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Abstract 

The focus of the present work is to develop the two-phase immiscible and incompressible fluid flow 

solver for porous medium using the object-oriented (C++) Open Source Computational Fluid Dynamics 

(CFD) toolbox known as OpenFOAM. The reason for choosing the OpenFOAM framework is first 
elaborated by looking into the history of the programming concepts used in the development of 
numerical simulators.  The scopes and limitations of the existing solvers in the OpenFOAM for the 
porous medium are looked in detail for identifying the elements of adding any new features to it. The 
pressure-saturation formulation is the mathematical approach adopted in this present study. In the 
immiscible two-phase flow, both the wetting phase saturation and the non-wetting phase pressure are 

solved implicitly using the IMPSAT (IMplicit in Pressure and SATuration) numerical formulation. 
Additionally, the coupled effect of IMPSAT with Adaptive Mesh Refinement (AMR) technique and the 
specialized two-dimensional Adaptive Mesh Refinement (2DAMR) technique for 2D problems are 
investigated. The superiority of using 2DAMR over the existing default hex-mesh cutter algorithm is 
quantified. The numerical solution is validated with standard Buckley-Leverett semi-analytical solution 
for one dimension and two-dimension problems. Also, the developed solver is tested for the three-
dimensional case. 

Keywords: Two-phase; CFD; Pressure-Saturation; IMPSAT; AMR; Buckley-Leverett. 

1. Introduction

The usage of the proprietary closed source software for porous medium numerical simula-

tions usually attracts a hefty annual licensing cost to the company. At the same time, the end-

user is not provided access to the source code of the software for customization or new im-

plementation. Moreover, every new module or additional features are made available by re-

quest from the vendor at some additional cost. As a matter of fact, the substantial intellectual 

contents in the commercial closed source software are primarily inspired or developed from 

the basic research work conducted by educational and research institutions and made availa-

ble in the open literature. Scientific Free and Open-Source Software (FOSS) for numerical 

simulation also do exist along with proprietary commercial software. An inquisitive mind en-

gaged in scientific research always wants to explore and so closed source software is definitely 

a detriment and FOSS is the only solution. The effects to embrace scientific FOSS for Porous 

Medium simulation at least among the educational and scientific research community spread 

across the globe opens the door wider for innovation and reproducible research. With time 

and collective community-driven quality research, FOSS in the porous medium numerical sim-

ulation could be a preferred option to consider over the proprietary commercial software even 

by the industries. Some of the existing FOSS for porous medium applications are OpenGeoSys 

(OGS) [1], PFLOTRAN [2], OPM-FLOW, DUMUX [3]. 

Looking at the history of the development of numerical simulators for the porous medium 

there is an obvious shift from the functional programming language (FORTRAN, C) to the 

object-oriented programming (OOP) language (C++) in creating numerical simulators. Tradi-
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tionally FORTRAN and C are the preferred programming language, especially among the sci-

entific community. The major drawback of it is first the modeled PDEs are to be numerically 

discretized and then segregated in terms of components before starting the process of coding. 

The fate of any functional programming language is to rely heavily on the low-level of pro-

gramming by performing the four basic mathematical operations (+, -, *, /) on individual 

floating-point values and arrays. Implementing any new models or validating any new numer-

ical technique was challenging and painstakingly slow even to the well-experienced program-

mer. The continuous advancement in computer hardware technology bolstered by the re-

search in numerical techniques, linear algebra, data structures, and algorithms equipped us 

with the necessary infrastructure to solve more and more complex problems. So, the numer-

ical simulators have grown increasingly sophisticated and become even tougher now to handle 

it in terms of functional programming languages like FORTRAN and C. Initially, there was a 

strong hesitation among the scientific community to adapt to the object-oriented programming 

language like C++, fearing the code execution overhead incurred by OOP will impair the per-

formance of a numerical simulator. It was all true that in the mid-1990s, a typical benchmark 

test proved that the performance of FORTRAN was 1.2 to 10 times faster than C++. But things 

got changed after 2000, better optimizing C++ compiler emerged and it had improved func-

tionality in the area of vector code generation. The new programming techniques introduced 

later in C++ like expression template and template meta-program performed optimizations 

like loop fusion and algorithm specialization. The OOP language like C++ is very expressive 

and with its powerful functionality of abstraction, it enables the flexible design of algorithms 

in high-level syntax for the mathematical constructs. At the same time, the benchmark results 

conducted in 2005 are convincing to believe that C++ runtime performance at the worst can 

be matched with the functional programming language like FORTRAN while substantially re-

ducing the design and building time of that application [4]. 

