
Petroleum and Coal

 Pet Coal (2020); 62(3) 975-993
ISSN 1337-7027 an open access journal

Article Open Access

Functional Analysis of Performance of Artificial Neural Networks (MPL) and (RBF) in
predicting seismicity of tubes related to offshore drilling in one of Iran's oilfields

Sajjad Mozaffari1, 2, Armin Hosseinian1,2,3, Arash Pourabdol Shahrekordi1, 2, Seyed Jamal
Sheikhzakariaee1, Mohammad Javad Mansouri4

1 Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic
Azad University, Tehran, Iran

2 Young Researchers and Elite Club, Science and Research Branch, Islamic Azad University,
Tehran, Iran

3 Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Van-
couver, Canada

4 Oil Exploration Operations Company (OEOC), No 234, Taleghani St., Tehran, Iran

Received April 4, 2019; Accepted July 21, 2020

Abstract

The prediction of a progressive pipeline proceeder is an important factor in an offshore drilling

operation. In this research, the effect of two parameters of differential pressure and depth of well in
conjunction with seven other parameters related to drilling fluids has been evaluated on the divergence
rate of drilling pipes for some offshore operation fields in the Persian Gulf as a case study. The artificial
neural networks were used for multilayer and radial base perceptron To identify the complex
relationship between those parameters and also pipe trapping. Neural networks, with the imposition
of the human mind, are able to identify this complex and obscure relationship, and eventually predict

the objective function of the problem (differential divergence of pipes) in other cases. In this work,
Particle Swarm Algorithms (PSO), Colonial Competition (ICA), and Genetic Algorithm (GA) will be
employed as a training algorithm in both networks. The results then compared with each other for the

accuracy of the algorithms. The outcomes of this study describe how each of the algorithms is being
applied to investigate the related parameters for piping and fluid flow.

Keywords: Artificial neural networks; Drilling; Particle swarm algorithm; Colonial competition algorithm; Genetic
algorithm.

1. Introduction

One of the most costly and time-consuming problems in offshore drilling operations is the

pipeline prediction. It is an important factor which, needs an appropriate action to avoid some

problems such as financial losses.

Investigations on tube trapping began in 1950. In 1985, Kingsboro and Hopkins performed

a static analysis of pipe bends based on drilling parameters [1]. This was done by comparing

the wells in which the pipes were pulled, and the wells were unencumbered. So that the pa-

rameters of each of the two wells were compared and then, according to the non-intercepted

wells, were planned for drilling other wells. The two studied 221 parameters in 131 wells in

Mexico and surveyed the probability of drilling pipes in the wells surrounding the pipeline. In

1994, Byjler and the priest analyzed this issue by creating a database for 22 drilling parame-

ters in 73 wells without the Gulf of Mexico and 54 wells with a pipe problem [2].

In 1994, Howard, Waggler, using statistical techniques, was able to develop telescope bun-

dle models [3]. This was done by experimenting in 100 wells in the Gulf of Mexico. These

models were used to prevent pipe taps or release operations. Recently, by Halliburton Corpo-

ration, an application of neural networks for the diffusion of tubes has been published differ-

ently in the Gulf of Mexico [1].

975

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

The compressive strength mechanism of the drill pipes was expressed by Helmick and

Langley in 1957 and by Utmansz in 1958 based on laboratory tests [2]. They explained that

the pressure difference gauge occurs when the pipe stops against a high permeability layer.

The coating of the drilling bit covers the surface of the pipe, and the pipe is kept by the

pressure difference between the walls of the well and the formation. Their experiments also

showed that the force required to move a flushed steel pipe would increase with increasing

pressure and time difference [4] and [5]. It was costly and time consuming for experiments to

simulate. It was also very difficult to meet the actual conditions of the laboratory. On the other

hand, in most statistical relationships, there was a need to isolate different types of stuck,

eliminating a large number of data due to scattering, and also searching very well for a suitable

method [5].

So far, many methods for predicting and detecting drilling have been introduced. In all of

the above methods, a reservoir with a particular formation is processed because the parame-

ters of the drilling parameters and variety of mud used in each region are different from the

formation [6]. Therefore, each method will only provide the desired response for the same

region where the information is obtained from [7]. One of these predictive methods for pipe

inflow is the use of an artificial intelligence method, which will be analyzed in this paper using

data from one of the oil fields in Iran.

In this paper, the effect of 2 parameters related to drilling naming differential pressure and

depth of well and 7 parameters related to drilling fluid known as fluid loss rate, solids content,

the viscosity of drilling fluid filters, viscosity plastic, substrate delivery point, initial gel re-

sistance, and gel resistance after 10 minutes were evaluated on the differential rate of drill

pipes in 7 fields in the Persian Gulf. The artificial neural networks are used for multilayer and

radial base perceptron to identify the complex relationship between these parameters and the

trapping of pipes. Neural networks, with the imposition of the human mind, are able to identify

this complex and obscure relationship, and eventually predict the objective function of the

problem (differential divergence of pipes) in other cases. In this regard, Particle Swarm Algo-

rithms (PSO) and Colonial Competition (ICA) and Genetic Algorithm (GA) will be used as a

training algorithm in both networks. To provide data on training and testing of artificial neural

network, data from 30 wells in Soroush, Nowrooz, Abu Dhar, Foruzan, Salman, Dena, and

Dorood fields were studied in Iran.

