Article

Hydraulic, Modelling and Hydrate Inhibition for the New Gas Wellhead Flowlines in Gas Project-Part II

Abdelaziz A. Noaman*

Chemical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt

Received January 1, 2024; Accepted April 5, 2024

Abstract

Natural gas is becoming one of the most widely used sources of energy in the world due to its environmentally friendly characteristics. In recent years, global natural gas consumption has grown rapidly, and the share of natural gas in primary energy consumption has reached a historical high level of 23.4%. This paper presents the steady state thermal hydraulic models in PIPESIM and transient model in OLGA at richest and leanest gas production for the gas wellhead flowlines 5,6,7 and 8 in the gas project to determine the suitable line sizes for these wellhead flowlines based on the normal production and turndown conditions. The velocity, erosion velocity limits , liquid hold up and other key thermal hydraulic variable for the gas wellhead flowlines of gas wells 5,6,7 and 8 were calculated. The potential for hydrate formation on the gas wellhead flowlines for gas wells 5,6,7 and 8 was checked and the required dosage for the hydrate inhibitor was identified for each gas well. A comparison was carried out to benchmark the steady state pressure and temperature predictions obtained using dynamic 'OLGA' modelling against corresponding estimates obtained from the steady state 'PIPESIM' modelling. The results obtained from the two software are very close.

Keywords: Wellhead flowline; OLGA; PIPESIM; FWHP; FWHT; GOR; Erosion velocity; CPF.

1. Introduction

In the oil and gas industry, flowlines are pipelines that connect a single wellhead to the production manifold or the main process facilities in the CPF ^[1]. In a larger well field, multiple flowlines may connect individual wells to the production manifold. The gathering line may transfer the flow from the manifold to a pre-process stage or to a transportation facility or vessel ^[2]. Flowlines may be in a land or subsea and may be buried or at grade on the surface of land or seafloor. Trunklines are similar to the flowlines but collect the flow from multiple flowlines ^[3].

Flowlines are located at the well site tied to a specific well. It may be a metallic pipe or a hose. Most flowlines are very short in length but others may be run for kilometers in onshore applications ^[4]. The flowline is sized based on the maximum oil, gas and water flowrate from the well. In heavy oil applications, a flowline may be insulated to retain the heat of the formation in order to prevent plugging. If the line is too large, the velocity could be slow enough where separation might occur or particulate may settle out in the pipe, which causes corrosion issues ^[5-6].

Three-phase transient flows can be simulated with OLGA. Bendiksen *et al.* ^[7] first described OLGA features. OLGA is a two-fluid model which solves three separate continuity equations for gas, liquid bulk and liquid droplets, two momentum equations for gas together with possible liquid droplets and a separate one for liquid film at the wall, and at last one energy-conservation equation for the mixture of gas and liquid ^[8-10].

Ellul ^[11] summarized different approaches in multiphase flow modeling and compared the calculation results using an example. Steady-state and transient cases (ramp-up, scrapping) are studied

The purpose of this study is to build steady-state thermal-hydraulic models in PIPESIM and transient model in OLGA at richest gas and leanest gas production from gas wells 5,6,7 and 8 in the gas project to determine suitable line sizes for the wellhead flowlines of gas wells 5,6,7 and 8 based on the normal production and turndown conditions. Also calculate the velocity, liquid holdup and other key thermal hydraulic variables for all flowlines. Assess the potential for hydrate formation in flowlines and calculate the required dosage from the hydrate inhibitor for each gas well.

2. Methodology

2.1. Gas wells data

Eight producing wells are initially considered for the gas project. Figure 1 demonstrates the wells and the length for each wellhead flow line. A wellhead pressure of 267 bara, wellhead temperature of 50°C and the flowline pressure of 56 bar at the design flow rate of 0.425 MSCMD (15 MMSCFD) shall be used.

Design flow rate of each well:

Maximum Water cut of each well:

Turn down flow – lean gas: Turn down flow – rich gas: 0.425 MSCMD (15 MMSCFD). 0.1 MSCMD (3.5 MMSCFD). 0.21 MSCMD (7.5 MMSCFD). 10 % of total liquids.

It is assumed that the all eight gas wells have the same design flowrate which is 0.425 MSCMD. A range of compositions of different condensate gas ratios (CGRs) can be delivered by each well depending on the layer being produced. The Richest and Leanest Gas Condensate Ratio from each well is presented in the Table 1.

Figure 1. Gas wellhead flowlines from wells to CPF.

Table 1. Design	production	flowrates.
-----------------	------------	------------

Well	Simulation Case	CGR SCM/MSCM	Gas Flowrate MSCMD	Condensate Flowrate SCMD	Water Flowrate SCMD
Gas well #5	Richest Case	362	0.425	154	51
	Leanest Case	256	0.425	109	36
	Sensitivity Case	1743	0.425	741	247
Gas well #6	Richest Case	790	0.425	336	112
	Leanest Case	148	0.425	63	21
Gas well #7	Richest Case	790	0.425	336	112
	Leanest Case	148	0.425	63	21
Gas well #8	Leanest Case	46	0.425	20	7
	Sensitivity Case	-	0.425	-	11
	Richest Case	71	0.425	30	10

2.2. Gas well fluid compositions

Fluid compositions are based on the latest zone compositions. Tables 2-5 illustrate the well composition from each gas well.