The numerical solution for PDE can be obtained from one of the three numerical methods, 

(1) finite-difference method (FDM), (2) finite-volume method (FVM), and (3) finite-element 

method (FEM). The finite-difference is old and simple of all three. It is based on the truncated 

Taylors series expansion of the derivatives for the differential form of governing PDE. So, it 

has the restriction of application only to the Cartesian grid. The approach gets complicated 

when applying to the curvilinear grid and it can’t be applied to the unstructured grid which is 

essential to capture the irregular reservoir topology. While the finite element and finite volume 

method relies on the integral form of PDE, they can be naturally applied on the unstructured 

grid. The finite element method is complex and highly mathematical. The governing PDE is 

not solved directly in the finite element method and rather it undergoes the rigorous mathe-

matical treatment of the weighted residual method in order to get the weak form of the PDE 

which is then solved. It is not very intuitive to use the finite element method (FEM) to fluid 

flow problems. The finite element method is convenient and intuitive for finding the stress 

distribution of the physical system since it deals with local and global stiffness matrices in its 

method for finding the numerical solution. In the Finite volume method, the divergence term 

of the volume integrated PDE is converted into a surface integral by applying the Gauss diver-

gence theorem. Then it is computed as the summation of fluxes through the control surface 

enclosing the finite-sized control volume. Since two adjacent finite-sized control volumes share 

a common face (control surface) between them, the flux entering one control volume through 

the common face is the same as the flux leaving the adjacent control volume. So, the finite 

volume method has an inherent conservativeness property in it. Also, the formulation of finite 

volume on the computational domain discretized as polyhedral cells is very simple and easy, 

unlike finite element formulation. It is just a systematic and repeated application of conver-

sation laws on each and every cell of the discretized CFD domain. 

Initially, there was a need for many FOSS groups with specific and individual objectives 

since it is very laborious to build a numerical simulator in a functional programming language 

like FORTRAN. Even after adapting to object-oriented programming like C++, they failed to 

appreciate the scope to build a quality software framework to regroup the fragmented FOSS 

groups and co-exist within it. Most of the existing FOSS for the porous medium numerical 
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simulator is not build on a quality software framework. The existing DUNE framework is not 

successful since there is no sense of connecting between the modeled mathematical PDEs and 

the syntax of the programming language used to code and solve it. Moreover, it is a finite 

element based which is less charming compared to finite volume for CFD simulations. Another 

important aspect is it failed to attract more users and developers even after a decade ever 

since its first release in 2007. Individual groups of FOSS developers not into the quality soft-

ware framework are more susceptible to lose their focus of research, by often doing the re-

dundant work of reinventing the wheel to meet their short-term goal. Therefore, the need of 

the hour is the quality software framework for developing FOSS for porous medium numerical 

simulation preferably using the finite volume formulation. 

In OpenFOAM, the current IMPES solver for multiphase flow in the porous medium doesn’t 

have the Adaptive Mesh Refinement (AMR) technique implemented and tested in it. Addition-

ally, there is no specialized mesh cutter algorithm for solving the two-dimensional problem. 

The default hex mesh cutter algorithm for the three-dimensional problem is a computational 

overhead when applied for a two-dimensional problem. The present study focuses on using a 

2D hex-mesh cutter algorithm with the AMR technique in FVM based OpenFOAM for multiphase 

fluid flow in porous media. The developed and validated IMPSAT solver is first tested for the 

static grid. Necessary modification is made to the native IMPSAT solver first to equip it with 

the default AMR capability of the hex-mesh cutter algorithm (IMPSAT-AMR). Then, the 2D 

hex-mesh cutter algorithm is developed and tested with an IMPSAT solver for 2D problems. 

The IMPSAT-AMR solver is tested for a two-phase air-water system. 

2. Methodology 

2.1. OpenFOAM framework for porous numerical simulator 

Unlike, the other open-source simulator like OpenGeoSys, PFLOTRAN, OPM-Flow, DuMux 

which are solely developed for some specific porous medium application, OpenFOAM [5] is not 

intended for any specific application and it is designed and developed with an insight of generic 

toolkit for solving PDE by finite volume method. The conservation laws of continuum mechan-

ics are precisely expressed in the mathematical sense with the help of Partial Differential 

