
Petroleum and Coal

 Pet Coal (2020); 62(4) 1301-1316
ISSN 1337-7027 an open access journal

Article Open Access

Grid Adaptation of Multiphase Fluid Flow Solver in Porous Medium by OpenFOAM

L. Sugumar, Abhishek Kumar, and Suresh Kumar Govindarajan*

Reservoir Simulation Laboratory, Petroleum Engineering Programme, Department of Ocean
Engineering, Indian Institute of Technology – Madras, Chennai, India

Received June 10, 2019; Accepted September 29, 2020

Abstract

The focus of the present work is to develop the two-phase immiscible and incompressible fluid flow

solver for porous medium using the object-oriented (C++) Open Source Computational Fluid Dynamics

(CFD) toolbox known as OpenFOAM. The reason for choosing the OpenFOAM framework is first
elaborated by looking into the history of the programming concepts used in the development of
numerical simulators. The scopes and limitations of the existing solvers in the OpenFOAM for the
porous medium are looked in detail for identifying the elements of adding any new features to it. The
pressure-saturation formulation is the mathematical approach adopted in this present study. In the
immiscible two-phase flow, both the wetting phase saturation and the non-wetting phase pressure are

solved implicitly using the IMPSAT (IMplicit in Pressure and SATuration) numerical formulation.
Additionally, the coupled effect of IMPSAT with Adaptive Mesh Refinement (AMR) technique and the
specialized two-dimensional Adaptive Mesh Refinement (2DAMR) technique for 2D problems are
investigated. The superiority of using 2DAMR over the existing default hex-mesh cutter algorithm is
quantified. The numerical solution is validated with standard Buckley-Leverett semi-analytical solution
for one dimension and two-dimension problems. Also, the developed solver is tested for the three-
dimensional case.

Keywords: Two-phase; CFD; Pressure-Saturation; IMPSAT; AMR; Buckley-Leverett.

1. Introduction

The usage of the proprietary closed source software for porous medium numerical simula-

tions usually attracts a hefty annual licensing cost to the company. At the same time, the end-

user is not provided access to the source code of the software for customization or new im-

plementation. Moreover, every new module or additional features are made available by re-

quest from the vendor at some additional cost. As a matter of fact, the substantial intellectual

contents in the commercial closed source software are primarily inspired or developed from

the basic research work conducted by educational and research institutions and made availa-

ble in the open literature. Scientific Free and Open-Source Software (FOSS) for numerical

simulation also do exist along with proprietary commercial software. An inquisitive mind en-

gaged in scientific research always wants to explore and so closed source software is definitely

a detriment and FOSS is the only solution. The effects to embrace scientific FOSS for Porous

Medium simulation at least among the educational and scientific research community spread

across the globe opens the door wider for innovation and reproducible research. With time

and collective community-driven quality research, FOSS in the porous medium numerical sim-

ulation could be a preferred option to consider over the proprietary commercial software even

by the industries. Some of the existing FOSS for porous medium applications are OpenGeoSys

(OGS) [1], PFLOTRAN [2], OPM-FLOW, DUMUX [3].

Looking at the history of the development of numerical simulators for the porous medium

there is an obvious shift from the functional programming language (FORTRAN, C) to the

object-oriented programming (OOP) language (C++) in creating numerical simulators. Tradi-

1301

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

tionally FORTRAN and C are the preferred programming language, especially among the sci-

entific community. The major drawback of it is first the modeled PDEs are to be numerically

discretized and then segregated in terms of components before starting the process of coding.

The fate of any functional programming language is to rely heavily on the low-level of pro-

gramming by performing the four basic mathematical operations (+, -, *, /) on individual

floating-point values and arrays. Implementing any new models or validating any new numer-

ical technique was challenging and painstakingly slow even to the well-experienced program-

mer. The continuous advancement in computer hardware technology bolstered by the re-

search in numerical techniques, linear algebra, data structures, and algorithms equipped us

with the necessary infrastructure to solve more and more complex problems. So, the numer-

ical simulators have grown increasingly sophisticated and become even tougher now to handle

it in terms of functional programming languages like FORTRAN and C. Initially, there was a

strong hesitation among the scientific community to adapt to the object-oriented programming

language like C++, fearing the code execution overhead incurred by OOP will impair the per-

formance of a numerical simulator. It was all true that in the mid-1990s, a typical benchmark

test proved that the performance of FORTRAN was 1.2 to 10 times faster than C++. But things

got changed after 2000, better optimizing C++ compiler emerged and it had improved func-

tionality in the area of vector code generation. The new programming techniques introduced

later in C++ like expression template and template meta-program performed optimizations

like loop fusion and algorithm specialization. The OOP language like C++ is very expressive

and with its powerful functionality of abstraction, it enables the flexible design of algorithms

in high-level syntax for the mathematical constructs. At the same time, the benchmark results

conducted in 2005 are convincing to believe that C++ runtime performance at the worst can

be matched with the functional programming language like FORTRAN while substantially re-

ducing the design and building time of that application [4].

