clc;close all;clear all 
%% GA 
Var_n=2;                       %Spread, MaxNeuron, DisplayAt 
Range=[0.5,100;1,9];    %% rang of search 
PopuSize=30;generation_n =10; 

[Input]=MyGA(Var_n,Range,PopuSize,generation_n); 
  
%% Training the best RBF network 
Goal=0.001; 
Spread=Input(1);     %%round 
MaxNeuron=round(Input(2));  %%round 

DisplayAt=1;  %%round 
  
Data = xlsread('DPSTICK1.xlsx'); 
  

x = Data(:,1:end-1); 
y = Data(:,end); 
  

inputs = x'; 
targets = y'; 
  
nData=size(inputs,2); 
  
Perm=randperm(nData); 
  

pTrainData=0.8; 
nTrainData=round(pTrainData*nData); 
trainInd=Perm(1:nTrainData); 
Perm(1:nTrainData)=[]; 
trainInputs = inputs(:,trainInd); 
trainTargets = targets(:,trainInd); 

  
pTestData=1-pTrainData; 
nTestData=nData-nTrainData; 
testInd=Perm; 
testInputs = inputs(:,testInd); 
testTargets = targets(:,testInd); 
  

% Create and Train RBF Network 
net = newrb(trainInputs,trainTargets,Goal,Spread,MaxNeuron,DisplayAt); 
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% Test the Network 

outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 
  

% Recalculate Training, Validation and Test Performance 
trainOutputs = outputs(:,trainInd); 
trainErrors = trainTargets-trainOutputs; 
trainPerformance = perform(net,trainTargets,trainOutputs); 
  
testOutputs = outputs(:,testInd); 
testError = testTargets-testOutputs; 

testPerformance = perform(net,testTargets,testOutputs); 
  
 PlotResults(targets,outputs,'All Data'); 
 PlotResults(trainTargets,trainOutputs,'Train Data'); 
 PlotResults(testTargets,testOutputs,'Test Data'); 
 

Basic artificial neural network code trained with pso 
 

clc;close all;clear all 
%% pso 
NPar = 2; 
VarMin = [0.5 1]; 

VarMax = [100 9]; 
[Input]=PSO_Count_General(NPar,VarMin,VarMax); 
  
%% Training the best RBF network 
Goal=0.001; 
Spread=Input(1);     %%round 

MaxNeuron=round(Input(2));  %%round 
DisplayAt=1;  %%round 
  
Data = xlsread('DPSTICK1.xlsx'); 

  
x = Data(:,1:end-1); 
y = Data(:,end); 

  
inputs = x'; 
targets = y'; 
  
nData=size(inputs,2); 
  
Perm=randperm(nData); 

  
pTrainData=0.8; 
nTrainData=round(pTrainData*nData); 
trainInd=Perm(1:nTrainData); 
Perm(1:nTrainData)=[]; 
trainInputs = inputs(:,trainInd); 

trainTargets = targets(:,trainInd); 
  
pTestData=1-pTrainData; 
nTestData=nData-nTrainData; 
testInd=Perm; 
testInputs = inputs(:,testInd); 
testTargets = targets(:,testInd); 

  
% Create and Train RBF Network 
net = newrb(trainInputs,trainTargets,Goal,Spread,MaxNeuron,DisplayAt); 
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% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
performance = perform(net,targets,outputs); 

  
% Recalculate Training, Validation and Test Performance 
trainOutputs = outputs(:,trainInd); 
trainErrors = trainTargets-trainOutputs; 
trainPerformance = perform(net,trainTargets,trainOutputs); 
  
testOutputs = outputs(:,testInd); 

testError = testTargets-testOutputs; 
testPerformance = perform(net,testTargets,testOutputs); 
  
 PlotResults(targets,outputs,'All Data'); 
 PlotResults(trainTargets,trainOutputs,'Train Data'); 
 PlotResults(testTargets,testOutputs,'Test Data'); 
 

Artificial neural network radial base code trained with ICA 
 

clc; 

clear; 
close all; 

  
Data = xlsread('DPSTICK.xlsx'); 
  
x = Data(:,1:end-1); 
y = Data(:,end); 
  

inputs = x'; 
targets = y'; 
  
nData=size(inputs,2); 

  
Perm=randperm(nData); 
  

pTrainData=0.7; 
nTrainData=round(pTrainData*nData); 
trainInd=Perm(1:nTrainData); 
Perm(1:nTrainData)=[]; 
trainInputs = inputs(:,trainInd); 
trainTargets = targets(:,trainInd); 
  

pTestData=1-pTrainData; 
nTestData=nData-nTrainData; 
testInd=Perm; 
testInputs = inputs(:,testInd); 
testTargets = targets(:,testInd); 
  

% Create and Train RBF Network 
Goal=0; 
Spread=1; 
MaxNeuron=100; 
DisplayAt=1; 
net = newrb(trainInputs,trainTargets,Goal,Spread,MaxNeuron,DisplayAt); 
  

% Test the Network 
outputs = net(inputs); 
errors = gsubtract(targets,outputs); 
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performance = perform(net,targets,outputs); 

  
% Recalculate Training, Validation and Test Performance 
trainOutputs = outputs(:,trainInd); 
trainErrors = trainTargets-trainOutputs; 

trainPerformance = perform(net,trainTargets,trainOutputs); 
  
testOutputs = outputs(:,testInd); 
testError = testTargets-testOutputs; 
testPerformance = perform(net,testTargets,testOutputs); 
  
PlotResults(targets,outputs,'All Data'); 

PlotResults(trainTargets,trainOutputs,'Train Data'); 
PlotResults(testTargets,testOutputs,'Test Data'); 
  
% View the Network 
% view(net); 
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