Equations (PDE).  The best part of OpenFOAM is all its effort to retain the same PDE repre-

sentation while computationally solving the continuum mechanics problems by using the high-

level syntax of object-oriented programming. For example, if one intends to solve the transient 

heat conduction equation which is represented as parabolic PDE 
∂𝑇

∂𝑡
− 𝐾 (

∂2𝑇

∂𝑥2
) . It can be 

achieved simply by calling the below high-level syntax in OpenFOAM. 

solve(fvm::ddt(T)-kappa*fvm::laplacian(T)) 

So obviously there is a strong sense of connection between the mathematical representa-

tion of the physical model and the syntax of the programming language used to represent it 

in the numerical simulator. It additionally checks the dimensional homogeneity of the PDE 

intended to solve. There is a dissociation between the implementation and interface. Now, the 

research into mathematical modeling & simulation is completely diversified with advancement 

into numerical schemes (QUICK scheme, Upwind scheme, GMRES, etc). Thus, it permits the 

scope for any user to participate at different levels according to their own level of interest and 

knowledge in physics and programming. The choice of using OpenFOAM as a black-box CFD 

application or as a platform for research code is left to the individual. It has been successfully 

used for Large-Eddy Simulation (LES) of external aerodynamic flows [6], realistic wave gener-

ation, and interaction on the coastal structure [7], turbo machinery application [8], mass trans-

fer in oxide cells [9]. 

2.2. Treatment of porous medium in OpenFOAM 

As of now, there are no devoted solvers and dedicated boundary conditions for modeling 

the multiphase porous medium application at the macro scale even in the latest official release 

of OpenFOAM. But in situations like airflow through the straight or angled duct with porous 
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plug in its path acting like filters or flow conditioners, the airflow effects in the porous plug are 

modeled effectively by marking the cell zones of porous plug and adding the additional viscous 

and inertial resistance by Darcy-Forchheimer relation in the N-S momentum equation [10]. 

Penalizing the momentum equation only in the region of porous plug and solving the normal 

momentum equation at the other remaining free space. There exist two types: (1) implicit 

porous treatment and (2) explicit porous treatment. The implicit porosity treatment is more 

robust and is opted if (1) the pressure drop is large, (2) porous substance is more anisotropic, 

and (3) its axis is not aligned with global coordinates. The explicit porosity treatment is pre-

ferred for a simple flow condition. The modeling of the multiphase flow in the porous medium 

essentially involves concepts like phase saturation, relative permeability, and capillarity effect. 

Horgue et al. [10] started a new chapter in OpenFOAM for multiphase fluid flow in a porous 

medium by developing an open-source toolbox considering all the essential elements men-

tioned above and published his work. The developed toolbox includes (1) Dedicated IMPES 

(IMplicit Pressure Explicit Saturation) solver for incompressible and immiscible two-phase po-

rous medium flow, (2) The special boundary condition for treating the phase velocity in the 

porous medium, (3) The porous medium two-phase flow relative permeability models and 

capillarity models. In OpenFOAM, the current IMPES solver for multiphase flow in the porous 

medium doesn’t have the Adaptive Mesh Refinement (AMR) technique implemented and tested 

in it. Additionally, there is no specialized mesh cutter algorithm for solving the two-dimensional 

problem. The default hex mesh cutter algorithm for the three-dimensional problem is a com-

putational overhead when applied for a two-dimensional problem. Therefore, an AMR tech-

nique with a 2D hex-mesh cutter algorithm has been used herein OpenFOAM for multiphase 

fluid flow in porous media. This part should contain sufficient detail so that all procedures can 

be repeated. It can be divided into subsections if several methods are described. 

2.3. Pressure-Saturation formulation 

Choosing the two primary unknowns as wetting phase saturation Sb and non-wetting phase 

pressure pa results in the system of improved characteristics with reduced coupling and non-

linearity behavior. The following is the system of governing equation in Sb and pa 
𝜕

𝜕𝑡
((1 − 𝑆𝑏)𝜙) + 𝛻. [−

𝐾𝑘𝑟𝑎

𝜇𝑎
(𝛻𝑝𝑎 − 𝜌𝑎𝑔)] = 𝑄𝑎                (1) 

𝜕

𝜕𝑡
(𝑆𝑏𝜙) + 𝛻. [−

𝐾𝑘𝑟𝑏

𝜇𝑏
(𝛻𝑝𝑎 − 𝛻𝑝𝑐(𝑆𝑏) − 𝜌𝑏𝑔)] = 𝑄𝑏               (2) 

where K is the absolute permeability of the porous medium; pc is the capillary pressure which 

depends on saturation Sb and ϕ is the porosity of the medium. 