The numerical solution for PDE can be obtained from one of the three numerical methods,

(1) finite-difference method (FDM), (2) finite-volume method (FVM), and (3) finite-element

method (FEM). The finite-difference is old and simple of all three. It is based on the truncated

Taylors series expansion of the derivatives for the differential form of governing PDE. So, it

has the restriction of application only to the Cartesian grid. The approach gets complicated

when applying to the curvilinear grid and it can’t be applied to the unstructured grid which is

essential to capture the irregular reservoir topology. While the finite element and finite volume

method relies on the integral form of PDE, they can be naturally applied on the unstructured

grid. The finite element method is complex and highly mathematical. The governing PDE is

not solved directly in the finite element method and rather it undergoes the rigorous mathe-

matical treatment of the weighted residual method in order to get the weak form of the PDE

which is then solved. It is not very intuitive to use the finite element method (FEM) to fluid

flow problems. The finite element method is convenient and intuitive for finding the stress

distribution of the physical system since it deals with local and global stiffness matrices in its

method for finding the numerical solution. In the Finite volume method, the divergence term

of the volume integrated PDE is converted into a surface integral by applying the Gauss diver-

gence theorem. Then it is computed as the summation of fluxes through the control surface

enclosing the finite-sized control volume. Since two adjacent finite-sized control volumes share

a common face (control surface) between them, the flux entering one control volume through

the common face is the same as the flux leaving the adjacent control volume. So, the finite

volume method has an inherent conservativeness property in it. Also, the formulation of finite

volume on the computational domain discretized as polyhedral cells is very simple and easy,

unlike finite element formulation. It is just a systematic and repeated application of conver-

sation laws on each and every cell of the discretized CFD domain.

Initially, there was a need for many FOSS groups with specific and individual objectives

since it is very laborious to build a numerical simulator in a functional programming language

like FORTRAN. Even after adapting to object-oriented programming like C++, they failed to

appreciate the scope to build a quality software framework to regroup the fragmented FOSS

groups and co-exist within it. Most of the existing FOSS for the porous medium numerical

1302

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

simulator is not build on a quality software framework. The existing DUNE framework is not

successful since there is no sense of connecting between the modeled mathematical PDEs and

the syntax of the programming language used to code and solve it. Moreover, it is a finite

element based which is less charming compared to finite volume for CFD simulations. Another

important aspect is it failed to attract more users and developers even after a decade ever

since its first release in 2007. Individual groups of FOSS developers not into the quality soft-

ware framework are more susceptible to lose their focus of research, by often doing the re-

dundant work of reinventing the wheel to meet their short-term goal. Therefore, the need of

the hour is the quality software framework for developing FOSS for porous medium numerical

simulation preferably using the finite volume formulation.

In OpenFOAM, the current IMPES solver for multiphase flow in the porous medium doesn’t

have the Adaptive Mesh Refinement (AMR) technique implemented and tested in it. Addition-

ally, there is no specialized mesh cutter algorithm for solving the two-dimensional problem.

The default hex mesh cutter algorithm for the three-dimensional problem is a computational

overhead when applied for a two-dimensional problem. The present study focuses on using a

2D hex-mesh cutter algorithm with the AMR technique in FVM based OpenFOAM for multiphase

fluid flow in porous media. The developed and validated IMPSAT solver is first tested for the

static grid. Necessary modification is made to the native IMPSAT solver first to equip it with

the default AMR capability of the hex-mesh cutter algorithm (IMPSAT-AMR). Then, the 2D

hex-mesh cutter algorithm is developed and tested with an IMPSAT solver for 2D problems.

The IMPSAT-AMR solver is tested for a two-phase air-water system.

2. Methodology

2.1. OpenFOAM framework for porous numerical simulator

Unlike, the other open-source simulator like OpenGeoSys, PFLOTRAN, OPM-Flow, DuMux

which are solely developed for some specific porous medium application, OpenFOAM [5] is not

intended for any specific application and it is designed and developed with an insight of generic

toolkit for solving PDE by finite volume method. The conservation laws of continuum mechan-

ics are precisely expressed in the mathematical sense with the help of Partial Differential

Equations (PDE). The best part of OpenFOAM is all its effort to retain the same PDE repre-

sentation while computationally solving the continuum mechanics problems by using the high-

level syntax of object-oriented programming. For example, if one intends to solve the transient

heat conduction equation which is represented as parabolic PDE
∂𝑇

∂𝑡
− 𝐾 (

∂2𝑇

∂𝑥2
) . It can be

achieved simply by calling the below high-level syntax in OpenFOAM.

solve(fvm::ddt(T)-kappa*fvm::laplacian(T))

So obviously there is a strong sense of connection between the mathematical representa-

tion of the physical model and the syntax of the programming language used to represent it

in the numerical simulator. It additionally checks the dimensional homogeneity of the PDE

intended to solve. There is a dissociation between the implementation and interface. Now, the

research into mathematical modeling & simulation is completely diversified with advancement

into numerical schemes (QUICK scheme, Upwind scheme, GMRES, etc). Thus, it permits the

scope for any user to participate at different levels according to their own level of interest and

knowledge in physics and programming. The choice of using OpenFOAM as a black-box CFD

application or as a platform for research code is left to the individual. It has been successfully

used for Large-Eddy Simulation (LES) of external aerodynamic flows [6], realistic wave gener-

ation, and interaction on the coastal structure [7], turbo machinery application [8], mass trans-

fer in oxide cells [9].