	Composition (Mol %)								
Compo-	Richest Case	Leanest Case	Rich (Sen- sitivity)						
nent	Zone#1	Zone#2- tuned	Sample 214						
N ₂	0.42	0.42	0.24						
CO ₂	2.00	1.94	1.84						
C1	75.29	80.52	65.78						
C ₂	8.09	6.78	6.73						
C ₃	5.13	3.53	4.78						
i-C4	1.14	0.72	1.62						
n-C ₄	1.57	1.07	1.95						
i-C5	0.86	0.60	1.88						
n-C₅	0.50	0.35	0.92						
C ₆	1.01	0.74	2.71						
PS-1	1.77	1.57	5.24						
PS-2	1.05	1.04	3.02						
PS-3	0.71	0.57	1.97						
PS-4	0.36	0.14	1.05						
PS-5	0.10	0.00	0.27						

Table 2. Gas Well # 5 composition.

Table 4. Gas Well # 7 composition.

	Composition (Mol %)								
Compo-	Richest case	Leanest case							
nent	Zone#1	Zone#4-							
	20110 # 1	tuned							
N ₂	0.51	0.31							
CO ₂	1.72	1.94							
C1	73.07	85.76							
C ₂	6.70	5.12							
C3	4.57	2.40							
i-C4	0.92	0.47							
n-C4	1.75	0.78							
i-C₅	0.95	0.40							
n-C₅	0.72	0.28							
C ₆	1.56	0.55							
PS-1	3.13	0.95							
PS-2	1.98	0.53							
PS-3	1.43	0.35							
PS-4	0.73	0.15							
PS-5	0.28	0.02							

Table 3. Gas Well # 6 composition.

	Composition (Mol %)							
Component	Richest	Leanest						
	Case	Case						
	Zopo#1	Zone#4-						
	Zone#1	tuned						
N ₂	0.51	0.31						
CO ₂	1.72	1.94						
C1	73.07	85.76						
C ₂	6.70	5.12						
C ₃	4.57	2.40						
i-C4	0.92	0.47						
n-C ₄	1.75	0.78						
i-C₅	0.95	0.40						
n-C₅	0.72	0.28						
C ₆	1.56	0.55						
PS-1	3.13	0.95						
PS-2	1.98	0.53						
PS-3	1.43	0.35						
PS-4	0.73	0.15						
PS-5	0.28	0.02						

Table 5. Gas Well # 8 composition.

	Composition (Mol %)								
Compo-	Richest	Leanest	Sensitivity						
nent	case	case	case						
	Zone#3	Zone#1	Zone#2						
N ₂	0.35	0.42	0.31						
CO ₂	2.09	2.20	2.30						
C1	87.88	87.73	91.96						
C ₂	5.10	5.44	3.47						
C ₃	1.98	1.96	1.00						
i-C4	0.31	0.40	0.17						
n-C4	0.50	0.42	0.22						
i-C₅	0.25	0.27	0.12						
n-C₅	0.17	0.14	0.08						
C ₆	0.33	0.29	0.14						
PS-1	0.49	0.35	0.19						
PS-2	0.26	0.16	0.03						
PS-3	0.18	0.15	0.00						
PS-4	0.10	0.07	0.00						
PS-5	0.01	1.00E-06	0.00						

2.3. Simulation basis

The composition reaching the CPF, however, will be a mixture of production from each well. There are 8 wells with different compositions in the gas project. Erosion velocity checks to be based on API RP 14E ^[12]. The steady state pipeline simulator, PIPESIM 2017 ^[13] was used for the modelling wellhead flowlines of the gas project for the base case (rich and lean) and turndown cases, the results obtained from PIPESIM 2017. OLGA 2017 ^[14] was used for transient modelling of the wellhead flowlines of the gas project.

A comparison was made between the results obtained from PIPESIM 2017 and OLGA 2017 as illustrated in the results and discussions. Compositional method based upon Peng Robinson equation of state is to be used to characterize the gas/condensate fluid. OLGA 2017 multiphase flow correlation is to be used for multiphase flow simulation. The fluid files used for the OLGA

simulations were generated using PVTSIM with the Peng Robinson Equation of state used to create the fluid properties using the relevant fluid composition and pseudo properties.

PIPESIM 2017 was used to get the blended compositions from the lean and reach layer for each well. The mix of the production from each well shall be selected so as not to exceed the liquid handling capacity of the CPF, i.e., 10000 SBPD of condensate product whilst maintaining a maximum production of 2.7 MSCMD export gas.

2.3.1. Simulation cases

To cover all possible flow situations in the lines, 6 simulation cases were initially run for each flowline using PIPESIM 2017. These cases are described below and summarized in Table 11. Table 6 depicts the simulation cases conducted by PIPESIM and OLGA simulation software.

Case No.	Description	CPF arrival pressure (bara)	Wellhead tempera- ture (°C)	Flowrate per well (MSCMD)	Composition
1	Base Case-Rich Gas	50-60	50	0.425	Rich
2	Base Case-Lean Gas	50-60	50	0.425	Lean
3	Turndown Case 1	50-60	24	0.10	Lean
4	Turndown Case 2	50-60	43	0.213	Rich
5	Depletion Case 1	25	20	0.14	Lean
6	Depletion Case 2	10	20	0.14	Lean

Table 6. Simulation cases for gas wellhead flowlines.

3. Results and discussions

3.1. Steady state results

PIPESIM 2107 was used to simulate the wellhead flowlines of the gas project.

3.1.1. Gas well # 5

Table 7 reveals the results obtained from PIPESIM simulation program for gas well #5 at different compositions.

