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Abstract 

The viscosity of crude oil is an important parameter governing fluid flow in both porous media and 

pipelines. The experimental measurement of reservoir oil viscosity is time consuming, difficult, and 
costly. Therefore, it is necessary to develop reliable models to determine viscosity. In this study, three 

models for dead, saturated, and under-saturated reservoir oils viscosities were developed, based on 

the gene expression programming (GEP) computational scheme. A dataset comprising more than 1000 
sets of experimental pressure-volume-temperature (PVT) measurements drawn from Iranian oil fields 

were utilized in the model development. The dataset contains variables, which are regarded as 

significant and identifiable, namely, the gravity of oil, reservoir temperature, solution gas oil ratio, and 
bubble point pressure. The models developed are compared to a number of empirically-derived 

correlations. A comparison of results, using the GEP-based models for dead, saturated, and under-

saturated viscosities was also undertaken with respect to experimental data. There are suitable 
qualitative and quantitative agreements between the models results and experimental data. The average 

absolute relative deviations for the dead, saturated and under-saturated oil viscosity models are 17.42, 

13.55, and 1.47 %, respectively. The models are simple to use and enable fairly rapid estimations. 

Keywords: Viscosity; Pressure region; Gene expression programming (GEP); Empirical correlation; Enhanced 

oil recovery (EOR). 

 

1. Introduction  

Reservoir oil viscosity, simply put, is a fluid’s resistance to flow through porous media. The 
calculation of crude oil viscosity is necessary for a wide range of engineering interventions. 
For example, it is required for the design of enhanced oil recovery (EOR) processes, the evalu-
ation of fluid flow rate through porous media, the estimation of hydrocarbon reserves, equip-

ment design, prediction of reservoir performance, and the development of reservoir and pro-
duction simulation software [1-7]. Furthermore, this parameter plays a key role in estimating 
the deposition of wax in transportation pipelines [8].  

The oil production capacity of hydrocarbon reservoirs depends on the viscosity of the oil, 
with low viscosities allowing for higher product ion yields [9]. Therefore, in the area of thermal 

EOR, most processes, including steam injection, hot water injection, and steam assisted gravity 
drainage, are closely associated with reducing the viscosity of heavy oil. Thus, it is clear that 
the advancement of reliable methods, including laboratory measurements and empirically de-
rived models, are required to enhance the measurement and understanding of crude oil vis-
cosity in oil reservoirs. 

While the viscosity of reservoir oil is influential, it is itself dependent on a number of thermo-
physical factors, including, reservoir pressure, reservoir temperature, solution gas–oil ratio, 
bubble point pressure, the gravity of gas and oil, and the composition of the oil mixture [10-11].  
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Normally, the measurement of reservoir oil viscosity is undertaken by conducting experi-

mental measurements that simulate reservoir conditions under particular temperature condi-
tions. Nevertheless, experimental measurement of reservoir oil viscosity at different tempera-
tures is sometimes prohibitive, due to the high price of sampling equipment and the related 
tests [10]. Therefore, empirically derived methods, or modelling, can be useful in estimating 
viscosity when experimental data on the specific reservoir is not available.  

In line with their pressure regime, there are several empirical and semi-empirical correla-
tions available for dead, saturated, and under-saturated oil, which will be described in the 
next section. In addition, there are some models for the prediction of viscosity on the basis of 
corresponding states method [12-14]. However, the corresponding states-based method has 
not gained wide acceptance, because it requires both complex calculations/computations, and 

the composition of fluid, for viscosity estimation [7, 15]. 
In addition to the corresponding states method, smart techniques, like neural networks and 

support vector machine approaches, are applied to determine reservoir oil viscosities. Obanijesu 
and Omidiora [16] developed an artificial neural network model for the determination of viscosities 
of Nigerian crudes. Hemmati-Sarapardeh et al. [17] proposed a smart model based on a least 

squares version of the support vector machines’ mathematical scheme, for the estimation of Ira-
nian oil field viscosities. There is agreement between the experimental data and the results ob-
tained by these recent models. But these methods have drawbacks: they sometimes have an 
over-fitting problem; they normally require large databases and; they do not provide a symbolic 
equation for future use [18-20]. 

This paper describes three innovative models, based on the gene expression programming 
(GEP) [21] computational scheme. They are designed to determine, in a consistent manner, 
the dead, saturated, and under-saturated viscosities of crude oils. In order to develop such 
models, more than 1000 sets of experimental PVT data, drawn from Iranian oil fields,  were 
used. Many empirically-derived correlations were used to compare the results of the models, 
and to demonstrate the accuracy and simplicity of the models. In addition, the Leverage methodo-

logy was applied to detect suspended and outlier data points in the datasets of dead, saturated 
and under-saturated crude oils viscosities. 