2.2. Treatment of porous medium in OpenFOAM

As of now, there are no devoted solvers and dedicated boundary conditions for modeling

the multiphase porous medium application at the macro scale even in the latest official release

of OpenFOAM. But in situations like airflow through the straight or angled duct with porous

1303

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

plug in its path acting like filters or flow conditioners, the airflow effects in the porous plug are

modeled effectively by marking the cell zones of porous plug and adding the additional viscous

and inertial resistance by Darcy-Forchheimer relation in the N-S momentum equation [10].

Penalizing the momentum equation only in the region of porous plug and solving the normal

momentum equation at the other remaining free space. There exist two types: (1) implicit

porous treatment and (2) explicit porous treatment. The implicit porosity treatment is more

robust and is opted if (1) the pressure drop is large, (2) porous substance is more anisotropic,

and (3) its axis is not aligned with global coordinates. The explicit porosity treatment is pre-

ferred for a simple flow condition. The modeling of the multiphase flow in the porous medium

essentially involves concepts like phase saturation, relative permeability, and capillarity effect.

Horgue et al. [10] started a new chapter in OpenFOAM for multiphase fluid flow in a porous

medium by developing an open-source toolbox considering all the essential elements men-

tioned above and published his work. The developed toolbox includes (1) Dedicated IMPES

(IMplicit Pressure Explicit Saturation) solver for incompressible and immiscible two-phase po-

rous medium flow, (2) The special boundary condition for treating the phase velocity in the

porous medium, (3) The porous medium two-phase flow relative permeability models and

capillarity models. In OpenFOAM, the current IMPES solver for multiphase flow in the porous

medium doesn’t have the Adaptive Mesh Refinement (AMR) technique implemented and tested

in it. Additionally, there is no specialized mesh cutter algorithm for solving the two-dimensional

problem. The default hex mesh cutter algorithm for the three-dimensional problem is a com-

putational overhead when applied for a two-dimensional problem. Therefore, an AMR tech-

nique with a 2D hex-mesh cutter algorithm has been used herein OpenFOAM for multiphase

fluid flow in porous media. This part should contain sufficient detail so that all procedures can

be repeated. It can be divided into subsections if several methods are described.

2.3. Pressure-Saturation formulation

Choosing the two primary unknowns as wetting phase saturation Sb and non-wetting phase

pressure pa results in the system of improved characteristics with reduced coupling and non-

linearity behavior. The following is the system of governing equation in Sb and pa
𝜕

𝜕𝑡
((1 − 𝑆𝑏)𝜙) + 𝛻. [−

𝐾𝑘𝑟𝑎

𝜇𝑎
(𝛻𝑝𝑎 − 𝜌𝑎𝑔)] = 𝑄𝑎 (1)

𝜕

𝜕𝑡
(𝑆𝑏𝜙) + 𝛻. [−

𝐾𝑘𝑟𝑏

𝜇𝑏
(𝛻𝑝𝑎 − 𝛻𝑝𝑐(𝑆𝑏) − 𝜌𝑏𝑔)] = 𝑄𝑏 (2)

where K is the absolute permeability of the porous medium; pc is the capillary pressure which

depends on saturation Sb and ϕ is the porosity of the medium.

Adding the equation (1) and (2) results as
𝜕

𝜕𝑡
(𝑆𝑏𝜙 +𝜙 − 𝑆𝑏𝜙) + 𝛻. [−

𝐾𝑘𝑟𝑎

𝜇𝑎
(𝛻𝑝𝑎 − 𝜌𝑎𝑔) −

𝐾𝑘𝑟𝑏

𝜇𝑏
(𝛻𝑝𝑎 − 𝛻𝑝𝑐(𝑆𝑏) − 𝜌𝑏𝑔)] = 𝑄𝑎 + 𝑄𝑏 (3)

𝛻. [(𝑀𝑎 +𝑀𝑏)𝛻𝑝𝑎] = −𝛻. (𝑀𝑎𝜌𝑎𝑔 +𝑀𝑏𝜌𝑏𝑔 −𝑀𝑏
𝜕𝑝𝑐

𝜕𝑆𝑏
𝛻𝑆𝑏) + 𝑄𝑎 + 𝑄𝑏 (4)

Rewriting the equation (2) by substituting the 𝛻𝑝𝑐 =
𝜕𝑝𝑐

𝜕𝑆𝑏

𝜙
𝜕

𝜕𝑡
(𝑆𝑏) + 𝛻. [−

𝐾𝑘𝑏

𝜇𝑏
(𝛻𝑝𝑎 −

𝜕𝑝𝑐

𝜕𝑆𝑏
𝛻𝑆𝑏 − 𝜌𝑏𝑔)] = 𝑄𝑏 (5)

𝜙
𝜕

𝜕𝑡
(𝑆𝑏) + 𝛻. [−𝑀𝑏𝛻𝑝𝑎 +𝑀𝑏

𝜕𝑝𝑐

𝜕𝑆𝑏
𝛻𝑆𝑏 +𝑀𝑏𝜌𝑏𝑔] = 𝑄𝑏 (6)

The equations (4) & (6) form the set of governing equations for Pressure-Saturation for-

mulation [11-12].