3.1.1.1. Base case

The richest production from gas well#5 is rich gas condensate (CGR 790 SCM/MSCM) and the leanest production is lean gas condensate (CGR 148 SCM/MSCM). (The richest and leanest gas productions from this well are referred to as rich gas and lean gas cases.) Based on the 6" flowline and rich case, maximum mixture velocity in the line is 4.7 m/s with maximum EVR of 0.41. Hence, 6" flowline is considered as feasible line size.

Based on 6" flowline and lean case, temperature drop across the choke is 30 °C and pipeline inlet temperature is 31°C which drops to 19°C at flowline outlet. This is however marginally outside the hydrate formation temperature of 18°C. Therefore, hydrate inhibitor may still be required for base case. Flow regime in the 6" line for rich gas production is predominantly stratified wavy/slug. Flow regime in the 6" line for lean gas production is predominantly stratified wavy and no slugging is predicted in steady-state production of lean gas.

3.1.1.2. Depletion case

For depletion case, the minimum temperature in the line is 15°C, which is above hydrate formation temperature. Hence, there is no risk of hydrate formation in the line for the depletion case.

3.1.1.3. Turndown case

For turndown production flowrate of 0.1 MSCMD of lean gas, temperature drops to -15°C downstream the choke valve and increases to 15°C at flowline outlet. Hence, there is the risk of hydrate formation in the line. Note: hydrate inhibition and/or wellhead heating will be required for the low flowing temperature cases. The maximum predicted methanol inhibitor rate required is 5.1 SCMD (turndown 1 case).

For turndown production flowrate of 0.21 MSCMD of rich case, liquid holdup volume % in the line is in the range of 2 to 46 % and total liquid holdup volume is 52 m3. With turndown flow and depletion case, slug flow is predicted in the line. The highest predicted liquid holdup in the system is in turndown case 1, equal to 59 m3, where slug flow is predicted in most sections of the flowline and liquid holdup volume % varies between 10 to 35 %.

Figure 2 illustrate the temperature profile for the gas well #5 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #5 while figure 3 shows the pressure profile for the gas well #5 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #5. It can be noticed that the temperature and the pressure are changing across the wellhead flowline of gas well #5 because the total length of the wellhead flowline of gas well#5 is long (14 km) and the elevation of the line is 60 meter between the highest and lowest point.

Figure 2. Gas well #5 flowline temperature profile in winter.

3.1.2. Gas Well # 6

Table 8 reveals the results obtained from PIPESIM simulation program for gas Well #6 at different compositions.

3.1.2.1. Base case

The richest and leanest productions from gas well #6 are medium lean gas condensates with CGR 362 SCM/MSCM and CGR 256 SCM/MSCM. (The richest and leanest gas productions from this well are referred to as rich gas and lean gas cases.) According to the reservoir fluid sampling results for gas well #5, sample MSPR-214 shows rich gas production with CGR 1,743 SCM/MSCM from the well. Current study uses this sample as a sensitivity case.

There are two different routes for gas well #6 flowline. The longer route (7,234 m) is used as the basis for this study and the shorter route (5,819 m) has been considered as a sensitivity case. Based on the 4" flowline and rich case, maximum mixture velocity in the line is 9.7 m/s with maximum EVR of 0.8. For sensitivity case of rich gas production from the well (PVT sample MSPR-214), maximum fluid velocity in the line is 10.5 m/s with EVR of 1.1. Hence, 4" flowline is not considered as feasible line size. Based on 6" flowline (5.8" ID) and rich case, maximum fluid velocity is 4.5 m/s with maximum EVR of 0.34.

Based on 6" flowline and lean case, temperature drop across the choke is 32°C and flowline inlet temperature is 18°C, which is below hydrate formation temperature of 21°C; hydrates will form, and hydrate inhibitor injection is required for base case. The maximum predicted methanol inhibitor rate required is 8.0 SCMD. Flow regime in the 6" line and base case, Rich Gas is predominantly stratified-wavy /slug. Flow regime in the 6" line and base case, lean gas is predominantly stratified-wavy, and no slugging is predicted anywhere in the flowline during steady-state production of lean gas.

3.1.2.2 Depletion case

For depletion case, the minimum temperature in the line is 14°C, which is below hydrate formation temperature of 13°C. Hence, there is risk of hydrate formation in the line and hydrate inhibitor injection will be required. The maximum predicted methanol inhibitor rate required is 0.4 SCMD.

3.1.2.3. Turndown case

For turndown production flowrate of 0.1 MSCMD of lean gas, temperature drops to -11°C downstream of the choke valve. Hence, there is the risk of hydrate formation in the line. Note: hydrate inhibition and/or wellhead heating will be required for the low flowing temperature cases. The maximum predicted methanol inhibitor rate required is 7.9 SCMD (turndown1 case). For turndown production flowrate of 0.21 MSCMD of rich case, liquid holdup volume % in the line is in the range of 8 to 32 % and total holdup volume is 21 m³. With turndown flow and depletion case, flow regime is predicted to be stratified-wavy/slug.

The highest predicted liquid holdup in the system is in turndown case 1, equal to 28 m³, where slug flow is predicted in most sections of the flowline and liquid holdup % varies between 4 to 48 %. Figure 4 illustrate the temperature profile for the gas well #6 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #6 while Figure 5 shows the pressure profile for the gas well #6 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #6. It can be noticed that the temperature and the pressure are changing across the wellhead flowline of gas well #6 because the total length of the wellhead flowline of gas well#6 is long (7.2 km) and the elevation of the line is 38 meters between the highest and lowest point.