Adding the equation (1) and (2) results as 
𝜕

𝜕𝑡
(𝑆𝑏𝜙 +𝜙 − 𝑆𝑏𝜙) + 𝛻. [−

𝐾𝑘𝑟𝑎

𝜇𝑎
(𝛻𝑝𝑎 − 𝜌𝑎𝑔) −

𝐾𝑘𝑟𝑏

𝜇𝑏
(𝛻𝑝𝑎 − 𝛻𝑝𝑐(𝑆𝑏) − 𝜌𝑏𝑔)] = 𝑄𝑎 + 𝑄𝑏   (3) 

𝛻. [(𝑀𝑎 +𝑀𝑏)𝛻𝑝𝑎] = −𝛻. (𝑀𝑎𝜌𝑎𝑔 +𝑀𝑏𝜌𝑏𝑔 −𝑀𝑏
𝜕𝑝𝑐

𝜕𝑆𝑏
𝛻𝑆𝑏) + 𝑄𝑎 + 𝑄𝑏           (4) 

Rewriting the equation (2) by substituting the 𝛻𝑝𝑐 =
𝜕𝑝𝑐

𝜕𝑆𝑏
 

𝜙
𝜕

𝜕𝑡
(𝑆𝑏) + 𝛻. [−

𝐾𝑘𝑏

𝜇𝑏
(𝛻𝑝𝑎 −

𝜕𝑝𝑐

𝜕𝑆𝑏
𝛻𝑆𝑏 − 𝜌𝑏𝑔)] = 𝑄𝑏               (5) 

𝜙
𝜕

𝜕𝑡
(𝑆𝑏) + 𝛻. [−𝑀𝑏𝛻𝑝𝑎 +𝑀𝑏

𝜕𝑝𝑐

𝜕𝑆𝑏
𝛻𝑆𝑏 +𝑀𝑏𝜌𝑏𝑔] = 𝑄𝑏              (6) 

The equations (4) & (6) form the set of governing equations for Pressure-Saturation for-

mulation [11-12]. 

2.4. IMPSAT (IMplicit in Pressure and SATuration) method 

This method is also called as Sequential Fully Implicit (SFI) method. Unlike the IMPES 

method where the divergence term (𝛻. (−𝑀𝑏(𝑆𝑏
𝑛)𝛻𝑝𝑎

𝑛)) is at the n-th time step, in this method, 

it is solved by the inner newton’s iterative correction for each time step. Though it results in 

extra computational cost but gives more numerical stability as compared to the IMPES 

method. The more details of the IMPSAT method can be found in [13]. 
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𝑇(𝑆𝑏
𝑣+1, 𝑆𝑏

𝑣 , 𝑢𝑏
𝑣+1):= 𝜙

𝑆𝑏
𝑣+1−𝑆𝑏

𝑣

𝛥𝑡
+ 𝛻. (𝑢𝑏

𝑣+1) = 𝑓𝑣(𝑄𝑏 ,𝑀𝑏 , 𝑝𝑐 , 𝜌𝑏)           (7) 

where 𝑢𝑏
𝑣+1 = −𝑀𝑏(𝑆𝑏

𝑣+1)𝛻𝑝𝑎
𝑣+1 

𝑃(𝑆𝑏
𝑣):= −𝛻. (𝑀𝑎(𝑆𝑏

𝑣) + 𝑀𝑏(𝑆𝑏
𝑣))𝛻𝑝𝑎

𝑣+1 = 𝑓𝑝
𝑣(𝑄𝑏, 𝑀𝑏 , 𝑝𝑐 , 𝜌𝑏)            (8) 

3. Problem definition 

3.1. One-Dimensional case for validation   

In order to first test the IMPSAT solver and then it’s AMR capability, the standard one-

dimensional case of Buckley and Leverett [14] for the air-water system is considered for the 

1D reservoir domain. The respective equation for the radial Buckley-Leverett flow is as follows [15] 
𝜕𝑆𝑏

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑓𝑏(𝑆𝑏 , 𝑟)) = 0                       (9) 

Here ‘r’ is defined as the radial distance from the point of injection in the circular domain 

and Sb is the wetting phase saturation. Since the flow is incompressible fb(Sb,r)=fb(Sb)/r. So, 

the above equation (9) is written as 
𝜕𝑆𝑏

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑓𝑏(𝑆𝑏)) = 0                        (10) 

𝜕𝑆𝑏

𝜕𝑡
+

1

𝑟

𝜕𝑓𝑏(𝑆𝑏)

𝜕𝑆𝑏

𝜕𝑆𝑏

𝜕𝑟
= 0                        (11) 

The information about reservoir properties, fluid properties, and Relative permeability 

model used is listed in Table 1. The obtained numerical result is validated against the standard 

Buckley-Leverett semi-analytical solution as in Fig. 1. 

