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Abstract 
The study intends to boost the definition of the target volume in the F3 block, southern North Sea, 
Netherlands by applying artificial neural networks (ANNs), multi-attribute seismic analysis, and the 
geological framework from the Paleo-Cambrian to the Cenozoic periods, by identifying pertinent 
horizons for HC deposits. To gain a greater understanding of subsurface geology, seismic parameters 
comprising signal breadth, amplitude, and spectral attributes are calculated. Here, we used artificial 
neural networks (ANNs) to model gas chimneys, creating a 'chimney cube.' Quantitative evaluation of 
seismic data was done using RMS amplitude and similarity measures. Techniques like spectral 
decomposition and RGB blending modes were introduced. After examination, it is recommended to 
drill three vertical wells. Besides, the application of seismic attributes and ANNs in mapping gas 
chimneys, in addition to the contribution made in the understanding of identification of the hydrocarbon 
prospects in complex geological domains, forms the major novelty of this research. However, the 
results enrich the understanding of gas chimney structures and provide useful approaches for 
subsequent hydrocarbon exploration in similar geological conditions. 
Keywords: Gas chimney; Artificial neural networks; Interpretation; Seismic attributes; Well placement. 

1. Introduction

1.1. Gas chimney

Seismic data show gas chimneys as distinctive vertical features with fragile discontinuous 
reflectors that affect the recorded data [1]. Seismic interpretation methods including velocity 
modeling and multi-component seismic analysis allow experts to detect these structures [2]. 
The discovery of gas chimneys supports drilling safety and petroleum system knowledge but 
produces disturbances that hide seismic reflections [3]. RMS along with variance are among 
the traditional seismic attributes used for detection yet identification of gas chimneys versus 
other geologic features remains elusive [4]. Artificial Neural Networks receive research atten-
tion for their ability to improve detection accuracy and minimize drilling risks [5]. The identifi-
cation process for gas prospects requires studying geological information while performing 
seismic survey examinations to develop exploration areas through seismic attribute analysis [6]. 
Multiple scientific methods combine to assess both reservoir hydrocarbon quality and quantity 
during evaluations [7]. Drilling confirms resource viability. New technology such as machine 
learning enhances detection systems and promotes cross-discipline teamwork which results 
in deeper subsurface evaluation [8].  

1.2. Geology 

Seismic data show gas chimneys as distinctive vertical features with fragile discontinuous 
reflectors that affect the recorded data [9]. Seismic interpretation methods including velocity 
modeling and multi-component seismic analysis allow experts to detect these structures [10]. 
The discovery of gas chimneys supports drilling safety and petroleum system knowledge but 
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produces disturbances that hide seismic reflections [11]. RMS along with variance are among 
the traditional seismic attributes used for detection yet identification of gas chimneys versus 
other geologic features remains elusive [12]. Artificial Neural Networks receive research atten-
tion for their ability to improve detection accuracy and minimize drilling risks [13]. The identi-
fication process for gas prospects requires studying geological information while performing 
seismic survey examinations to develop exploration areas through seismic attribute analysis. 
Multiple scientific methods combine to assess both reservoir hydrocarbon quality and quantity 
during evaluations [14]. Drilling confirms resource viability. New technology such as machine 
learning enhances detection systems and promotes cross-discipline teamwork which results 
in deeper subsurface evaluation [15]. 

1.3. Data 

One important geological dataset obtained in 1987 is the seismic data of the F3 block in 
the North Sea, which is located offshore of the Netherlands. It is situated at N 54°52'0.86" / 
E 4°48'47.07". Nederlandse Aardolie Maatschappij (NAM) was the first to obtain this infor-
mation. The data was originally taken and then processed in the same year. In 2023, the 
seismic dataset was upgraded with the help of advanced data processing techniques. The side 
view and top view of the F3 block are viewed in Figure 1 and 2 respectively. 

 
 

Figure 1. Side view of F3 Block with vertical wells. Figure 2. Top view of F3 Block with vertical wells. 

The F3 survey is the perfect example of a detailed geophysical survey done with both the 
2D and 3D survey techniques. It is spread over an area of 386.93 square kilometres. In-line 
is located in the direction of the main survey, and the range can reach 750 from 100 with a 
step of 1. The span range is from 300 to 1,250, in steps of 1, vertically portraying the same 
distance as the in-lines. The Z range covers a range of 0 up to 1848 ms with a sampling rate 
of 4. The well logs of F02-1, F03-2, F03-4, and F06-1 contain the most comprehensive set of 
geophysical data that ultimately feed into the evaluation of formations below the surface. 
These logs collect different parameters including density, sonic, gamma ray, porosity, and 
lithology that are crucial for rock type identification, determining in-situ conditions such as the 
overburden pressure, and learning the properties of the rock formation. 