Figure 4. Gas well #6 flowline temperature profile in winter.

3.1.3. Gas well # 7

Table 9 shows the results obtained from PIPESIM simulation program for gas well #7 at different compositions.

3.1.3.1. Base case

The richest production from gas well #7 is rich gas condensate (CGR 790 SCM/MSCM) and the leanest production is lean gas condensate (CGR 148 SCM/MSCM). (The richest and leanest gas productions from this well are referred to as Rich Gas and Lean Gas cases.) Based on the 6" flowline and rich case, maximum mixture velocity in the line is 4.6 m/s with maximum EVR of 0.4. Hence, 6" pipeline is considered as feasible line size.

Based on 6" flowline and base case production, minimum temperature in the line is 16 °C which is less than hydrate formation temperature of 17 °C and therefore hydrate inhibitor injection will be required for base case. The maximum predicted methanol inhibitor rate required is 0.7 SCMD.

Flow regime in the 6" line for base case, lean gas is predominantly stratified-wavy, and no slug flow is predicted anywhere in the flowline. Intermittent slugging is predicted for base case, rich gas.

3.1.3.2. Depletion case

For depletion case, the minimum temperature in the line is 15°C, which is above hydrate formation temperature of 5°C. Hence, there is no risk of hydrate formation in the line for the depletion case.

3.1.3.3. Turndown case

For turndown production flowrate of 0.1 MSCMD of lean gas, temperature drops to -15°C downstream the choke valve and increases to 16°C at flowline outlet. Hence, there is the risk of hydrate formation in the line during turndown conditions. Note: hydrate inhibition and/or wellhead heating will be required for the low flowing temperature cases.

The maximum predicted methanol inhibitor rate required is 9 SCMD (turndown 2 case).

For turndown production flowrate of 0.21 MSCMD of rich case, liquid holdup volume % in the line is in the range of 9 to 37 % and total liquid holdup volume is 95.8 m³. This case also represents the highest predicted holdup volume in the system. With base case (rich gas), turndown flow and depletion case, slug flow is predicted in the line.

Figure 6 reveals the temperature profile for the gas well #7 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #6 while Figure 7 displays the pressure profile for the gas well #7 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #7. It can be noticed that the temperature and the pressure are changing across the wellhead flowline of gas well #7 because the total length of the wellhead flowline of gas well#7 is too long (22 km) and the elevation of the line is 60 meter between the highest and lowest point.

Figure 6. Gas well #7 flowline temperature profile in winter.

Figure 7. Gas well #7 flowline pressure profile in winter.

3.1.4. Gas well # 8

Table 10 displays the results obtained from PIPESIM simulation program for gas well #8 at different compositions.

3.1.4.1. Base case

The richest and leanest productions from gas well #8 are lean gas condensates with CGR 71 SCM/MSCM and 46 SCM/MSCM (The richest and leanest gas productions from this well are referred to as rich gas and lean gas cases.) Dry gas is also been produced from zone#2 which is considered in this study as a sensitivity case.

Based on the 6" flowline and rich case, maximum mixture velocity in the line is 4.6 m/s with maximum EVR of 0.3. Hence, 6" flowline is considered as feasible line size. Based on 6" flowline and base case production, minimum temperature in the line is 8°C which is less than hydrate formation temperature of 18°C and therefore there is the risk of hydrate formation during normal production and hydrate inhibitor injection will be required.

The maximum predicted methanol inhibitor rate required is 5.1 SCMD. This is based on the Dry Gas composition (25% water cut at flowing conditions).Based on 6" flowline and Dry Gas production (sensitivity case), temperature drop across the choke valve is 47°C and minimum temperature in the line is 3°C. Therefore, there is the risk of hydrate formation during normal

production and hydrate inhibitor injection will be required. Flow regime in the 6" line for base case, rich gas and lean gas is predominantly stratified-wavy and no slug flow is predicted.

3.1.4.2. Depletion case

For depletion case, the minimum temperature in the line is 15°C, which is above hydrate formation temperature of 8°C. Hence, there is no risk of hydrate formation in the line.

3.1.4.3. Turndown case

For turndown production flowrate of 0.1 MSCMD of lean gas, temperature drops to -23°C downstream the choke valve and increases to 16°C at flowline outlet. Hence, there is the risk of hydrate formation in the line during turndown conditions. Note: hydrate inhibition and/or wellhead heating will be required for the low flowing temperature cases. The maximum predicted methanol inhibitor rate required is 3.2 SCMD (turndown 2 case).

For turndown production flowrate of 0.21 MSCMD of rich case, liquid holdup volume % in the line is in the range of 2 to 31 % and total liquid holdup volume is 32 m³. With turndown flow and depletion case, slug flow is predicted in the line. The highest predicted liquid holdup volume in the system is in turndown case 1, equal to 71 m³, where slug flow is predicted in most sections of the pipeline and liquid holdup % varies between 1 to 59 %.

Figure 8 displays the temperature profile for the gas well #8 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #6 while Figure 9 illustrate the pressure profile for the gas well #8 wellhead flowline in winter case at different wellhead flowline sizes and different gas compositions from gas well #8. It can be noticed that the temperature and the pressure are changing across the wellhead flowline of gas well #8 because the total length of the wellhead flowline of gas well#8 is long (21.3 km) and the elevation of the line is 40 meters between the highest and lowest point.