Table 1. Information of (a) Reservoir properties, (b) Fluid properties, and (c) Relative permeability model [10] 

(a) Reservoir properties 

Length of reservoir 1 m 

Porosity 0.5 

Permeability 1×10-11 m2 

Production rate 1×10-7 m3/sec 

(b) Fluid properties 

Fluid ρ (kg/m3) µ (Pa.s) 

Water 1000 1×10-3 

Air 1 1.76×10-5 

(c)  Relative permeability mode 

 power coefficient m 

Brooks and Corey [16] 3 

van Genuchten [17] 0.5 
 

 
Fig. 1 Validation of Water Saturation with 

Buckley-Leverett (Air-Water) [14]  

3.2. Two-dimensional case for validation 

Inflow

Outflow

(a) (b)  
Fig. 2 Water Flooding for diagonal Injection and 

Extraction Well 

Consider the case as shown in Fig. 2 where 

the water phase is pumped in from the left 

lower corner into the domain saturated with 

oil. Doing so will displace the oil to the right 

upper corner production well because the 

sides of the domain are impermeable. So, 

the principal flow direction will be the diago-

nal of the domain. 

The water saturation line profile is exam-

ined along the diagonal line (x, y), x = y, for 

the considered case computed in OpenFOAM 

with the fine-scale semi-analytical numerical result of the radial Buckley-Leverett flow [18]. It 

is described as a scenario where the water phase is being pumped into the center of a circular 

domain. 
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Huber and Helmig [15] adopted the above approach of validating the special case of diagonal 

well two-dimensional problem by radial Buckley-Leverett flow semi-analytical solution as 

shown in Fig.  2(a) and 2(b). The initial condition used by Huber and Helmig is uniform satu-

ration of Sb=0 inside the domain and the results are compared at 0.075 PVI (pore volumes 

injected). The pore volume injected is given by 𝑃𝑉𝐼 = (
(𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒×𝑡𝑖𝑚𝑒)

(𝑣𝑜𝑙𝑢𝑚𝑒×𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦)
). 

In OpenFOAM, the computational domain of dimension 1m×1m×2.83cm is considered and 

the porosity of it is 0.5. The injection well is located at the lower-left corner. All the walls of 

the domain are impermeable except a patch on the top right corner of 10cm. The injection 

well strength is 1×10-6 m3/sec.  

To validate with Huber and Helmig, the above-considered case in OpenFOAM has to be 

simulated until 1061 seconds to compare the saturation profile at 0.075 PVI. Fig. 3(a) shows 

the saturation profile at 0.075 PVI for a two-dimensional case. The quantitative validation on 

the diagonal line from the injection well to the producer well is shown in Fig. 3(b). The nu-

merically simulated results of the IMPSAT solver developed in OpenFOAM are in good compar-

ison with Huber and Helmig. 

(a) (b)
 

Fig. 3. (a) Water Flooding at the instance of 0.075 PVI, (b) 2D Diagonal line validation at the instance of 
0.075 PVI 

4. Results and discussion 

4.1. Grid independent study 

The domain of the water injection configuration along with its boundary conditions (BCs) 

used in this present work is shown in Fig. 4(a). A non-uniform grid has been generated with 

fine cells towards the injection well location in X-direction. It results in slightly clustered grids 

in the X direction whereas equal and uniform grids are generated in the Y direction as shown 

in Fig. 4(b). The computational grid is generated by using blockMesh utility. 

Grid independence study is to be conducted by taking into consideration four different mesh 

configurations as listed in Table 2. The water is injected at the rate of 1 liter/sec from the 

injection well. The simulated numerical results are post-processed in Paraview. 

Table 2. Three mesh configuration for grid independence study 

Grid X-Direction Y-Direction Total Cells 

Very coarse 40 20 800 

Coarse 80 40 3200 
Medium 160 80 12800 
Fine 240 120 28800 
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Fig. 4. (a) Computational domain and (b) Computational grid with injection well location 

 
Fig. 5 Grid Independent Study of Saturation on 
line profiles of 2d domain 

It can be inferred from Fig. 5 by the satu-

ration line profile compared for all four-grid 

configuration (very coarse grid, coarse, me-

dium, fine) over X=Y and X=3.735 of the do-

main shown in Fig. 4(a). The variation in the 

saturation is very minimum for the medium 

and fine grid as can be seen in Fig. 6. The 

medium grid configuration arrives at the 

converged saturation profile with lesser com-

puting time as compared to the fine grid. In 

CFD for the multiphase fluid, the mass bal-

ance of the system can be easily verified 

from the saturation contour profile, and at all 

times its value is 0 < Sb < 1. The same is 

inferred in the present case. 