2.4. IMPSAT (IMplicit in Pressure and SATuration) method

This method is also called as Sequential Fully Implicit (SFI) method. Unlike the IMPES

method where the divergence term (𝛻. (−𝑀𝑏(𝑆𝑏
𝑛)𝛻𝑝𝑎

𝑛)) is at the n-th time step, in this method,

it is solved by the inner newton’s iterative correction for each time step. Though it results in

extra computational cost but gives more numerical stability as compared to the IMPES

method. The more details of the IMPSAT method can be found in [13].

1304

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

𝑇(𝑆𝑏
𝑣+1, 𝑆𝑏

𝑣 , 𝑢𝑏
𝑣+1):= 𝜙

𝑆𝑏
𝑣+1−𝑆𝑏

𝑣

𝛥𝑡
+ 𝛻. (𝑢𝑏

𝑣+1) = 𝑓𝑣(𝑄𝑏 ,𝑀𝑏 , 𝑝𝑐 , 𝜌𝑏) (7)

where 𝑢𝑏
𝑣+1 = −𝑀𝑏(𝑆𝑏

𝑣+1)𝛻𝑝𝑎
𝑣+1

𝑃(𝑆𝑏
𝑣):= −𝛻. (𝑀𝑎(𝑆𝑏

𝑣) + 𝑀𝑏(𝑆𝑏
𝑣))𝛻𝑝𝑎

𝑣+1 = 𝑓𝑝
𝑣(𝑄𝑏, 𝑀𝑏 , 𝑝𝑐 , 𝜌𝑏) (8)

3. Problem definition

3.1. One-Dimensional case for validation

In order to first test the IMPSAT solver and then it’s AMR capability, the standard one-

dimensional case of Buckley and Leverett [14] for the air-water system is considered for the

1D reservoir domain. The respective equation for the radial Buckley-Leverett flow is as follows [15]
𝜕𝑆𝑏

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑓𝑏(𝑆𝑏 , 𝑟)) = 0 (9)

Here ‘r’ is defined as the radial distance from the point of injection in the circular domain

and Sb is the wetting phase saturation. Since the flow is incompressible fb(Sb,r)=fb(Sb)/r. So,

the above equation (9) is written as
𝜕𝑆𝑏

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑓𝑏(𝑆𝑏)) = 0 (10)

𝜕𝑆𝑏

𝜕𝑡
+

1

𝑟

𝜕𝑓𝑏(𝑆𝑏)

𝜕𝑆𝑏

𝜕𝑆𝑏

𝜕𝑟
= 0 (11)

The information about reservoir properties, fluid properties, and Relative permeability

model used is listed in Table 1. The obtained numerical result is validated against the standard

Buckley-Leverett semi-analytical solution as in Fig. 1.

Table 1. Information of (a) Reservoir properties, (b) Fluid properties, and (c) Relative permeability model [10]

(a) Reservoir properties

Length of reservoir 1 m

Porosity 0.5

Permeability 1×10-11 m2

Production rate 1×10-7 m3/sec

(b) Fluid properties

Fluid ρ (kg/m3) µ (Pa.s)

Water 1000 1×10-3

Air 1 1.76×10-5

(c) Relative permeability mode

 power coefficient m

Brooks and Corey [16] 3

van Genuchten [17] 0.5

Fig. 1 Validation of Water Saturation with

Buckley-Leverett (Air-Water) [14]

3.2. Two-dimensional case for validation

Inflow

Outflow

(a) (b)
Fig. 2 Water Flooding for diagonal Injection and

Extraction Well

Consider the case as shown in Fig. 2 where

the water phase is pumped in from the left

lower corner into the domain saturated with

oil. Doing so will displace the oil to the right

upper corner production well because the

sides of the domain are impermeable. So,

the principal flow direction will be the diago-

nal of the domain.

The water saturation line profile is exam-

ined along the diagonal line (x, y), x = y, for

the considered case computed in OpenFOAM

with the fine-scale semi-analytical numerical result of the radial Buckley-Leverett flow [18]. It

is described as a scenario where the water phase is being pumped into the center of a circular

domain.

1305

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

Huber and Helmig [15] adopted the above approach of validating the special case of diagonal

well two-dimensional problem by radial Buckley-Leverett flow semi-analytical solution as

shown in Fig. 2(a) and 2(b). The initial condition used by Huber and Helmig is uniform satu-

ration of Sb=0 inside the domain and the results are compared at 0.075 PVI (pore volumes

injected). The pore volume injected is given by 𝑃𝑉𝐼 = (
(𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒×𝑡𝑖𝑚𝑒)

(𝑣𝑜𝑙𝑢𝑚𝑒×𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦)
).