Table 10. Steady state hydraulic results for gas well #8 flowline.

Figure 8. Gas well #8 flowline temperature profile in winter.

Figure 9. Gas well #8 flowline pressure profile in winter.

3.2. Summary of OLGA software results

Table 11 displays the transient hydraulic results when OLGA software was used to simulate the new gas wellhead flowlines for the gas project. Tables 12, 13 illustrate the comparison between the results obtained from PIPESIM software and OLGA software at different conditions. A comparison was first carried out to benchmark the steady state pressure and temperature predictions obtained using dynamic 'OLGA' modelling against corresponding estimates obtained from the steady state 'PIPESIM' modelling.

This benchmarking exercise was performed for the 6" line size operating at base and turndown 1 case conditions. From the comparison table between the results of PIPESIM software and OLGA software, it can be noticed that the results obtained from the two software are very close.

4. Conclusions & recommendations

For gas well # 5, gas well # 6, gas well # 7 and gas well #8 flowlines, 6" pipelines (ID=5.8") are considered feasible. For gas well #2, gas well #3 and gas well #4, 4" and 6" line sizes are feasible. Erosional velocity checks in accordance with API RP 14E using a C-factor of 100

indicate that EVR is less than 1.0 for all cases; hence, there is no risk of erosion in the flowlines. The impact of heating the flowing temperature for each flowline was investigated to mitigate against hydrate formation in the flowline at low flowing temperatures. The results show that for the gas well # 1 flowline, a flowing temperature of 25 °C is enough to ensure that the flowline operates outside the hydrate region. For all other flowlines, the maximum flowing temperature of 60°C will not be adequate in ensuring that the flowlines operate completely outside the hydrate region. The effect of mixing well fluids in varying ratios of richest fluid/leanest fluid has no significant impact on hydrate formation conditions in the flowlines. The following table summarizes the concussions for each well

Well Name	Minimum operating on flowline Tempera- ture, °C	Hydrate formation tempera- ture, °C	Hydrate inhibitor require- ments	Maximum methanol inhibitor rate, SCMD	Type of flow re- gime	Slug flow regime formation
Gas Well #5	-11	20	Required	7.8 in turndown case	Stratified- Wavy	Slug flow regime is predicted in some sections of the line during depletion, turndown and normal production of rich gas and turndown case for lean gas.
Gas Well #6	-15	20	Required	5.1 in turndown case	Stratified- Wavy	Slug flow regime is predicted in some sections of the line during depletion, turndown and normal production of rich gas and turndown case for lean gas.
Gas Well #7	-15	20	Required	9 in turn- down case	Stratified- Wavy	Slug flow regime is predicted in some sections of the line during normal and turndown production of rich gas, deple- tion, and turndown case for lean gas.
Gas Well #8	-23	18	Required	5.1 at 25% wa- ter cut	Stratified- Wavy	Slug flow regime is predicted in some sections of the line during depletion and turndown production of rich gas and turndown case for lean gas.

Nomenclature

API RP	American Petroleum Institute Recommended Practice
bpd	Barrels per day
CGR	Condensate gas ratio
CPF	Central processing facility
DP	Pressure drop
EVR	Erosional velocity ratio
FWHP	Flowing well head pressure
FWHT	Flowing well head temperature
GOR	Gas-oil ratio
HP	High pressure
ID	Internal diameter
LDHI	Low dosage hydrate inhibitors
LP	Low pressure
MP	Medium pressure
MMSCFD	Million standard cubic feet per day
MSCMD	Million standard cubic meter per day
NB	Nominal bore
LPG	Liquefied petroleum gas
MSCD	Standard cubic meter per day
W.C	Water cut
WHP	Wellhead pressure
WHT	Wellhead temperature

يە
<u>-</u>
≥
<u>_</u>
5
¥
=
×
Ś
g
5
Ъ.
ß
Ė
SS
2
.≅
Ъ
H
ž
2
Ĕ
ţ,
~
é
e
£
~
6
đ
a
_

em , qubloH biupiJ lstoT	49.8	50.7	18.7	16.1	8.9	52.0	58.6	
əmigəЯ wol7	S Wavy	Slug/S Wavy	S Wavy	Slug/S Wavy	Slug/S Wavy	Slug/S Wavy	Slug/S Wavy	
Potential Hydrate	No	No	No	No	No	Yes	Yes	
Max. EVR	0.41	0.36	0.29	0.15	0.23	0.07	0.2	
ts Velocity at Outlet, m/s	4.7	3.7	4.4	3.3	8.2	1.0	2.1	
Press Out, (CPF), bara	56	56	56	26	11	56	56	
Press In, bara	74	73	99	27	17	61	62	
J⁰, ĴUĊ qm9T	35	29	19	16	15	15	18	
J⁰ ,nl qm9T	46	46	31	20	20	-15	24	
ni ,9zi2	9	9	9	9	9	9	9	
Gas Flowrate, MSCMD	0.425	0.425	0.425	0.14	0.14	0.10	0.21	
MOS, JonedtaM	0.0	0.0	0.0	0.0	0.0	5.1	1.6	
Water, SCMD	111.9	111.9	21	6.9	6.9	4.9	56	
Condensate, SCMD	335.8	335.8	62.9	20.7	20.7	14.8	167.9	
CGR, SCM / MSCM	062	062	148	148	148	148	062	
Fluid	Rich	Rich	Lean	Lean	Lean	Lean	Rich	
əseD	Base Case	Base Case	Base Case	Depletion-25	Depletion-10	Turndown1	Turndown2	
Summer / Winter	S	≥	≥	≥	≥	N	≥	
Jº ,(19l1uO) qm9T 91s1byH	18	18	17	12	ß	17	18	
Jº ,(Ialni) qmaT afsibyH	20	20	18	12	8	18	19	1056

Table 8. Steady-state hydraulic results for gas well 6 flowline.