(a) very coarse grid (b) coarse grid (c) medium grid (d) fine grid  

Fig. 6. Sb contour for a very coarse, coarse, medium and fine grid 
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4.2. Need for 2D hex-mesh cutter 

The default hex-mesh cutter engine shipped with OpenFOAM is efficient in handling only 

three-dimensional mesh. The reason for it could be that OpenFOAM is geared to solve all the 

problems in 3D by default. In order to solve 2D problems, first, the 3D mesh is created with 

only one cell in the third dimension and then it is instructed that the boundary patches normal 

to the third dimension to be specified as ‘empty’ in the boundary file of the simulation control 

settings. So, those faces in that boundary patches marked as empty won’t participate in the 

total control volume flux calculation process with its associated cell and therefore it requires 

no solution on those ‘empty’ boundary patches. When the default hex-mesh cutter engine is 

applied to 2D mesh it starts to create the cells unnecessarily in the third dimension also and 

because of it the solution is in no way going to improve at all. It is only a mere computational 

overhead to refine the cells in the third dimension for the 2D mesh. It is wise to make the 

necessary modification in the existing hex-mesh cutter engine and create a specialized 2D 

hex-mesh cutter engine to enable the handling of 2D mesh more efficiently. 

4.3. D Hex-Mesh cutter refinement algorithms 

The 2D hex-mesh cutter engine is very similar to that of the default 3D hex-mesh cutter 

engine with a slight difference. One extra information about the normal axis to the empty 

boundary patches is to be given for this new engine. The process of 2D hex-mesh cutter 

refinement is very descriptive in Fig. 7. The new cell center point is not created in the current 

2D hex-mesh cutter engine. 

(1) As the first step here, the new points are created on the face center of the empty bound-

ary patches of the candidate cell for refinement as in Fig. 7(b). 

(2) Then, the next step is to loop for the edges on the faces of the empty boundary patch 

and create a new point at its mid-point. This is shown in Fig. 7(c). 

(3) Four new faces are created on the empty boundary patches of the chosen cell as in Fig. 7(d). 

(4) The remaining four faces which don’t have the face center are divided into two faces as 

in Fig. 7(e). 

(5) The last step is to create the four new internal faces as in Fig. 7(f). 

(a) (b) (c)

(d) (e) (f)  

Fig. 7 The Process of Hex-mesh cutter Refinement algorithm 

The coarsening process and the solution field mapping are done in the same way as dis-

cussed for the default 3D hex-mesh cutter engine. 

4.4. Testing the AMR-IMPSAT Solver 

The developed and validated IMPSAT solver is first tested for the static grid. Now here, the 

necessary modification is made to the native IMPSAT solver first to equip it with the default 
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AMR capability of the hex-mesh cutter algorithm (IMPSAT-AMR). Then, the 2D hex-mesh cut-

ter algorithm inspired by the work of Ahmad Baniabedalruhman [19] is developed and tested 

with an IMPSAT solver for 2D problems. The IMPSAT-AMR solver is tested for both multiphase 

air-water and water-oil system in the following sections. 

4.4.1. AMR in multiphase air-water porous system 

The details of the case like domain size, boundary conditions, and injection well strength 

areas are given in Fig. 4(a). The numerical simulation is performed on the dynamic grid. The 

value of the Sb field is used as the criterion to check whether a cell requires refinement or 

coarsening. Obviously, it could only be a natural choice for the following reasons. 

(1) Hex-mesh cutter engine in OpenFOAM necessitates a scalar field as adaptation criterion 

and Sb comes under the scalar field category. 

(2) The range of solution of the water saturation field Sb is well known and it always honors 

the relation Sb, min < Sb < Sb, max. 

(3) The key functions in the multiphase flow of the porous system computation like relative 

permeability and capillary functions are related to water saturation field Sb. 

The range of the Sb is [0.2; 0.8]. If the Sb value is within this specified range in any cell 

then it is entitled to the refinement process otherwise it is selected for the coarsening process. 