In this study, 20% of the available data was tested, and the rest of the data (80%) was

allocated to the network education department. The advantage of a neural network is the

direct learning of data without the need to estimate their statistical characteristics. The neural

network, regardless of any initial hypothesis and previous knowledge of the relationships be-

tween the parameters studied, is able to find the relationship between the set of inputs and

outputs to predict each output corresponding to the desired input. Such algorithms can be

used to study the number of attachments. In one sentence, the tightness of the pipes can be

defined as the forces inside the well that prevent the pipe from rotating or exiting the well.

One of the main problems in digging oil chains is pipe seals. After grabbing a string in drilling

operations, there is a lot of effort to pull it out. One of the well-known methods of drill-down

liberation is the upward pull-up and downward weight-increasing method, which are somewhat

time-consuming and costly, but in most cases, they release the drilling field from the well.

The difficulty of the drilling field becomes more important when it is not possible to remove

the drill from the well for some reason. In seaworthy operations, tubing can only increase the

cost of a well by 30% [8].

2. Detailed expression of an algorithm solving

The pipe clogging can lead to many problems, such as cutting drilling, residual operations,

blocking wells, increasing non-useful life (NPT), and increasing the cost of developing a well.

Therefore, it is important to recognize and predict the flow of pipes before occurrence and

minimize the economic problems associated with them. In this regard, multi-layer perceptron

(MLP) and radial base (RBF) artificial neural networks can be very useful and effective in

predicting the objective function of pipe-laying and determining the non-linear relationship

976

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

between input parameters. It is possible to accurately predict the pipes to be considered be-

fore major problems, and thus avoid proper occurrence by making appropriate decisions using

these networks, While the performance of these networks is heavily dependent on the learning

algorithm, the choice of the most accurate and precise algorithm is also a topic that is very

significant because it can play a significant role in making decisions. Therefore, the selection

of the optimal algorithm is also essential and very important. It should be noted that the input

values include the properties of rock and fluid, and the output is the differential rate of the

tubes. Using the MLP and RBF would need to use some algorithm which is described in follow.

2.1. Optimization algorithms and practices genetic algorithm

Since the genetic algorithm is a random search method, it is difficult to provide a specific

formula for its ending. The fitting of the population for a number of generations may have

remained constant, suggesting that we have reached the final answer. One common way of

ending the algorithm is to stop it after generating a certain number of generations. Because

some operators need to know the total number of generations, this seems appropriate. After

completion of the algorithm repetition to the number of generations given as input to the

algorithm, the quality of the final solutions is considered, which, if the answers are not satis-

fied, the algorithm continues to a certain number, or from the beginning and By arranging a

different initial population and possibly some new settings, it is implemented [10].

2.2. Particle swarm algorithm

For the first time in 1995, by Eberhart and Kennedy, the PSO term was inspired as an

indeterminate search method for functional optimization. This algorithm is inspired by the

collective movement of birds seeking food [9].

After finding the best values, the speed and location of each particle are updated using

equations (1) and (2) [10].

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1[�̂�𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)] (1)

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (2)

The right side of equation (1) consists of three parts: the first part is the current velocity

of the particle and the second and third parts of the change of the velocity of the particle and

its rotation towards the best personal experience and the best experience of the group. If the

first part is not taken into account in this equation, then the particle velocity is determined

only by the current situation and the best experience of the particle and the best-accumulated

experience. In this way, the best aggregate particle stays in place, and the others move toward

that particle. In fact, the mass motion of particles without the first part of the equation (1)

will be a process in which the search space gradually becomes smaller and a local search

around the best particle forms. In contrast, if only the first part of equation (1) is taken into

account, particles move their normal way to reach the boundary wall and perform a kind of

global search [9].

2.3. Colonial competition algorithm

The colonial competition algorithm is a method in the field of evolutionary computing that

addresses the optimal answer to various optimization problems. This algorithm provides an

algorithm for solving mathematical optimization problems by mathematical modeling of the

socio-political evolution process. In terms of application, this algorithm falls into the category

of evolutionary algorithms. Like all algorithms in this category, the colonial competition algo-

rithm is also the first set of possible solutions. The initial results of genetic algorithm called

"chromosomes", in the particle swarm algorithm called "particle" and the imperialist compet-

itive algorithm, also known as "country" known.

3. Outcome result analysis and discussion

The data on the divergence of tubes from 30 different wells of offshore fields in the Persian

Gulf naming Soroush, Nowrooz, Abuzar, Forouzan, Salman, Dena, and Dorood were presented

and presented in tabular form in Table 1. Later, using artificial neural network code and genetic

977

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

algorithms, colonial competition, and particle swarm, the objective function of the problem is

addressed, and the corresponding accuracy is mentioned. Finally, the basic radial network

performance was analysed, and the results are presented in the following sections.

Table 1. Input and output data used for differential pressure pipes for the training of artificial neural
networks MLP and RBF

Differen-
tial pres-
sure (psi)

Well
depth
(m)

Fluffy
fluid

(cc/min)

Viscosity
filter,
(cP)

Percentage
of

solids

Viscose
plastic
(cP))

Submission
point

(lb/100ft2)

Primary
gelatin

(lb/100ft2)

Jelly Power
10 Minutes
(lb/100ft2)