Total Liquid Holdup, m3	6.7	18.1	6.9	18.4	16.9	35.0	5.2	14.3	3.9	10.0	3.0	0.9	8.1	28.0	8.3	20.9
этідэЯ моІЯ	S Wavy	S Wavy	S Wavy	Slug/S Wavy	Slug/S Wavy	Slug/S Wavy	S Wavy	S Wavy	S Wavy	Slug/S Wavy	S Wavy	Slug/S Wavy	Slug/S Wavy	Slug/S Wavy	S Wavy/slug	S Wavy/slug
Potential Hydrate	No	No	Yes	Yes	No	No	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes
Мах. ЕVR	0.8	0.34	0.76	0.30	1.10	0.46	0.70	0.30	0.36	0.16	0.57	0.25	0.17	0.07	0.38	0.16
Mix. Velocity at Outlet, m/s	9.7	4.5	9.5	4.1	10.5	4.5	9.7	4.2	7.6	3.3	18.7	8.2	2.2	1.0	4.6	2.0
Press Out (CPF), bara	56	56	56	56	56	56	56	56	26	26	11	11	56	56	56	56
Ргезs In, рага	67	62	26	62	130	68	93	62	37	28	29	14	59	57	69	58
Temp Out, ⁰C	21	22	17	19	34	33	14	16	14	17	11	16	11	12	13	14
J° ,nI qmэT	31	22	31	22	46	39	27	18	20	20	20	20	-11	-11	16	13
ni ,əzi2	4	9	4	9	4	6	4	9	4	6	4	9	4	6	4	6
Gas Flowrate, MSCMD	0.425	0.425	0.425	0.425	0.425	0.425	0.425	0.425	0.14	0.14	0.14	0.14	0.1	0.1	0.21	0.21
Methanol, SCMD	0.0	0.0	3.2	0.1	0.0	0.0	8.0	3.2	0.4	0.0	0.0	0.0	7.9	7.8	5.8	4.8
Mater, SCMD	51.3	51.3	51.3	51.3	246.9	247.1	36.3	36.3	11.9	11.9	11.9	11.9	8.5	8.5	25.6	25.6
Condensate, SCMD	153.9	153.9	153.9	153.9	740.8	741.2	108.8	108.8	35.8	35.8	35.8	35.8	25.6	25.6	76.9	76.9
CCB' 2CM / W2CW	362	362	362	362	1743	1744	256	256	256	256	256	256	256	256	362	362
biula	Rich	Rich	Rich	Rich			Lean	Lean	Lean	Lean	Lean	Lean	Lean	Lean	Rich	Rich
əssƏ	Base Case	Base Case	Base Case	Base Case	Richer (Sensitivity)	Richer (Sensitivity)	Base Case	Base Case	Depletion-25	Depletion-25	Depletion-10	Depletion-10	Turndown1	Turndown1	Turndown2	Turndown2
Summer / Winter	S	S	M	W	w	W	W	W	W	W	Μ	w	W	W	W	w
D° ,(1911UO) qm9T 9181byH	19	19	19	19	17	17	19	19	13	13	9	9	19	19	19	19
J°, (Inlet) qm9T strate, P	22	20	22	20	23	19	21	19	د ۲	13 7	13	8	19	18	20	19
									~~	4						

Table 9. Steady state hydraulic results for gas well #7 flowline

		-						1
⁵ m , qubloH biupiJ lstoT	9.68	85.5	31.1	27.0	15.6	84.3	8.36	
əmigəЯ wol٦	Slug/S Wavy	Slug/S Wavy	S Wavy	Slug/S Wavy	Slug/S Wavy	Slug/S Wavy	Slug/S Wavy	
Potential Hydrate	No	No	Yes	No	No	Yes	Yes	
Max. EVR	0.40	0.40	0.30	0.15	0.23	0.10	0.20	
s\m ,təltuO ta YilooləV .xiM	4.6	4.4	4.3	3.3	8.3	1.0	2.1	
Press Out (CPF), bara	56	56	56	26	11	56	56	
Press In, bara	82.2	81.8	70.8	31.9	19.6	62.9	0.99	
Temp Out, ºC	31	24	16	16	15	16	13	
Jº ,nl qm9T	46	46	31	20	20	-15	24	
ni ,əsið	9	9	9	9	9	9	9	
Gas Flowrate, MSCMD	0.425	0.425	0.425	0.14	0.14	0.10	0.21	
Methanol, SCMD	0	0.0	0.7	0.0	0.0	5.0	0.6	
Water, SCMD	111.9	111.9	21.0	6.9	6.9	4.9	56.0	
Condensate, SCMD	335.8	335.8	62.9	20.7	20.7	14.8	167.9	
сев' гсм / мзсм	062	790	148	148	148	148	062	
Fluid	Rich	Rich	Lean	Lean	Lean	Lean	Rich	
Case	Base Case	Base Case	Base Case	Depletion-25	Depletion-10	Turndown1	Turndown2	
Summer / Winter	S	×	N	M	M	N	N	
J⁰ ((JuD) qm9T 9161), ^g C	18	18	17	12	5	17	18	
Jº (təlnl) qm9T ətsıbyH	20	20	18	12	80	18	19	

Table 10. Steady state hydraulic results for gas well #8 flowline.