The maximum refinement level is chosen to be 2. The refinement interval is specified as 1 

which implies that at every time step the adaptation criterion is checked to carry out the mesh 

modification process. The maximum cell limitation for the refinement process is kept as 

400000 cells which may not be achieved during the entire simulation time and so the adapta-

tion process is always on. First, a very coarse mesh of 800 cells is given as initial base mesh 

to start with for: 

(1) The default IMPSAT-AMR of OpenFOAM which is referred to in this work as AMR2D3D 

(2) The specialized IMPSAT-2DAMR which is referred to in this work as AMR2D2D. 

(a) At t=0 seconds (b) At t=500 seconds

(c) At t=1500 seconds (d) At t=3000 seconds

X

Y

Z
 

Fig. 8. The grid adaptation process at different time instances for both AMR2D3D and AMR2D2D 
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The grid adaptation process for both AMR2D3D and AMR2D2D is shown in Fig. 8 for different 

time instances such as t=0 sec, t=500 sec, t=1500 sec, and t=3000 seconds. There is no difference 

in both of the processes in the view as shown in Fig. 8. The distinct difference between the 

AMR2D3D and AMR2D2D solver’s result is noticed in the adapted grid cut-view in Fig. 9. 

X

Y

Z

 

Fig. 9. The zoom-in view of the adaptive grid for AMR2D2D and AMR2D3D 

(a) Refinement level 1 (b) Refinement level 2  

Fig. 10. Refinement level comparison Sb contour with a grid superimposed 

The results of both AMR2D3D & AMR2D2D is compared both quantitatively and qualitatively 

with fine static grid (28,800 cells) solution. The qualitative comparison is as shown in Fig. 10. 

It can clearly be seen from Fig. 10 that the interface is captured more precisely for computa-

tion set with refinement level 2 over level 1. The quantitative comparison is done at three 

sampling line profiles such as x=y, y-axis, and x=3.75 m as shown in Fig. 11(a). The slight 

variation is observed in the quantitative plot at the sampling line profile of x=3.75 m.  

The comparison of the time history of the adapted cells for both AMR2D3D and AMR2D2D 

is plotted in Fig. 11(c) and its inferences are listed below. 

(1) Both the processes start with 800 cells as the initial grids at time t=0 seconds. 
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(2) The general increasing trend is observed in both the processes until the end of simulation 

of 3000 seconds. 

(3) At any given instance, after t=0 seconds, the number of adapted grids for the AMR2D3D 

process is more than the AMR2D2D process. 

(4) At the end of 3000 seconds simulation time, the number of grid cells in AMR2D2D is just 

1500 cells while the number of grid cells in AMR2D3D is 3400. The AMR2D2D process takes 

slightly less than 50% number of grid cells as compared to AMR2D3D. 

(5) The initial high slope of the curves for both the processes from t=0 seconds to t=200 

seconds is indicative of the fact that the particular phase is only with the refinement pro-

cess. After that, both the coarsening and refinement processes are taking place. 

(a) (b)

(c) (d)  
Fig. 11. Comparing Sb on line profiles for AMR2D2D, AMR2D3D with (a) very coarse base grid of 800 

cells, (b) coarse base grid of 3200 cells, and; Time history of Adapted cells in AMR2D2D and AMR2D3D 
with (c) very coarse base grid, and (d) coarse base grid 

As compared to the static grid process, AMR2D3D is far better since for static grid compu-

tation 28,800 cells are used whereas for the AMR2D3D process it took only 3400 cells. The 

static grid computation took 8.5 times more grid cells than AMR2D3D and 19.2 times more 

than AMR2D2D. The marked superiority of AMR2D2D is distinctively clear with the above in-

formation. As there is a practice of grid-independent study for arriving at the quality compu-

tational mesh assertively for the static grid, in a similar way, the whole above set of procedures 

is repeated for both AMR2D3D and AMR2D2D solver for another coarse base grid of 3200 cells 

as initial cells. The quantitative comparison is shown in Fig. 11(b) respectively. The time his-

tory of refined cell details for both AMR2D3D and AMR2D2D is plotted in Fig. 11(d). The slight 
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variation observed in the quantitative plot at the sampling line profile of x=3.75 m in the 

former case is also not recognizable here. The aspect regarding the total computational time 

for all the above cases is studied separately and elaborately in the later section under perfor-

mance study.  