Pipe
cap

700 3200 2.8 55 4 20 19 2 11 1

560 2500 1.5 62 13 50 25 7 10 1

230 1840 3.2 71 7 13 11 3 6 0

400 725 4.6 42 8 21 15 5 7 0

940 3325 3.3 81 9 42 16 3 4 1

821 2950 4.1 32 7 54 21 8 15 1

790 4113 2 69 14 49 20 1 11 1

261 1404 4.5 39 6 17 13 5 7 0

231 1021 2.9 57 8 16 24 4 8 0

756 3120 2.4 80 3 61 16 13 3 1

845 3150 3.7 42 4 31 22 10 14 1

250 1700 4.9 35 6 10 26 3 11 0

490 2540 3 50 1 43 27 13 5 1

831 2980 2.1 67 16 51 28 3 13 1

740 4053 1 61 19 52 17 6 8 1

132 941 5.1 37 7 25 13 5 9 0

150 1980 6 52 10 15 12 3 5 0

362 700 5 37 9 10 24 3 6 0

900 3790 1.3 83 3 17 28 1 14 1

766 2342 4.3 70 3 31 30 5 3 1

151 2000 5.4 32 9 12 10 4 5 0

268 1715 6 21 7 25 22 5 5 0

896 3910 4 47 16 52 20 1 17 1

933 3100 2.8 73 9 2 51 13 3 1

459 2934 3 40 9 20 37 15 4 1

685 2220 2.9 52 10 22 28 6 8 1

367 1915 5 36 9 11 12 4 6 0

146 850 2.8 58 7 23 25 4 8 0

582 2450 3 75 17 32 18 9 12 1

812 2302 2 49 15 14 29 11 13 1

978

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

Figure 1. Normalized data on actual data (Target) and network output (Output) of pipe holders for data

on Soroush, Nowrooz, Abuzar, Foruzan, Salman, Dena and Dorood fields, and error in each Experiment
with GA algorithm

3.1. Analysis of data on the divergent diameters of tubes with ICA algorithm

This section examines the role of an artificial neural network trained by the ICA algorithm

on the research results. The number of primary countries, the number of primary colonial

countries, the number of decades, and the rate of the revolution were estimated at 100, 10,

20, and 30, respectively. As previously mentioned, in order to predict the differential frequency

of tubes in the marinas, the artificial neural network trained with the colonial competition

algorithm used data from 30 wells in seven fields in the Persian Gulf as input for consideration

were taken. 80% of the data were randomly used as training data, the result of which is shown

in Figure 2.

Fig. 2. Normalized data. Target and Output data. Taps for data for Soroush, Nowrooz, Abuzar, Foruzan,
Salman, Dena, and Dorood fields and error in each. Experiment with the ICA algorithm

3.2. Analysis of data and results of prediction of radial artificial neural network (RBF)

In this section, we study the performance of the base radial network, which is trained with

different training algorithms and is analyzed under different scenarios of network accuracy.

As already mentioned, the radius-based function (RBF) is a function whose value is related

to the input distance from a central point. So, the general form of this function can be written

as follows [10]:

𝑦(𝑥) = ∑ (𝑤𝑗
𝑁
𝑗=1 𝜑𝑗)(‖𝑥 − 𝑥𝑗‖) (3)

979

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

where:𝑦(𝑥): weighted by an appropriate coefficient; 𝑤𝑖: each associated with a different cen-

ter; 𝑥𝑗: differentiable with respect to the weight. With open

𝜑𝑟=𝑓(𝑥) = { 𝑒
(

1

1−(𝛿𝑟)2)
 , 𝑟 <

1

𝛿

𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑡

where j φ is a different inverse function, the most important of which is the Gaussian function.

As defined by the definition of the rbf function, the distance between all the data with the

specified centers (x0) is an issue that matters in this type of network. Additionally, the correct

selection of weights (wj), as well as kernels (centers), is one of the most important issues in

these networks.

In this section, we discuss the role of the trained artificial neural network with the PSO

algorithm trained by the particle swarm algorithm. To do this, the newrb command is used in

MATLAB software that generates the network as follows:

Network = newrb (P, T, Goal, Spread, MN, DF)

In which P represents the input data vectors (pipe holders for wells in Soroush, Nowrooz,

Abuzar, Foruzan, Salman, Dena and Dorood fields), T represents the output data obtained

from the fields (snug or non-stop pipes), GOAL represents the theoretical error that specifies

the end of the grid, Spread represents the amount of dispersion of the rbf functions, which

indicates more dispersion numbers, MN represents the maximum number of nerve for basic

radial network training, which is at most equal to the number Problem inputs (9 inputs) and

DF represent the number of repetitions in which the error network is displayed.

3.3. Analyzing the data on the trapping rate with the PSO algorithm

The results of the basic radial network results are discussed in follow by using the particle

swarm algorithm. As previously mentioned, in order to predict the flow rate of the pipes by

an artificial neural network trained by the particle swarm algorithm, The wells of Soroush,

Nowruz, Abuzar, Foruzan, Salman, Dena, and Dorood fields were considered as inputs.

Fig. 3. Normalized data. Target and Output data for pipe data rate for Soroush, Nowrooz, Abuzar, Fo-
ruzan, Salman, Dena and Dorood fields, and error in each Experiment with PSO algorithm and RBF
network

3.4. Analyzing the data with the GA algorithm

As in the previous state, the condition for the termination of the network was selected using

a genetic algorithm, reaching a certain number of courses (number of generations equivalent

to 50 courses). In this way, 20% of the rounded input data is considered as a test for the

trained network with the GA algorithm, and the rest of the data is assigned randomly to the

network education section. Therefore, for the basic radial network, the GA algorithm was at-

tempted to improve the network structure and, finally, a network that was selected to have

the lowest RMSE associated with the test data. The parameters of the survey and optimization

980

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

in this network were spread (kernel functions dispersion) and the number of neurons needed,

which eventually reached 90 and 4, respectively. Optimization parameters were selected using

the genetic algorithm, such as the table for the mlp network.