									_
^s m ,qubloH biupiJ letoT	18.4	20.0	3.1	15.0	20.4	9.6	71.0	31.8	
əmigəЯ wol٦	S Wavy	S Wavy	S Wavy	S Wavy	Vvavy Slug/S	Vvavy Slug/S	Vvavy Slug/S	Vvavy Slug/S	
Potential Hydrate	Yes	Yes	Yes	Yes	No	No	Yes	Yes	
Max. EVR	0.28	0.27	0.26	0.27	0.14	0.20	0.06	0.14	
s\m ,Velocity at Outlet, m/s	4.6	4.3	4.3	4.3	3.4	8.3	1.0	2.2	
Press Out (CPF), bara	56	56	56	56	26	11	56	56	
Press In, bara	68.0	68.0	66.0	67.5	32.0	18.0	63.0	62.0	
Temp Out, ⁰C	23	13	13	13	16	15	16	15	
Jº ,nl qm∋T	11	10	3	8	20	20	-23	-3	
ni ,əsi2	9	9	6	9	9	9	9	9	
GMD2M, 9161W01 260	0.425	0.425	0.425	0.425	0.14	0.14	0.10	0.21	
Methanol, SCMD	2.2	2.6	5.1	2.0	0.0	0.0	2.0	3.2	
Water, SCMD	10.1	10.1	10.9	6.5	2.1	2.1	1.5	5	
DMD2 (9162n9bnoD	30.2	30.2		19.6	6.4	6.4	4.6	15.1	
сек, scm / мзсм	71	71		46	46	46	46	71	
biula	Rich	Rich	Dry Gas *	Lean	Rich	Rich	Lean	Rich	
əseD	Base Case	Base Case	Base Case	Base Case	Depletion-25	Depletion-10	Turndown1	Turndown2	onditions)
Summer / Winter	S	×	N	Μ	Μ	Μ	Μ	Ν	flowing co
Jº ,(feltuO) qmeT etsibyH	17	17	17	17	11	4	17	17	ter cut at
Jº ,(təlnl) qməT ətstbyH	18	18	18	18	13	8	18	17	*(25% wa

Pet Coal (2024); 66(3): 1047-1061 ISSN 1337-7027 an open access journal

Wellhead Flowlines
Gas
for all
software
OLGA
Å
Results
draulic I
Transient Hy
Table 11.

əteя HOəM no bəsed OLGA with Mitw Jio2 dmA	5.5	5.3	17.8	15.8	13.4	12.2	10.3	9.4	0.0	2.1	23.0	12.5	11.3	8.5	2.6	5.8	8.4	3.4	48.0	15.1	34.1	10.8	22.8	7.7	2.4	2.0	9.5	7.4	6.7	5.3	4.9	4.1
Arrival at CPF Temp. (OLGA Simu. With Soil	17.4	15.6	9.4	6.6	12.1	9.6	14.2	12	23.2	16.2	12.7	3.1	16.2	7.4	19	11	18.5	14.9	6	0.5	10.1	5.3	13.5	9.2	14.4	14.3	0.4	0.2	5	4.9	8.8	8.6
Temp. Depres- sion required based on Pipesim, <u>°</u> C	3.2	5.0	8.6	10.9	6.8	8.9	5.3	7.2	0.0	1.8	0.6	12.4	0.0	8.8	0.0	5.9	0.0	4.9	0.0	17.6	5.7	13.3	3.0	9.9	7.4	7.9	20.2	20.8	15.9	16.5	12.5	13.1
Hydrate Form. Temp at Inlet P, ≗C	17.7	16.8	17.7	16.8	17.7	16.8	17.7	16.8	17.9	16.6	17.9	16.5	17.9	16.5	17.9	16.5	18.6	17	18.5	17	18.6	17	18.6	17	16.3	16.4	16.3	16.4	16.3	16.4	16.3	16.4
Arrival at CPF Temp. 2º .(.mis9qi9)	18.5	15.8	13.1	6.6	14.9	11.9	16.4	13.6	29.1	18.8	21.3	8.1	23.9	11.7	26	14.6	23.6	16.1	13.5	3.4	16.9	7.7	19.6	11.1	12.9	12.5	0.1	-0.4	4.4	3.9	7.8	7.3
Inlet to Flow- line Pressure (Pipesim), bara	62.5	61.8	62.4	61.7	62.4	61.7	62.5	61.7	73.9	66	73.6	65.7	73.7	65.8	73.7	65.9	82.5	70.5	81.9	70.7	82.1	70.9	82.2	71	67.8	67.7	67.4	67.3	67.5	67.4	67.7	67.5
-wolन ot təlnl Dº ,.qməT ənil	22	18	22	18	22	18	22	18	46	31	46	31	46	31	46	31	46	31	46	31	46	31	46	31	11	8	11	8	11	8	11	8
Wellhead Pres- sure, bara	267	267	267	267	267	267	267	267	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	228	267	267	267	267	267	267	267	267
bsədlləW J⁰ ,,qməT	50	50	50	50	50	50	50	50	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	50	50	50	50	50	50	50	50
.dmoጋ	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean	Rich	Lean
926) .umi2	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base
lləW				Gas Well#5	L							Gas Well#6			1					Gas Well#7		<u> </u>				1]	Gas Well#8			L	