In OpenFOAM, the computational domain of dimension 1m×1m×2.83cm is considered and

the porosity of it is 0.5. The injection well is located at the lower-left corner. All the walls of

the domain are impermeable except a patch on the top right corner of 10cm. The injection

well strength is 1×10-6 m3/sec.

To validate with Huber and Helmig, the above-considered case in OpenFOAM has to be

simulated until 1061 seconds to compare the saturation profile at 0.075 PVI. Fig. 3(a) shows

the saturation profile at 0.075 PVI for a two-dimensional case. The quantitative validation on

the diagonal line from the injection well to the producer well is shown in Fig. 3(b). The nu-

merically simulated results of the IMPSAT solver developed in OpenFOAM are in good compar-

ison with Huber and Helmig.

(a) (b)

Fig. 3. (a) Water Flooding at the instance of 0.075 PVI, (b) 2D Diagonal line validation at the instance of
0.075 PVI

4. Results and discussion

4.1. Grid independent study

The domain of the water injection configuration along with its boundary conditions (BCs)

used in this present work is shown in Fig. 4(a). A non-uniform grid has been generated with

fine cells towards the injection well location in X-direction. It results in slightly clustered grids

in the X direction whereas equal and uniform grids are generated in the Y direction as shown

in Fig. 4(b). The computational grid is generated by using blockMesh utility.

Grid independence study is to be conducted by taking into consideration four different mesh

configurations as listed in Table 2. The water is injected at the rate of 1 liter/sec from the

injection well. The simulated numerical results are post-processed in Paraview.

Table 2. Three mesh configuration for grid independence study

Grid X-Direction Y-Direction Total Cells

Very coarse 40 20 800

Coarse 80 40 3200
Medium 160 80 12800
Fine 240 120 28800

1306

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

8
m

10
 m

X

Y

Impermeable Wall

Im
pe

rm
ea

b
le

 W
al

l

Im
pe

rm
ea

b
le

 W
al

l

Velocity out Flow

X

Y

Z
(a)

(b)

Fig. 4. (a) Computational domain and (b) Computational grid with injection well location

Fig. 5 Grid Independent Study of Saturation on
line profiles of 2d domain

It can be inferred from Fig. 5 by the satu-

ration line profile compared for all four-grid

configuration (very coarse grid, coarse, me-

dium, fine) over X=Y and X=3.735 of the do-

main shown in Fig. 4(a). The variation in the

saturation is very minimum for the medium

and fine grid as can be seen in Fig. 6. The

medium grid configuration arrives at the

converged saturation profile with lesser com-

puting time as compared to the fine grid. In

CFD for the multiphase fluid, the mass bal-

ance of the system can be easily verified

from the saturation contour profile, and at all

times its value is 0 < Sb < 1. The same is

inferred in the present case.

(a) very coarse grid (b) coarse grid (c) medium grid (d) fine grid

Fig. 6. Sb contour for a very coarse, coarse, medium and fine grid

1307

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

4.2. Need for 2D hex-mesh cutter

The default hex-mesh cutter engine shipped with OpenFOAM is efficient in handling only

three-dimensional mesh. The reason for it could be that OpenFOAM is geared to solve all the

problems in 3D by default. In order to solve 2D problems, first, the 3D mesh is created with

only one cell in the third dimension and then it is instructed that the boundary patches normal

to the third dimension to be specified as ‘empty’ in the boundary file of the simulation control

settings. So, those faces in that boundary patches marked as empty won’t participate in the

total control volume flux calculation process with its associated cell and therefore it requires

no solution on those ‘empty’ boundary patches. When the default hex-mesh cutter engine is

applied to 2D mesh it starts to create the cells unnecessarily in the third dimension also and

because of it the solution is in no way going to improve at all. It is only a mere computational

overhead to refine the cells in the third dimension for the 2D mesh. It is wise to make the

necessary modification in the existing hex-mesh cutter engine and create a specialized 2D

hex-mesh cutter engine to enable the handling of 2D mesh more efficiently.

4.3. D Hex-Mesh cutter refinement algorithms

The 2D hex-mesh cutter engine is very similar to that of the default 3D hex-mesh cutter

engine with a slight difference. One extra information about the normal axis to the empty

boundary patches is to be given for this new engine. The process of 2D hex-mesh cutter

refinement is very descriptive in Fig. 7. The new cell center point is not created in the current

2D hex-mesh cutter engine.

(1) As the first step here, the new points are created on the face center of the empty bound-

ary patches of the candidate cell for refinement as in Fig. 7(b).

(2) Then, the next step is to loop for the edges on the faces of the empty boundary patch

and create a new point at its mid-point. This is shown in Fig. 7(c).

(3) Four new faces are created on the empty boundary patches of the chosen cell as in Fig. 7(d).

(4) The remaining four faces which don’t have the face center are divided into two faces as

in Fig. 7(e).

(5) The last step is to create the four new internal faces as in Fig. 7(f).

(a) (b) (c)

(d) (e) (f)

Fig. 7 The Process of Hex-mesh cutter Refinement algorithm

The coarsening process and the solution field mapping are done in the same way as dis-

cussed for the default 3D hex-mesh cutter engine.