Fig. 4. Normalized data. Target and Output data of pipe holders for Soroush, Nowrooz, Abuzar, Fo-
ruzan, Salman, Dena and Dorood fields and error in each Experiment with GA algorithm and RBF net-

work

4. Results

The results obtained from artificial neural networks belonging to artificial neural networks

of the multilayer and radial base perceptron showed that it should be the basis for decision

making based on network testing and validation data, not training data, since data from the

Overtrained Education section Have been.

Undoubtedly, one of the important factors in the accurate prediction of MLP artificial neural

networks was the use of randomly based algorithms. In this case, the possibility of trapping

the network in the local minima will be reduced, and the results will be better targeted to the

actual values.

The accuracy of about 100% obtained from the PSO algorithm indicates the reliability of

the neural network in the performances of this algorithm. In other words, the use of the

simulator in other scenarios is unnecessary and can be used instead of networks.

Particle swarm algorithms were more accurately able to predict pipeline data in offshore

wells than colonial and genetic competition algorithms so that the RMSE error of this algorithm

was 0/001 for test data. While this amount was 0/009 and 0/004 for genetic algorithms and

colonial competition, respectively. Therefore, the function of the network under the use of

genetics is much weaker than the colonial competition algorithm.

Since the number of generations and the initial population for all algorithms are a key

parameter in optimizing the structure and accuracy of the network, in this thesis, the initial

population (particles for PSO and countries for ICA) all algorithms are equal and equal to 100

was considered.

References

[1] Bataee M, and Mohseni S. January. Application of Artificial Intelligent Systems in ROP Opti-
mization: a Case Study. In SPE Middle East Unconventional Gas Conference and Exhibition
2011, SPE-140029-MS.

[2] Beach WH. Kennametal Inc, 1988. Erosion resistant cutting bit with hardfacing. U.S. Patent
4,725,098.

[3] Atashpaz-Gargari E, and Lucas C. Imperialist competitive algorithm: an algorithm for optimi-
zation inspired by imperialistic competition. In Evolutionary computation, 2007. CEC 2007.
IEEE Congress on (pp. 4661-4667), DOI:10.1109/CEC.2007.4425083.

[4] Becker WM, Kleinsmith LJ, Hardin J, and Raasch J. 2003. The world of the cell (Vol. 6). San
Francisco: Benjamin Cummings, ISBN-13: 978-0805393934.

981

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

[5] Bilgesu HI, Altmis U, Ameri S, Mohaghegh S, and Aminian K. A new approach to predict bit

life based on tooth or bearing failures. In SPE Eastern regional meeting 1998. SPE-51082-
MS.

[6] Shahrekordi AP, Behnood M, Hosseinian A, Mozaffari S, Sheikhzakariaee SJ. A Sensitivity
Analysis for the Effective Parameters Disparity on Pressure and Pressure Derivative of Well-

Testing in A Horizontal Well. Petroleum & Coal, 2019; 61(4): 749-756.
[7] Bilgesu HI, Tetrick LT, Altmis U, Mohaghegh S, and Ameri S. A new approach for the prediction

of rate of penetration (ROP) values. In SPE Eastern Regional Meeting. Society of Petroleum
Engineers 1997.

[8] Arehart RA. Drill Bit Diagnosis Using Neural Network. Proc. the SPE Annual Technical Confer-
ence and Exhibition 1989, SPE-19558-PA.

[9] Desai NJ, and Sue JA. ReedHycalog LP, 2007. Fixed cutter drill bit with non-cutting erosion

resistant inserts. U.S. Patent 7,237,628.
[10] Theodoridis S, Koutroumbas K. Pattern Recognition (Fourth Edition), Academic Press 2008,

ISBN: 9781597492720.

Attachments:

Artificial neural network code:

%% Start of Program

clc
clear
close all

%% Data Loading
Data = xlsread('Mansoori.xlsx');

X = Data(:,1:end-1);
Y = Data(:,end);

DataNum = size(X,1);

InputNum = size(X,2);
OutputNum = size(Y,2);

%% Normalization
MinX = min(X);
MaxX = max(X);

MinY = min(Y);
MaxY = max(Y);

XN = X;
YN = Y;
for ii = 1:InputNum

 XN(:,ii) = Normalize_Fcn(X(:,ii),MinX(ii),MaxX(ii));
end

for ii = 1:OutputNum
 YN(:,ii) = Normalize_Fcn(Y(:,ii),MinY(ii),MaxY(ii));
end

%% Test and Train Data
TrPercent = 80;
TrNum = round(DataNum * TrPercent / 100);
TsNum = DataNum - TrNum;

R = randperm(DataNum);

trIndex = R(1 : TrNum);
tsIndex = R(1+TrNum : end);

982

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

Xtr = XN(trIndex,:);

Ytr = YN(trIndex,:);

Xts = XN(tsIndex,:);
Yts = YN(tsIndex,:);

%% Network Structure
pr = [-1 1];
PR = repmat(pr,InputNum,1);
MSEtsmin=100;
kkmin=100;
kkkmin=100;

for kk=6:6;
for kkk=6:6;
Network = newff(PR,[kk kkk OutputNum],{'tansig' 'tansig' 'tansig'});

%% Training

Network = TrainUsing_PSO_Fcn(Network,Xtr,Ytr);

%% Assesment
YtrNet = sim(Network,Xtr')';
YtsNet = sim(Network,Xts')';

MSEtr = mse(YtrNet - Ytr)
MSEts = mse(YtsNet - Yts)
if MSEts < MSEtsmin
 MSEtsmin=MSEts;
 kkmin=kk;
 kkkmin=kkk;
end

end

end
MSEts = MSEtsmin
kk = kkmin
kkk = kkkmin

RMSEts=sqrt(MSEts)/2*100

trainPerformance = perform(Network,Ytr,YtrNet)
testPerformance = perform(Network,Yts,YtsNet)
errors = gsubtract(Yts,YtsNet);