2. Methodology 

The research identifies prospect locations through seismic data collected from three wells 
situated in the F3 block of the North Sea. 3D models emerge from processing data acquired 
from TerraNubis.com which allows observation of subsurface structures. Geological formations 
at different depths can be defined through aerial visualization by drawing contours onto the 
images. Artificial Neural Networks detect gas chimneys in the dataset which results in "chim-
ney cube" outputs for assessments. The assessment of hydrocarbons depends on RMS ampli-
tude analysis as well as similarity evaluation and spectral decomposition techniques which 
include RGB Alpha blending. The particular analysis techniques make it possible to identify 
unique frequencies for separate horizons which optimizes hydrocarbon detection outcomes. 
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During the evaluation process, researchers determined three areas with hydrocarbon presence 
while determining correct drilling depths. ANI organizations proved superior to established 
seismic interpretation procedures when examining hydrocarbon reservoirs providing better 
precision along with efficiency. Figure 3 indicates the overall interpretation. 

 
Figure 3. Flow chart of overall interpretation. 

3. Results and discussions 

3.1. Artificial neural networks 

ANNs based on McCulloch and Pitts (1943) operate through weighted inputs that pass 
through a non-linear activation function to generate a definitive output [16]. By adjusting 
weight values predictions become more accurate thus making ANNs valuable for seismic pro-
cessing operations when detecting gas chimneys. The supervised classification training of 
ANNs allows them to enhance contrast between discontinuities and low-amplitude regions 
which leads to gas chimney probability cube creation [17]. The workflow begins by preparing 
data and then calculates attributes and applies ANN analysis to seismic volumes which leads 
to gas chimney detection and characterization. ANNs succeed in gas chimney interpretation 
because they identify particular seismic indicators which help overcome the interpretive diffi-
culties of complex structures and noise [18]. Modern techniques have enabled automatic pre-
cise identification of gas chimneys which enhances the opportunity to detect hydrocarbons 
and research complex geological structures. 

3.2. Seismic attributes 

Seismic attributes serve as vital tools during seismic data analysis since they supply an 
advanced understanding of underground geological features that regular methods usually miss [19]. 
The depiction of geological formations along with stratigraphy and geomorphology becomes 
clearer through seismic attributes as opposed to traditional methods using seismic amplitudes 
and 3D seismic techniques [20]. In Sheriff classification, these subsurface properties fall under 
the Sheriff approach with members envelope, amplitude, phase, polarization, dip and phase 
azimuth [21]. These attributes give both qualitative and quantitative information which en-
hances subsurface imaging capabilities while allowing the identification of lithology and fluid 
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content assessment needed for reservoir characterization [22]. 3D seismic data improvements 
have made seismic geomorphology an essential technology for geological mapping when well 
control is scarce [23].  

3.3. Spectral decomposition 

The analysis method known as spectral decomposition transforms waveforms to show basic 
frequency elements which reveal underlying geologic subsurface features. The interpretation 
method aids analysts in examining frequency shifts while measuring sedimentary rock layer 
thicknesses and spotting horizontal breaks which aid raw material discovery. The method 
proves useful whenever normal seismic approaches fall short of solving the interpretation 
problems below the resolution level and estimating sand thickness. The procedure relies on 
two essential computing methods consisting of Fast Fourier Transform (FFT) together with 
Continuous Wavelet Transform (CWT). The speed accuracy combination of FFT exists along-
side CWT's wavelet-based analysis flexibility which improves through various wavelet selection 
options including Morlet Mexican Hat and Gaussian functions. 

3.4. Similarity 

 
Figure 4. Similarity. 

Similarity is a metric that is used to calcu-
late the degree of resemblance between var-
ious parts of a feature. This algorithm finds 
the level of "correlation" between two or 
more traces by identifying their waveforms 
and the level of their amplitude. A full match 
is represented by several 1s, whilst no simi-
larity at all is indicated by a value of 0. We 
start by defining trace segments using rela-
tive coordinates to ascertain their positions 
and a time-gate in milliseconds.  In the case 
of 2D data inputs, the trace positions are de-
termined solely by a trace step-out, without 
considering inline and crossline. The exten-
sion parameter is a crucial factor that deter-
mines the number of trace pairs included in 
the computation. Figure 4 shows an example 
of similarity. 