4.4. Testing the AMR-IMPSAT Solver

The developed and validated IMPSAT solver is first tested for the static grid. Now here, the

necessary modification is made to the native IMPSAT solver first to equip it with the default

1308

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

AMR capability of the hex-mesh cutter algorithm (IMPSAT-AMR). Then, the 2D hex-mesh cut-

ter algorithm inspired by the work of Ahmad Baniabedalruhman [19] is developed and tested

with an IMPSAT solver for 2D problems. The IMPSAT-AMR solver is tested for both multiphase

air-water and water-oil system in the following sections.

4.4.1. AMR in multiphase air-water porous system

The details of the case like domain size, boundary conditions, and injection well strength

areas are given in Fig. 4(a). The numerical simulation is performed on the dynamic grid. The

value of the Sb field is used as the criterion to check whether a cell requires refinement or

coarsening. Obviously, it could only be a natural choice for the following reasons.

(1) Hex-mesh cutter engine in OpenFOAM necessitates a scalar field as adaptation criterion

and Sb comes under the scalar field category.

(2) The range of solution of the water saturation field Sb is well known and it always honors

the relation Sb, min < Sb < Sb, max.

(3) The key functions in the multiphase flow of the porous system computation like relative

permeability and capillary functions are related to water saturation field Sb.

The range of the Sb is [0.2; 0.8]. If the Sb value is within this specified range in any cell

then it is entitled to the refinement process otherwise it is selected for the coarsening process.

The maximum refinement level is chosen to be 2. The refinement interval is specified as 1

which implies that at every time step the adaptation criterion is checked to carry out the mesh

modification process. The maximum cell limitation for the refinement process is kept as

400000 cells which may not be achieved during the entire simulation time and so the adapta-

tion process is always on. First, a very coarse mesh of 800 cells is given as initial base mesh

to start with for:

(1) The default IMPSAT-AMR of OpenFOAM which is referred to in this work as AMR2D3D

(2) The specialized IMPSAT-2DAMR which is referred to in this work as AMR2D2D.

(a) At t=0 seconds (b) At t=500 seconds

(c) At t=1500 seconds (d) At t=3000 seconds

X

Y

Z

Fig. 8. The grid adaptation process at different time instances for both AMR2D3D and AMR2D2D

1309

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

The grid adaptation process for both AMR2D3D and AMR2D2D is shown in Fig. 8 for different

time instances such as t=0 sec, t=500 sec, t=1500 sec, and t=3000 seconds. There is no difference

in both of the processes in the view as shown in Fig. 8. The distinct difference between the

AMR2D3D and AMR2D2D solver’s result is noticed in the adapted grid cut-view in Fig. 9.

X

Y

Z

Fig. 9. The zoom-in view of the adaptive grid for AMR2D2D and AMR2D3D

(a) Refinement level 1 (b) Refinement level 2

Fig. 10. Refinement level comparison Sb contour with a grid superimposed

The results of both AMR2D3D & AMR2D2D is compared both quantitatively and qualitatively

with fine static grid (28,800 cells) solution. The qualitative comparison is as shown in Fig. 10.

It can clearly be seen from Fig. 10 that the interface is captured more precisely for computa-

tion set with refinement level 2 over level 1. The quantitative comparison is done at three

sampling line profiles such as x=y, y-axis, and x=3.75 m as shown in Fig. 11(a). The slight

variation is observed in the quantitative plot at the sampling line profile of x=3.75 m.

The comparison of the time history of the adapted cells for both AMR2D3D and AMR2D2D

is plotted in Fig. 11(c) and its inferences are listed below.

(1) Both the processes start with 800 cells as the initial grids at time t=0 seconds.

1310

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

(2) The general increasing trend is observed in both the processes until the end of simulation

of 3000 seconds.

(3) At any given instance, after t=0 seconds, the number of adapted grids for the AMR2D3D

process is more than the AMR2D2D process.

(4) At the end of 3000 seconds simulation time, the number of grid cells in AMR2D2D is just

1500 cells while the number of grid cells in AMR2D3D is 3400. The AMR2D2D process takes

slightly less than 50% number of grid cells as compared to AMR2D3D.

(5) The initial high slope of the curves for both the processes from t=0 seconds to t=200

seconds is indicative of the fact that the particular phase is only with the refinement pro-

cess. After that, both the coarsening and refinement processes are taking place.

(a) (b)

(c) (d)
Fig. 11. Comparing Sb on line profiles for AMR2D2D, AMR2D3D with (a) very coarse base grid of 800

cells, (b) coarse base grid of 3200 cells, and; Time history of Adapted cells in AMR2D2D and AMR2D3D
with (c) very coarse base grid, and (d) coarse base grid

As compared to the static grid process, AMR2D3D is far better since for static grid compu-

tation 28,800 cells are used whereas for the AMR2D3D process it took only 3400 cells. The

static grid computation took 8.5 times more grid cells than AMR2D3D and 19.2 times more

than AMR2D2D. The marked superiority of AMR2D2D is distinctively clear with the above in-

formation. As there is a practice of grid-independent study for arriving at the quality compu-

tational mesh assertively for the static grid, in a similar way, the whole above set of procedures

is repeated for both AMR2D3D and AMR2D2D solver for another coarse base grid of 3200 cells

as initial cells. The quantitative comparison is shown in Fig. 11(b) respectively. The time his-

tory of refined cell details for both AMR2D3D and AMR2D2D is plotted in Fig. 11(d). The slight

1311

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

variation observed in the quantitative plot at the sampling line profile of x=3.75 m in the

former case is also not recognizable here. The aspect regarding the total computational time

for all the above cases is studied separately and elaborately in the later section under perfor-

mance study.