%% Display

figure(1)
plot(Ytr,'r-')
hold on
plot(YtrNet,'bo')

legend('Targets','Outputs')
 title('Real train data Vs Network train data')

hold off

figure(2)
plot(Yts,'-or')

hold on
plot(YtsNet,'-sb')

983

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

legend('Targets','Outputs');

 title('Real test data Vs Network test data');
hold off

figure(3)

t = -1:.1:1;
plot(t,t,'b','linewidth',2)
hold on
plot(Ytr,YtrNet,'ok')
legend('Targets','Outputs');
 title('YtrNet Vs Ytr');
hold off

figure(4)
t = -1:.1:1;
plot(t,t,'b','linewidth',2)
hold on
plot(Yts,YtsNet,'ok')

legend('Targets','Outputs');
 title('Yts Vs YtsNet');
hold off

plot(Yts-YtsNet, 'linewidth',3)
plotfit(Network,Ytr,YtrNet)

plotfit(Network,Yts,YtsNet)
figure, plotregression(Yts,YtsNet)
figure, plotregression(Ytr,YtrNet)
figure, ploterrhist(errors)

PlotResults(Ytr,YtrNet,'Train Data');

PlotResults(Yts,YtsNet,'TestData');

Code of particle swarm algorithm :

%% Problem Statement
IW = Network.IW{1,1}; IW_Num = numel(IW);
LW1 = Network.LW{2,1}; LW1_Num = numel(LW1);
LW2 = Network.LW{3,2}; LW2_Num = numel(LW2);

b1 = Network.b{1,1}; b1_Num = numel(b1);
b2 = Network.b{2,1}; b2_Num = numel(b2);
b3 = Network.b{3,1}; b3_Num = numel(b3);
TotalNum = IW_Num + LW1_Num + LW2_Num+ b1_Num + b2_Num + b3_Num;

NPar = TotalNum;

VarMin = -1*ones(1,TotalNum);
VarMax = +1*ones(1,TotalNum);

CostFuncName = 'Cost_ANN_EA';

%% Algorithm's Parameters

SwarmSize = 100;
MaxIteration = 70;
C1 = 2; % Cognition Coefficient;
C2 = 4 - C1; % Social Coefficient;
%% Initial Population
GBest.Cost = inf;

984

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

GBest.Position = [];

GBest.CostMAT = [];
for p = 1:SwarmSize
 Particle(p).Position = rand(1,NPar) .* (VarMax - VarMin) + VarMin;
 Particle(p).Cost = feval(CostFuncName,Particle(p).Position,Xtr,Ytr,Network);

 Particle(p).Velocity = [];
 Particle(p).LBest.Position = Particle(p).Position;
 Particle(p).LBest.Cost = Particle(p).Cost;

 if Particle(p).LBest.Cost < GBest.Cost
 GBest.Cost = Particle(p).LBest.Cost;
 GBest.Position = Particle(p).LBest.Position;

 end
end

%% Start of Optimization
for Iter = 1:MaxIteration
 %% Velocity update

 for p = 1:SwarmSize
 Particle(p).Velocity = C1 * rand * (Particle(p).LBest.Position - Particle(p).Position) + C2 * rand *
(GBest.Position - Particle(p).Position);
 Particle(p).Position = Particle(p).Position + Particle(p).Velocity;

 Particle(p).Position = max(Particle(p).Position , VarMin);
 Particle(p).Position = min(Particle(p).Position , VarMax);

 Particle(p).Cost = feval(CostFuncName,Particle(p).Position,Xtr,Ytr,Network);

 if Particle(p).Cost < Particle(p).LBest.Cost
 Particle(p).LBest.Position = Particle(p).Position;
 Particle(p).LBest.Cost = Particle(p).Cost;

 if Particle(p).LBest.Cost < GBest.Cost
 GBest.Cost = Particle(p).LBest.Cost;

 GBest.Position = Particle(p).LBest.Position;
 end
 end
 end

 %% Display
 disp(['Itretion = ' num2str(Iter) '; Best Cost = ' num2str(GBest.Cost) ';']);
 GBest.CostMAT = [GBest.CostMAT GBest.Cost];
end

GBest.Position
plot(GBest.CostMAT)

Network2 = ConsNet_Fcn(Network,GBest.Position);
BestCost = GBest.Cost;
end

Code of colonial competition algorithm:

function [Network2 BestCost] = TrainUsing_ICA_Fcn(Network,Xtr,Ytr)

%% Problem Statement

IW = Network.IW{1,1}; IW_Num = numel(IW);
LW1 = Network.LW{2,1}; LW1_Num = numel(LW1);
LW2 = Network.LW{3,2}; LW2_Num = numel(LW2);
b1 = Network.b{1,1}; b1_Num = numel(b1);
b2 = Network.b{2,1}; b2_Num = numel(b2);
b3 = Network.b{3,1}; b3_Num = numel(b3);

985

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

TotalNum = IW_Num + LW1_Num + LW2_Num+ b1_Num + b2_Num + b3_Num;

CostFuncExtraParams.Xtr = Xtr;
CostFuncExtraParams.Ytr = Ytr;
CostFuncExtraParams.Network = Network;

ProblemParams.CostFuncName = 'Cost_ANN_EA'; % You should state the name of your cost function
here.
ProblemParams.CostFuncExtraParams = CostFuncExtraParams; % Reserved for the extra pa-
rameters in cost function. In normal application do not use it that is use [].
ProblemParams.NPar = TotalNum; % Number of optimization variables of your objec-
tive function. "NPar" is the dimention of the optimization problem.