The similarity function is a vector product of two N-dimensional vectors in which N repre-
sents the length of the vertical running window for the similarity attribute which is in samples. 
The length of the vertical running window equation is: 

N =  
timegate_max − timegate_min 

sample interval
+ 1 (1)  

The similarity is calculated by dividing the Euclidean distance between the vectors by the 
sum of the length of both vectors, which is then subtracted from 1. The similarity equation is: 

sim = 1 −
�∑ (Xi − Yi)2N

i=1

�∑ Xi2N
i=1 + �∑ Yi2N

i=1

 (2) 

3.5. Energy 

Energy in seismic data analysis refers to the reflectivity strength of a particular data section. 
The calculation of this measure involves squaring the sum of sample values within the time 
window followed by normalization with sample count. The calculation method yields trustwor-
thy data about reflected energy strength across the analyzed time interval. The strength of 
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seismic reflections along with their amplitudes increase when energy values rise thus making 
energy a fundamental attribute for identifying gas chimneys and detecting lateral variations 
and characterizing rock properties and bed thicknesses. The method improves interpretation 
of geological subsurface structures because it helps analyze their petroleum exploration potential. 

3.6. Horizon generation 

Through its horizon generation process, OpendTect generates detailed subsurface models 
from seismic data which helps find hydrocarbons while spotting geological anomalies. The goal 
is achieved by evaluating RMS Amplitude through multiple horizons with spectral decomposi-
tion methods that combine RGB Alpha blending between different frequencies per horizon for 
hydrocarbon verification. PLQ Glomar Exxonmoor Exploration Limited confirmed three distinct 
zones with hydrocarbon presence during their evaluation stage which resulted in locating 
proper drilling depths for three different wells. Systematic exploration procedures provide ac-
curate hydrocarbon assessment which enables better profitability in exploration activities. In 
the horizon generation process in OpendTect, the data collected from seismic surveys are 
interpreted to develop a model of the subsurface [24]. It assists in defining different geological 
formations and their contacts and therefore offers a realistic perspective of the sub-surface 
environment that can be used for actual geology and geo-physics assessment. The structural 
map of all three horizons with the contour is shown in Figure 5-7. The RMS amplitude of 
channels 1 and 2 are shown in Figure 8 and 9 respectively. 

 
 

Figure 5. Structural map of horizon 1 with contour. Figure 6. Structural map of horizon 2 with contour. 
 

 
 

Figure 7. Structural map of horizon 3 with contour. Figure 8. RMS amplitude of channel 1. 
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Figure 9. RMS amplitude of channel 2.  

3.7. Attribute derived output 

Vertical seismic anomalies known as gas chimneys reveal how gas moves while forming in 
the subsurface [25]. The strategic identification of chimney features relies on the seismic cube 
which serves the ANN system as training data to enhance accuracy [26]. The seismic study 
achieves thorough analysis through ANN software utilizing inline and cross-line evaluation to 
generate the Chimney Cube command [27]. The software produces a 3D model known as a 
chimney cube that provides visualization of gas storage regions alongside separate subsurface 
areas. Further exploration attempts benefit from the chimney cube system which helps dis-
cover potential energy resources. Points set for presence, absence and both chimneys are 
shown in Figure 10-12. And chimney cube is viewed in Figure 13. Here is the chimney cube 
for the three-horizon output is depicted in the following Figure 14-16. 

  
Figure 10. Point set for presence of chimney. Figure 11. Point set for absence of chimney. 
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Figure 12 Point set for both presence and absence 
of chimney. 

Figure 13. Chimney cube. 

 

 
 

Figure 14. Chimney cube of horizon 1. Figure 15. Chimney cube of horizon 2. 

 

  

Figure 16. Chimney cube of horizon 3. Figure 17. RMS amplitude of horizon 1. 

3.8. Amplitude derived output 

Finding possible hydrocarbon sources requires interpreting geological data, and attribute-
derived interpretation is a critical stage in this process. The presence of hydrocarbons was 
evaluated in this investigation by processing the Root Mean Square (RMS) amplitude across 
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each horizon [28]. To obtain a better visual representation of measured amplitudes, a Z offset 
value of 10 was fixed to determine the range of the shaded area. This parameter defines how 
far from the horizon up it goes and down and what the final output looks like. The shaded 
areas defined in red colour on RMS amplitude figures (refer to Figure 17, 19, and 21), reveal 
the possible reservoir area because of its high amplitudes. Their corresponding similarity of 
horizons is referred to Figure 18, 20, and 22. 

 

 
Figure 18. Similarity of horizon 1, Figure 19. RMS amplitude of horizon 2. 

 

 

 
Figure 20. Similarity of horizon 2. Figure 21. RMS amplitude of horizon 3. 