4.4.2. Comparison of static grid versus AMR for 3D case

(a) The sketch of physical domain 10m×10m×10m

and injection well

(b) The view of the CFD wireframe

mesh

(c) Parallel computing 125 CPU domains for

water flooding with grid adaptation

(d) Parallel computing 9 CPU domains for

water flooding without grid adaptation

Fig. 12. The physical domain for the 3D case with wireframe mesh and domain decomposition of parallel

computing CPUs for AMR and static grid computations

The advantages of the AMR technique and its effects are realized much better when a three-

dimensional case is solved. In this pursuit, the previous 2D case of 10m×10m domain is con-

verted into the three-dimensional case by taking the third dimension also to be 10 m. So, the

dimension of the 3D domain is 10m×10m×10m as shown in Fig. 12 (a). The injection well is

placed at (5m, 8m, 4.75m) and its injection rate is 1 liter/second. The front, back, right, left

and bottom wall is chosen to be impermeable wall boundary condition. The top boundary is

given as a velocity outflow boundary condition. The number of grids in x, y, and z directions

1312

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

are 80 cells, 40 cells, and 20 cells respectively. The view of CFD wireframe mesh is shown in

Fig. 12 (b). The same CFD mesh is given for both IMPSAT and IMPSAT-AMR solvers. In order

to solve the grid adaptation process of IMPSAT-AMR solver by parallel computing, 125 pro-

cessors are engaged. The domain decomposition for 125 processors is shown in Fig. 12 (c).

Since the static grid computation by IMPSAT solver is less computationally intensive only 9

processors are engaged. In Fig. 12 (d) shows the domain decomposition details of the CFD mesh

assigned to the nine processors.

(a) Sb contour without grid adaptation (b) Sb contour with grid adaptation

(c) Sb contour with static grid (d) Sb contour with dynamic grid

X

Y

Z

Fig. 13 The saturation contour Sb comparison at t=3000 seconds at Z=0 plane

The total simulation time is set as 1,06,000 seconds. The saturation contour is compared

for with and without grid adaptation processes at two-time instances such as t=3000 seconds

and t=1,06,000 seconds as shown in Fig. 13 and 14 respectively. From the result in Fig. 13

and 14, it can be inferred that the adaptive mesh refinement process captures the air and

water interface more precisely. The errors incurred by artificial diffusion due to insufficient

1313

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

mesh points are addressed by AMR. At any instance in time, the AMR process uses the optimal

number of grid points just with the simple concept of adapting and coarsening the mesh at

where and when it is required. The volume contour of Sb at 1,06,000 seconds is shown in Fig.

14 and it gives a clear 3D picture of artificial diffusion in the static grid process. The initial

mesh size of 64,000 cells at 0 seconds in the AMR process has increased to 1,19,622 cells and

1,76,966 cells at 3000 seconds and 1,06,000 seconds respectively.

(a) Cut view of water saturation volume plot inside 3D for

without grid adaption case
(b) Water saturation volume plot inside 3D for without

grid adaption case

(c) Cut view of water saturation volume plot

inside 3D for grid adaption case

(d) Water saturation volume plot inside 3D for grid

adaption case

X

Y

Z
Fig. 14 Sb volume plot at t=106000 seconds

5. Conclusion

The developed IMPSAT solver in this paper is validated with literature and its fidelity is

tested with a variety of different test cases which includes two dimensional and three-dimen-

sional cases. The IMPSAT solver is implemented with default AMR capability and also with a

specialized 2D AMR engine. The developed solver is compared with the static grid and the

superiority of AMR2D2D is clearly been shown as compared to the AMR2D3D or the static grid

process in terms of the number of cells used. It appears that the adaptive mesh refinement

1314

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

process captures the air and water interface more precisely. The errors incurred by artificial

diffusion due to insufficient mesh points are addressed by AMR. And thus, the AMR process

uses the optimal number of grid points just with the simple concept of adapting and coarsening

the mesh at where and when it is required. It is concluded that the specialized 2D AMR engine

outperforms the existing default AMR for 2D cases in terms of both computational time and

runtime memory. The MPI (Message Passing Interface) capability of the developed solver is

also tested for the 3D case. The future work can focus on using the present solver for improv-

ing the assessment for viscous fingering during the enhanced oil recovery.

Symbols

a non-wetting phase
b wetting phase

i phase
K absolute permeability of the porous medium
kri relative permeability of phase i
Mi mobility of phase i
pi pressure of phase i

pc capillary pressure
ρi density of phase i
ϕ porosity of the medium
µi viscosity of phase i
Qi source term
r radial distance from the point of injection

Si saturation of phase i

References

[1] Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski
G, McDermott CI, Park CH. OpenGeoSys: an open-source initiative for numerical simulation
of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental
Earth Sciences, 2012; 67(2): 589-599.