ProblemParams.VarMin = [-1] ; % Lower limit of the optimization parameters. You
can state the limit in two ways. 1) 2)
ProblemParams.VarMax = [1]; % Lower limit of the optimization parameters. You can
state the limit in two ways. 1) 2)

% Modifying the size of VarMin and VarMax to have a general form

if numel(ProblemParams.VarMin)==1
 ProblemParams.VarMin=repmat(ProblemParams.VarMin,1,ProblemParams.NPar);
 ProblemParams.VarMax=repmat(ProblemParams.VarMax,1,ProblemParams.NPar);
end

ProblemParams.SearchSpaceSize = ProblemParams.VarMax - ProblemParams.VarMin;

%% Algorithmic Parameter Setting
AlgorithmParams.NumOfCountries = 100; % Number of initial countries.
AlgorithmParams.NumOfInitialImperialists = 40; % Number of Initial Imperialists.
AlgorithmParams.NumOfAllColonies = AlgorithmParams.NumOfCountries - AlgorithmParams.NumOfIni-
tialImperialists;
AlgorithmParams.NumOfDecades = 80;
AlgorithmParams.RevolutionRate = 0.3; % Revolution is the process in which the socio-politi-

cal characteristics of a country change suddenly.
AlgorithmParams.AssimilationCoefficient = 2; % In the original paper assimilation coefficient is

shown by "beta".
AlgorithmParams.AssimilationAngleCoefficient = .5; % In the original paper assimilation angle coeffi-
cient is shown by "gama".
AlgorithmParams.Zeta = 0.02; % Total Cost of Empire = Cost of Imperialist + Zeta *

mean(Cost of All Colonies);
AlgorithmParams.DampRatio = 0.99;
AlgorithmParams.StopIfJustOneEmpire = false; % Use "true" to stop the algorithm when just one
empire is remaining. Use "false" to continue the algorithm.
AlgorithmParams.UnitingThreshold = 0.02; % The percent of Search Space Size, which enables
the uniting process of two Empires.

%% Display Setting
DisplayParams.PlotEmpires = false; % "true" to plot. "false" to cancel ploting.
if DisplayParams.PlotEmpires
 DisplayParams.EmpiresFigureHandle = figure('Name','Plot of Empires','NumberTitle','off');
 DisplayParams.EmpiresAxisHandle = axes;

end

DisplayParams.PlotCost = false; % "true" to plot. "false"
if DisplayParams.PlotCost
 DisplayParams.CostFigureHandle = figure('Name','Plot of Minimum and Mean Costs','Num-
berTitle','off');
 DisplayParams.CostAxisHandle = axes;
end

ColorMatrix = [1 0 0 ; 0 1 0 ; 0 0 1 ; 1 1 0 ; 1 0 1 ; 0 1 1 ; 1 1 1 ;

986

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

 0.5 0.5 0.5; 0 0.5 0.5 ; 0.5 0 0.5 ; 0.5 0.5 0 ; 0.5 0 0 ; 0 0.5 0 ; 0 0 0.5 ;

 1 0.5 1 ; 0.1*[1 1 1]; 0.2*[1 1 1]; 0.3*[1 1 1]; 0.4*[1 1 1]; 0.5*[1 1 1]; 0.6*[1 1 1]];
DisplayParams.ColorMatrix = [ColorMatrix ; sqrt(ColorMatrix)];

DisplayParams.AxisMargin.Min = ProblemParams.VarMin;

DisplayParams.AxisMargin.Max = ProblemParams.VarMax;

%% Creation of Initial Empires
InitialCountries = GenerateNewCountry(AlgorithmParams.NumOfCountries , ProblemParams);

% Calculates the cost of each country. The less the cost is, the more is the power.
if isempty(ProblemParams.CostFuncExtraParams)

 InitialCost = feval(ProblemParams.CostFuncName,InitialCountries);
else
 InitialCost = feval(ProblemParams.CostFuncName,InitialCountries,ProblemParams.CostFuncExtraPa-
rams);
end
[InitialCost,SortInd] = sort(InitialCost); % Sort the cost in assending order. The best

countries will be in higher places
InitialCountries = InitialCountries(SortInd,:); % Sort the population with respect to their
cost.

Empires = CreateInitialEmpires(InitialCountries,InitialCost,AlgorithmParams, ProblemParams);

%% Main Loop

MinimumCost = repmat(nan,AlgorithmParams.NumOfDecades,1);
MeanCost = repmat(nan,AlgorithmParams.NumOfDecades,1);

if DisplayParams.PlotCost
 axes(DisplayParams.CostAxisHandle);
 if any(findall(0)==DisplayParams.CostFigureHandle)
 h_MinCostPlot=plot(MinimumCost,'r','LineWidth',1.5,'YDataSource','MinimumCost');

 hold on;
 h_MeanCostPlot=plot(MeanCost,'k:','LineWidth',1.5,'YDataSource','MeanCost');

 hold off;
 pause(0.05);
 end
end

for Decade = 1:AlgorithmParams.NumOfDecades
 AlgorithmParams.RevolutionRate = AlgorithmParams.DampRatio * AlgorithmParams.Revolution-
Rate;

 Remained = AlgorithmParams.NumOfDecades - Decade
 for ii = 1:numel(Empires)

 %% Assimilation; Movement of Colonies Toward Imperialists (Assimilation Policy)
 Empires(ii) = AssimilateColonies(Empires(ii),AlgorithmParams,ProblemParams);

 %% Revolution; A Sudden Change in the Socio-Political Characteristics
 Empires(ii) = RevolveColonies(Empires(ii),AlgorithmParams,ProblemParams);