Coal	
and	
leum	
Petro	

Flow Regime		Slug/S Wavy	Int. Slug	Slug/S Wavy	Strat.	Slug/S Wavy	Int. Slug	S Wavy	Strat.		
Total Liquid Holdup Vol- ume	m³	18.4	16.4	50.7	30.7	85.5	76.8	20.0	15.6		
Max. EVR	ı	0.30	0.31	0.36	0.31	0.39	0.36	0.27	0.27		
Mix. Velocity at outlet	m/s	4.1	4.4	3.7	4.5	4.4	4.6	4.3	4.5		
Press, out (CPF)	bara	56	56	56	56	56	56	56	56		
Press, in	bara	62.0	61.6	73.0	67.3	81.8	77.1	68.0	67.5		
Temp, out	J⁼	19.0	17.0	29.0	18.8	23.7	16.4	13.0	14.7		
Temp, in	J□	22	22	46	46	46	46	10	10		
size	Ŀ	9	9	9	9	9	9	9	9		
Gas Flowrate	MMSCMD	0.425	0.425	0.425	0.425	0.425	0.425	0.425	0.425		
Gas	I	Rich	Rich	Rich	Rich	Rich	Rich	Rich	Rich		
Case		Base Case	Base Case	Base Case	Base Case	Base Case	Base Case	Base Case	Base Case		
Length	٤	14,000		7,200		22,000		21,300			
Flowline		S#IIə/	W seð	9# ə <i> </i>	W 26Đ	∠# ə/	W 26Đ	8# ə <i> </i>	8#ll9W 26D		

Table 12. OLGA Software vs PIPESIM Software Benchmarking Results (Base Case, 10 % W.C).

Table 13. OLGA Software vs PIPESIM Software Benchmarking Results (Turndown case, 10 % W.C).

Mix. Velocity at outlet	s/m	1.0	1.1	1.0	1.1	1.0	1.2	1.0	1.1
Press, out (CPF)	bara	56	56	56	56	56	56	56	56
Press, in	bara	57.0	57.2	61.0	59.3	62.9	62.0	63.0	61.4
Temp, out	J⁼	12.3	15.7	15.0	15.9	15.7	15.9	16.0	16.0
Temp, in	J⁼	-11	-11	-15	-15	-15	-15	-23	-23
size	in	6	9	9	9	9	9	9	9
Gas Flowrate	MSCMD	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
Gas		Lean	Lean	Lean	Lean	Lean	Lean	Lean	Lean
Case		Turndown1	Turndown1	Turndown1	Turndown1	Turndown1	Turndown1	Turndown1	Turndown1
Length	E	14,000		7,200		22,000		21,300	
ənilwo	ənilwol٦		sÐ 9W	9# se	9 9 M	۲#۱ ۲	s BWel	8# St	sə I9W

References

- [1] William C, Gary J, and Michael D. Standard handbook of petroleum and natural gas engineering. Gulf Professional Publishing, 2016.
- [2] Devold H. Oil and Gas Production Handbook: An introduction to oil and gas production. ABB Oil and Gas, 2016.
- [3] Guo B, and Ali G. Natural gas Engineering Handbook. Gulf Professional Publishing. 2016.
- [4] Wang G, Cheng Q, Zhao W, Liao Q, and Zhang H. Review on the transport capacity management of oil and gas pipeline network: Challenges and opportunities of future pipeline transport. Energy Strategy Reviews, 2022; 43: 100933.
- [5] Reddy H, Narasimhan S, and Bhallamudi S. Simulation and state estimation of transient flow in gas pipeline networks using a transfer function model. Industrial & Engineering Chemistry Research, 2006; 45(11),3853-3863.
- [6] Razvarz S, Jafari R, and Gegov A. Flow modelling and control in pipeline systems. Stud. Syst. Decis. Control, 2021; 321: 25-57.
- [7] Shi G, Fan D, and Gong J. A new transient simulation method of natural gas-condensate twophase flow in pipeline network. Chemical Engineering Science, 2020; 223:115742.
- [8] Madoliat R, Khanmirza E, and Moetamedzadeh H. Transient simulation of gas pipeline networks using intelligent methods. Journal of Natural Gas Science and Engineering, 2016; 29: 517-29.
- [9] Alamian R, Behbahani M, and Ghanbarzadeh A. State Space Model for Transient Flow Simulation in Natural Gas Pipelines. Journal of Natural Gas Science Engineering , 2012; 51–59.
- [10] Pambour K, Bolado L, and Dijkema G. An integrated transient model for simulating the operation of natural gas transport systems. Journal of Natural Gas Science and Engineering, 2016; 28, 672-690.
- [11] Ellul I, Saether G, and Shippen M. The Modeling of Multiphase Systems under Steady-State and Transient Conditions – A Tutorial. Pipeline Simulation Interest Group, Palm Springs, California, 2004.
- [12] American Petroleum Institute. API Recommended Practice. 2020.
- [13] PIPESIM Steady State Multiphase Flow Simulator. Schlumberger Service Company,2018.
- [14] OLGA Transient Multiphase Flow Simulator. Schlumberger Service Company, 2021.
- [15] Noaman AA. Hydraulic, Modelling and Hydrate Inhibition for the New Gas Wellhead Flowlines in Gas Project-Part 1. Petroleum & Coal, 2023; 65(4): 1200-1215.

To whom correspondence should be addressed: Dr. Abdelaziz A. Noaman, Chemical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, E-mail: <u>abdelaziz.noaman@outlook.com</u>