[2] Lichtner PC, Hammond GE, Lu C, Karra S, Bisht G, Andre B, Mills RT, Kumar J, Frederick JM.

PFLOTRAN Web page. Los Alamos National Laboratory, location: Los Alamos, NM [Available
at http://www.pflotran.org]. 2019.

[3] Flemisch B, Darcis M, Erbertseder K, Faigle B, Lauser A, Mosthaf K, Müthing S, Nuske P,
Tatomir A, Wolff M, Helmig R. DuMux: DUNE for multi-{phase, component, scale, physics,…}
flow and transport in porous media. Advances in Water Resources, 2011; 34(9): 1102-1112.

[4] Veldhuizen TL, Jernigan ME. Will C++ be faster than Fortran?. In International Conference on

Computing in Object-Oriented Parallel Environments 1997 Dec 8 (pp. 49-56). Springer, Ber-
lin, Heidelberg. https://doi.org/10.1007/3-540-63827-X_43

[5] Weller HG, Tabor G, Jasak H, Fureby C. A tensorial approach to computational continuum
mechanics using object-oriented techniques. Computers in physics, 1998; 12(6): 620-631.

[6] Lysenko DA, Ertesvåg IS, Rian KE. Large-eddy simulation of the flow over a circular cylinder
at Reynolds number 3900 using the OpenFOAM toolbox. Flow, turbulence and combustion,
2012; 89(4): 491-518.

[7] Higuera P, Lara JL, Losada IJ. Simulating coastal engineering processes with OpenFOAM®.
Coastal Engineering, 2013; 71: 119-34.

[8] Beaudoin M, Jasak H. Development of a generalized grid interface for turbomachinery simu-
lations with OpenFOAM. InOpen source CFD International conference 2008 Dec 4 (Vol. 2). Berlin.

[9] Novaresio V, García-Camprubí M, Izquierdo S, Asinari P, Fueyo N. An open-source library for

the numerical modeling of mass-transfer in solid oxide fuel cells. Computer Physics Commu-
nications, 2012; 183(1): 125-146.

[10] Horgue P, Soulaine C, Franc J, Guibert R, Debenest G. An open-source toolbox for multiphase
flow in porous media. Computer Physics Communications, 2015; 187: 217-226.

[11] Adler PM, editor. Multiphase flow in porous media. The Netherlands: Kluwer Academic Pub-
lishers; 1995 Nov 30.

[12] Baer J. Dynamics of fluids in porous media. America Elsevier Pubilishing Company. 1972.
[13] Jenny P, Lee SH, Tchelepi HA. Adaptive fully implicit multi-scale finite-volume method for

multi-phase flow and transport in heterogeneous porous media. Journal of Computational
Physics, 2006; 217(2): 627-641.

1315

Petroleum and Coal

 Pet Coal (2020); 62(4): 1301-1316
ISSN 1337-7027 an open access journal

[14] Buckley SE, Leverett M. Mechanism of fluid displacement in sands. Transactions of the AIME,

1942; 146(01): 107-116.
[15] Huber R, Helmig R. Multiphase flow in heterogeneous porous media: A classical finite element

method versus an implicit pressure–explicit saturation‐based mixed finite element–finite vol-

ume approach. International Journal for Numerical Methods in Fluids, 1999; 29(8) :899-920.
[16] Brooks RH, Corey AT. Properties of porous media affecting fluid flow. Journal of the irrigation

and drainage division, 1966; 92(2): 61-90.
[17] Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of un-

saturated soils 1. Soil science society of America journal, 1980; 44(5): 892-898.
[18] Blunt M, Rubin B. Implicit flux limiting schemes for petroleum reservoir simulation. Journal of

Computational Physics, 1992; 102(1): 194-210.
[19] Baniabedalruhman, A. Dynamic meshing around fluid-fluid interfaces with applications to

droplet tracking in contraction geometries. PhD Thesis. Michigan Technological University,
2015.

To whom correspondence should be addressed: professor Suresh Kumar Govindarajan, Reservoir Simulation La-
boratory, Petroleum Engineering Programme, Department of Ocean Engineering, Indian Institute of Technology
– Madras, Chennai, India, E-mail: gskumar@iitm.ac.in

1316

mailto:gskumar@iitm.ac.in

	Abstract
	1.Introduction
	2. Methodology
	2.1. OpenFOAM framework for porous numerical simulator
	2.2. Treatment of porous medium in OpenFOAM
	2.3. Pressure-Saturation formulation
	2.4. IMPSAT (IMplicit in Pressure and SATuration) method

	3. Problem definition
	3.1. One-Dimensional case for validation

	4. Results and discussion
	4.1. Grid independent study
	4.2. Need for 2D hex-mesh cutter
	4.3. D Hex-Mesh cutter refinement algorithms
	4.4. Testing the AMR-IMPSAT Solver

	5. Conclusion
	References