 %% New Cost Evaluation

 if isempty(ProblemParams.CostFuncExtraParams)
 Empires(ii).ColoniesCost = feval(ProblemParams.CostFuncName,Empires(ii).ColoniesPosition);
 else
 Empires(ii).ColoniesCost = feval(ProblemParams.CostFuncName,Empires(ii).ColoniesPosi-
tion,ProblemParams.CostFuncExtraParams);
 end

 %% Empire Possession

987

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

 Empires(ii) = PossesEmpire(Empires(ii));

 %% Computation of Total Cost for Empires
 Empires(ii).TotalCost = Empires(ii).ImperialistCost + AlgorithmParams.Zeta * mean(Em-
pires(ii).ColoniesCost);

 end

 %% Uniting Similiar Empires
 Empires = UniteSimilarEmpires(Empires,AlgorithmParams,ProblemParams);

 %% Imperialistic Competition

 Empires = ImperialisticCompetition(Empires);

 if numel(Empires) == 1 && AlgorithmParams.StopIfJustOneEmpire
 break
 end

 %% Displaying the Results
 DisplayEmpires(Empires,AlgorithmParams,ProblemParams,DisplayParams);

 ImerialistCosts = [Empires.ImperialistCost];
 MinimumCost(Decade) = min(ImerialistCosts);
 MeanCost(Decade) = mean(ImerialistCosts);

 if DisplayParams.PlotCost
 refreshdata(h_MinCostPlot);
 refreshdata(h_MeanCostPlot);
 drawnow;
 pause(0.01);
 end

end % End of Algorithm
BestCost = MinimumCost(end)

BestIndex = find(ImerialistCosts == min(ImerialistCosts)); BestIndex = BestIndex(1);
BestSolution = Empires(BestIndex).ImperialistPosition;
Network2 = ConsNet_Fcn(Network,BestSolution);

Genetic Algorithm Code

function [Network2] = TrainUsing_GA_Fcn(Network,Xtr,Ytr)

%% Problem Statement
IW = Network.IW{1,1}; IW_Num = numel(IW);

LW = Network.LW{2,1}; LW_Num = numel(LW);
b1 = Network.b{1,1}; b1_Num = numel(b1);
b2 = Network.b{2,1}; b2_Num = numel(b2);

TotalNum = IW_Num + LW_Num + b1_Num + b2_Num;

NPar = TotalNum;

VarLow = -1;
VarHigh = 1;
FunName = 'Cost_ANN_EA';

%% Algorithm Parameters

SelectionMode = 3; % 1 for Random, 2 for Tournment, 3 for
PopSize = 20;
MaxGenerations = 10;

988

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

RecomPercent = 15/100;
CrossPercent = 50/100;
MutatPercent = 1 - RecomPercent - CrossPercent;

RecomNum = round(PopSize*RecomPercent);
CrossNum = round(PopSize*CrossPercent);
if mod(CrossNum,2)~=0
 CrossNum = CrossNum - 1;
end

MutatNum = PopSize - RecomNum - CrossNum;

%% Initial Population
Pop = rand(PopSize,NPar) * (VarHigh - VarLow) + VarLow;

Cost = feval(FunName,Pop,Xtr,Ytr,Network);
[Cost Inx] = sort(Cost);

Pop = Pop(Inx,:);

%% Main Loop
MinCostMat = [];
MeanCostMat = [];

for Iter = 1:MaxGenerations

 %% Recombination
 RecomPop = Pop(1:RecomNum,:);

 %% CrossOver
 %% Parent Selection
 SelectedParentsIndex = MySelection_Fcn(Cost,CrossNum,SelectionMode);

 %% Cross Over
 CrossPop = [];

 for ii = 1:2:CrossNum
 Par1Inx = SelectedParentsIndex(ii);
 Par2Inx = SelectedParentsIndex(ii+1);

 Parent1 = Pop(Par1Inx,:);
 Parent2 = Pop(Par2Inx,:);

 [Off1 , Off2] = MyCrossOver_Fcn(Parent1,Parent2);

 CrossPop = [CrossPop ; Off1 ; Off2];

 end
 %% Mutation
 MutatPop = rand(MutatNum,NPar)*(VarHigh - VarLow) + VarLow;

 %% New Population

 Pop = [RecomPop ; CrossPop ; MutatPop];
 Cost = feval(FunName,Pop,Xtr,Ytr,Network);

 [Cost Inx] = sort(Cost);
 Pop = Pop(Inx,:);

 %% Display
 MinCostMat = [MinCostMat ; min(Cost)];
 [Iter MinCostMat(end)]

 MeanCostMat = [MeanCostMat ; mean(Cost)];
 subplot(2,1,1)

989

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

 plot(MinCostMat,'r','linewidth',2.5);

 xlim([1 MaxGenerations])
% hold on
% plot(MeanCostMat,':b','linewidth',2)
% hold off

 subplot(2,1,2)
 plot(Pop(:,1),Pop(:,2),'rp')
 axis([VarLow VarHigh VarLow VarHigh])
 pause(0.05)

end

%% Final Result Demonstration
BestSolution = Pop(1,:);
BestCost = Cost(1);
Network2 = ConsNet_Fcn(Network,BestSolution);

Basic artificial radial neural network code trained with GA

clc;close all;clear all
%% GA
Var_n=2; %Spread, MaxNeuron, DisplayAt
Range=[0.5,100;1,9]; %% rang of search
PopuSize=30;generation_n =10;

[Input]=MyGA(Var_n,Range,PopuSize,generation_n);