4.4.2. Comparison of static grid versus AMR for 3D case 

(a) The sketch of physical domain 10m×10m×10m 

and injection well

(b) The view of the CFD wireframe 

mesh

(c) Parallel computing 125 CPU domains for 

water flooding with grid adaptation 

(d) Parallel computing 9 CPU domains for 

water flooding without grid adaptation  

Fig. 12. The physical domain for the 3D case with wireframe mesh and domain decomposition of parallel 

computing CPUs for AMR and static grid computations 

The advantages of the AMR technique and its effects are realized much better when a three-

dimensional case is solved. In this pursuit, the previous 2D case of 10m×10m domain is con-

verted into the three-dimensional case by taking the third dimension also to be 10 m. So, the 

dimension of the 3D domain is 10m×10m×10m as shown in Fig. 12 (a). The injection well is 

placed at (5m, 8m, 4.75m) and its injection rate is 1 liter/second. The front, back, right, left 

and bottom wall is chosen to be impermeable wall boundary condition. The top boundary is 

given as a velocity outflow boundary condition. The number of grids in x, y, and z directions 
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are 80 cells, 40 cells, and 20 cells respectively. The view of CFD wireframe mesh is shown in 

Fig. 12 (b). The same CFD mesh is given for both IMPSAT and IMPSAT-AMR solvers. In order 

to solve the grid adaptation process of IMPSAT-AMR solver by parallel computing, 125 pro-

cessors are engaged. The domain decomposition for 125 processors is shown in Fig. 12 (c). 

Since the static grid computation by IMPSAT solver is less computationally intensive only 9 

processors are engaged. In Fig. 12 (d) shows the domain decomposition details of the CFD mesh 

assigned to the nine processors. 

(a) Sb contour without grid adaptation (b) Sb contour with grid adaptation

(c) Sb contour with static grid (d) Sb contour with dynamic grid

X

Y

Z
 

Fig. 13 The saturation contour Sb comparison at t=3000 seconds at Z=0 plane 

The total simulation time is set as 1,06,000 seconds. The saturation contour is compared 

for with and without grid adaptation processes at two-time instances such as t=3000 seconds 

and t=1,06,000 seconds as shown in Fig. 13 and 14 respectively. From the result in Fig. 13 

and 14, it can be inferred that the adaptive mesh refinement process captures the air and 

water interface more precisely. The errors incurred by artificial diffusion due to insufficient 

1313



Petroleum and Coal 

                         Pet Coal (2020); 62(4): 1301-1316 
ISSN 1337-7027 an open access journal 

mesh points are addressed by AMR. At any instance in time, the AMR process uses the optimal 

number of grid points just with the simple concept of adapting and coarsening the mesh at 

where and when it is required. The volume contour of Sb at 1,06,000 seconds is shown in Fig. 

14 and it gives a clear 3D picture of artificial diffusion in the static grid process. The initial 

mesh size of 64,000 cells at 0 seconds in the AMR process has increased to 1,19,622 cells and 

1,76,966 cells at 3000 seconds and 1,06,000 seconds respectively. 

(a) Cut view of water saturation volume plot inside 3D for 

without grid adaption case
(b) Water saturation volume plot inside 3D for without 

grid adaption case

(c) Cut view of water saturation volume plot 

inside 3D for grid adaption case

(d) Water saturation volume plot inside 3D for grid 

adaption case

X

Y

Z  
Fig. 14 Sb volume plot at t=106000 seconds 

5. Conclusion 

The developed IMPSAT solver in this paper is validated with literature and its fidelity is 

tested with a variety of different test cases which includes two dimensional and three-dimen-

sional cases. The IMPSAT solver is implemented with default AMR capability and also with a 

specialized 2D AMR engine. The developed solver is compared with the static grid and the 

superiority of AMR2D2D is clearly been shown as compared to the AMR2D3D or the static grid 

process in terms of the number of cells used. It appears that the adaptive mesh refinement 
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process captures the air and water interface more precisely. The errors incurred by artificial 

diffusion due to insufficient mesh points are addressed by AMR. And thus, the AMR process 

uses the optimal number of grid points just with the simple concept of adapting and coarsening 

the mesh at where and when it is required. It is concluded that the specialized 2D AMR engine 

outperforms the existing default AMR for 2D cases in terms of both computational time and 

runtime memory. The MPI (Message Passing Interface) capability of the developed solver is 

also tested for the 3D case. The future work can focus on using the present solver for improv-

ing the assessment for viscous fingering during the enhanced oil recovery. 

Symbols 

a non-wetting phase 
b wetting phase 

i phase 
K absolute permeability of the porous medium 
kri relative permeability of phase i 
Mi mobility of phase i 
pi pressure of phase i 

pc capillary pressure 
ρi density of phase i 
ϕ porosity of the medium 
µi viscosity of phase i 
Qi source term 
r radial distance from the point of injection 

Si saturation of phase i 
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