Each horizon obtained its similarity attribute calculation through a -28ms to 28ms time 
window measurement which detected seismic discontinuities including faults and fractures. 
Fault zones play an important role in drilling operations through their ability to cause borehole 
fluid loss and act as migration channels which create prospective oil-bearing rock layers [29]. 
RMS amplitude analysis together with similarity attribute evaluations on Horizon 2 revealed 
high amplitudes which indicated possible hydrocarbons. The spatial variations observed in the 
similarity attribute through its "eye-shaped" behaviour indicate potential reservoir zones which 
would warrant future exploration activities [30]. Paleontological assessments of Horizon 3 failed 
to detect hydrocarbons thus making it unsuitable for hydrocarbon production and storage [31]. 
These discovery results alongside additional geological and geophysical information allow or-
ganizations to build clear subsurface pictures which leads to more effective exploration guid-
ance and reduced uncertainties for better decision-making [32]. 
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3.9. Spectral decomposition output 

Spectral decomposition operates as the central geophysical method which partitions seismic 
data signals into frequency domain bands so scientists can examine individual spectral ranges [33]. 
Geologists use red, green and blue frequencies to evaluate each horizon subsurface layer. The 
dominant red frequency shows the most important characteristics of the geological stratum [34]. 
The Alpha attribute allows analysts to determine similarities throughout the horizon to locate 
both smooth and uneven features. Similarity values rising indicates uniformity in geological 
formations which proves crucial for oil and gas exploration purposes. The RGB Alpha blending 
method adds frequency information overlay which shows coherent areas to help detect poten-
tial drilling targets. The advanced analysis system enables drilling decisions by helping per-
sonnel identify prospects most likely to contain hydrocarbons [35]. The RGB Alpha blending of 
horizons 1, 2 and 3 are presented in Figure 23, 24 and 25 respectively. 

 

 

Figure 22. Similarity of horizon 3. Figure 23. RGB Alpha blending of horizon 1. 

 

  
Figure 24. RGB Alpha blending of horizon 2. Figure 25. RGB Alpha blending of horizon 3. 

3.10. Analysis and interpretation 

Having examined three horizons in detail, it is now possible to speak more specifically about 
the character of the promising zone: three zones were chosen as the most prospective for 
containing hydrocarbon resources. There are names of three zones namely Prospect X, and Y 
and these are considered to have exploitable resources. These are the areas that have been 
assessed and recognizing that drilling in such zones would be the best way to harness the 
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resources as lain the best practices. Subsequent drilling activities will concentrate on these 
prime areas with a view that they can aid in the efficient search for hydrocarbon deposits [36]. 
The prospect zone is shown in Figure 26. 

 
Figure 26. Prospect zone. 

Based on the identified areas of prospective 
zones, we identified that certain coordinates 
in the prospective zones create the best con-
ditions for the drilling process. Therefore, we 
are going to find that the wells will be able 
to gain access the hydrocarbon-rich area of 
8.1km2, 3.58 km2 and 12km2 respectively. 
Our accurate identification of the well loca-
tions demonstrates the areas’ potential for 
efficient extraction of hydrocarbons, which 
offers a promising high return for each point 
of interest [37]. Table 1 shows the inter-
preted horizons of hydrocarbon identifica-
tion. 

In Table 2 we can see the used seismic attributes. Lastly, information on proposed well 
locations is prescribed in Table 3. 

Table 1. Interpreted horizons for hydrocarbon identification. 

Horizon Description 
X Top Zechstein 
Y Base Upper North Sea 
Z Intermediate Horizon 

Table 2. Seismic attributes used. 

Attribute Type Description 
Attribute-derived output Various seismic attributes derived from the data 
Amplitude-derived output RMS amplitude and similarity measures 
Spectral decomposition output Visualization of frequency content in the data 
Chimney cube Generated using Artificial Neural Networks 

Table 3. Information of proposed wells. 

Prospect Well X (m) Y (m) TWT (ms) Area (km2) 
X A 619829 6088922 594 8.1 
Y B 622894 6075187 569 3.58 
Z C 625029 6276827 518 12 

Rationale: 
1) Identified as high potential for hydrocarbons 
2) Strategic location based on seismic attributes 
3) Optimal drilling site based on ANN analysis 

4. Conclusions 

Gas chimney identification together with prospect zone assessment proves crucial for pro-
spective hydrocarbon exploration activities. The research used Artificial Neural Networks 
(ANNs) to properly detect gas chimneys while demonstrating their effectiveness in locating 
hydrocarbon reservoirs. The research analysis used amplitude-derived and spectral decompo-
sition data to improve the understanding of the geological features in the region. The proposed 
drilling wells will target the three prospect zones which showed the best potential for explora-
tion. This research confirms how ANNs create efficient exploration processes that advance 
hydrocarbon studies and help develop new approaches for finding energy resources. 
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