%% Training the best RBF network
Goal=0.001;
Spread=Input(1); %%round
MaxNeuron=round(Input(2)); %%round

DisplayAt=1; %%round

Data = xlsread('DPSTICK1.xlsx');

x = Data(:,1:end-1);
y = Data(:,end);

inputs = x';
targets = y';

nData=size(inputs,2);

Perm=randperm(nData);

pTrainData=0.8;
nTrainData=round(pTrainData*nData);
trainInd=Perm(1:nTrainData);
Perm(1:nTrainData)=[];
trainInputs = inputs(:,trainInd);
trainTargets = targets(:,trainInd);

pTestData=1-pTrainData;
nTestData=nData-nTrainData;
testInd=Perm;
testInputs = inputs(:,testInd);
testTargets = targets(:,testInd);

% Create and Train RBF Network
net = newrb(trainInputs,trainTargets,Goal,Spread,MaxNeuron,DisplayAt);

990

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

% Test the Network

outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs);

% Recalculate Training, Validation and Test Performance
trainOutputs = outputs(:,trainInd);
trainErrors = trainTargets-trainOutputs;
trainPerformance = perform(net,trainTargets,trainOutputs);

testOutputs = outputs(:,testInd);
testError = testTargets-testOutputs;

testPerformance = perform(net,testTargets,testOutputs);

 PlotResults(targets,outputs,'All Data');
 PlotResults(trainTargets,trainOutputs,'Train Data');
 PlotResults(testTargets,testOutputs,'Test Data');

Basic artificial neural network code trained with pso

clc;close all;clear all
%% pso
NPar = 2;
VarMin = [0.5 1];

VarMax = [100 9];
[Input]=PSO_Count_General(NPar,VarMin,VarMax);

%% Training the best RBF network
Goal=0.001;
Spread=Input(1); %%round

MaxNeuron=round(Input(2)); %%round
DisplayAt=1; %%round

Data = xlsread('DPSTICK1.xlsx');

x = Data(:,1:end-1);
y = Data(:,end);

inputs = x';
targets = y';

nData=size(inputs,2);

Perm=randperm(nData);

pTrainData=0.8;
nTrainData=round(pTrainData*nData);
trainInd=Perm(1:nTrainData);
Perm(1:nTrainData)=[];
trainInputs = inputs(:,trainInd);

trainTargets = targets(:,trainInd);

pTestData=1-pTrainData;
nTestData=nData-nTrainData;
testInd=Perm;
testInputs = inputs(:,testInd);
testTargets = targets(:,testInd);

% Create and Train RBF Network
net = newrb(trainInputs,trainTargets,Goal,Spread,MaxNeuron,DisplayAt);

991

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs);

% Recalculate Training, Validation and Test Performance
trainOutputs = outputs(:,trainInd);
trainErrors = trainTargets-trainOutputs;
trainPerformance = perform(net,trainTargets,trainOutputs);

testOutputs = outputs(:,testInd);

testError = testTargets-testOutputs;
testPerformance = perform(net,testTargets,testOutputs);

 PlotResults(targets,outputs,'All Data');
 PlotResults(trainTargets,trainOutputs,'Train Data');
 PlotResults(testTargets,testOutputs,'Test Data');

Artificial neural network radial base code trained with ICA

clc;

clear;
close all;

Data = xlsread('DPSTICK.xlsx');

x = Data(:,1:end-1);
y = Data(:,end);

inputs = x';
targets = y';

nData=size(inputs,2);

Perm=randperm(nData);

pTrainData=0.7;
nTrainData=round(pTrainData*nData);
trainInd=Perm(1:nTrainData);
Perm(1:nTrainData)=[];
trainInputs = inputs(:,trainInd);
trainTargets = targets(:,trainInd);

pTestData=1-pTrainData;
nTestData=nData-nTrainData;
testInd=Perm;
testInputs = inputs(:,testInd);
testTargets = targets(:,testInd);

% Create and Train RBF Network
Goal=0;
Spread=1;
MaxNeuron=100;
DisplayAt=1;
net = newrb(trainInputs,trainTargets,Goal,Spread,MaxNeuron,DisplayAt);

% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);

992

Petroleum and Coal

 Pet Coal (2020); 62(3): 975-993
ISSN 1337-7027 an open access journal

performance = perform(net,targets,outputs);

% Recalculate Training, Validation and Test Performance
trainOutputs = outputs(:,trainInd);
trainErrors = trainTargets-trainOutputs;

trainPerformance = perform(net,trainTargets,trainOutputs);

testOutputs = outputs(:,testInd);
testError = testTargets-testOutputs;
testPerformance = perform(net,testTargets,testOutputs);

PlotResults(targets,outputs,'All Data');

PlotResults(trainTargets,trainOutputs,'Train Data');
PlotResults(testTargets,testOutputs,'Test Data');

% View the Network
% view(net);

To whom correspondence should be addressed: Dr. Sajjad Mozaffari, Department of Petroleum and Chemical
Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran,

E-mail: Sajad.Mozafari@yahoo.com

993

mailto:Sajad.Mozafari@yahoo.com

	Abstract
	1. Introduction
	2. Detailed expression of an algorithm solving
	2.1. Optimization algorithms and practices genetic algorithm
	2.2. Particle swarm algorithm
	2.3. Colonial competition algorithm

	3. Outcome result analysis and discussion
	3.1. Analysis of data on the divergent diameters of tubes with ICA algorithm
	3.2. Analysis of data and results of prediction of radial artificial neural network (RBF)
	3.3. Analyzing the data on the trapping rate with the PSO algorithm
	3.4. Analyzing the data with the GA algorithm

	4. Results
	References