2. The viscosities of reservoir oils  

By conducting laboratory tests on bottom hole cores or surface recombined samples, the 
viscosities of reservoir oils can be determined isothermally, at reservoir temperature and at 

different reservoir pressures [16].  

 
Fig. 1. A representative trend plot of viscosity ver-
sus pressure illustrating regions related to dead, 

saturated, and under-saturated oils viscosities 

The crude oils viscosities depend on the 
reservoir pressure and temperature. The 
viscosity, at above bubble point pressure, 
increases and, below bubble point pressure, 

reduces, in relation to changes in pressure 
[10]. Thus, a specific correlation is required 
for each pressure regime due to differences 
in the qualities of oil in the various regions 
[17]. As a result, reservoir oil viscosity is de-

termined in three pressure regimes: in the 
regimes above and below the bubble point 
pressure, and in dead oil (gas-free reservoir 
oil) (Fig. 1).  
 

Different empirical correlations have been developed over the years for dead, saturated 
and, under-saturated crude oils. In this study, several empirical correlations related to dead 

oils [2, 7, 15, 22-32], saturated oils [2, 7, 15, 23, 26, 27, 29, 31, 33-35] and under-saturated oils [2, 15, 22, 27, 

29, 31, 34, 36, 37] were used for comparison to the models developed. Tables 1-3 list these corre-
lations, as well as their applicability ranges, data origin, and formulas.  
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Table 1. List of the previously reported dead oil viscosity models investigated in this study as well as their applicability ranges and formulas 

Method Origin of Data T (K) API µod (cP) Formula 

Beal [22] US 
310-394 10.1-

52 
0.865-1550 

μod = (0.32 + 1.8 ×
107

API 4.53
) (

360

T + 200
)

x

;x = e[2.302585(0.43+
8.33
API

)] 

Beggs and Robinson [23] - 294-419 16-58 - μod = 10x − 1; x = e
[3.0324−0.02023API]

  T −1.163 

Glaso [24] North Sea 
283-422 20-48 0.6-39 

μod = (
3.141 × 1010

T 3.44 ) log(API)[0.313log(T)−36.447] 

Kaye [25] 
Offshore Cali-
fornia 

334-412 7-41 - μod = 10 [T−0.6510(2.203−0.0254API)] − 1, API ≤ 12;  μod = 10 [T−0.6510(2.305−0.03354API)] − 1, API > 12; 

Al-Khafaji et al. [26] - 

289-422 15-51 - 
μod =

10(4.9563−0.00488T)

(API +
T
30

− 14.29)2.709
 

Petrosky [27] Gulf of Mexico 
319-415 25-46 0.72-10.25 

μod =
2.3511 × 107

T 2.10255 log (API)[4.59388log(T)−22.82792 

Egbogah and Ng [28] - 288-353 5-58 - μod = 10x − 1; x = 10 [1.8653−2.5086×10−2 API−0.56441log(T)]  

Labedi [2] Libya 311-425 32-48 0.66-4.79 μod = 109.224 API −4.7013  T −0.6739 

Kartoatmodjo and Schmidt [29] Worldwide 
300-433 14-59 0.5-586 

μod =
1.6 × 109

T 2.8177 log (API)[5.7526log(T)−26.9718] 

Bennison [30] North Sea 277-422 11-20 6.4-8396 μod = 10 [−0.8021API+23.8765] T [0.31458API−9.21592] 

Elsharkawy and Alikhan [15] Middle East 311-422 20-48 0.6-33.7 μod = 10x − 1; x = e
[2.16924−0.02525API−0.68875 log(T)]

 

Hossain et al. [31] Worldwide 273-375 7-22 12-451 μod = 10 [−0.71523API+22.13766] T [0.269024API−8.268047] 

Naseri et al. [7]  Iran 314-421 17-44 0.75-54 μod = 10 [11.2699−4.2699log(API)−2.052log(T)]  

Alomair et al. [32] Kuwait 293-433 10-20 1.78-11360  
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Table 2. List of the previously reported saturated oil viscosity models investigated in this study as well as their applicabi lity ranges and formulas 

Method 
Source of 

data 

Solution 

GOR 

(SCF/STB) 

Saturation 

pressure 

(MPa) 

μod, cP Formula 

Chew and Connally I [33] US 51-3544 
0.91-38.92 0.37-50 

μob = Aμod
B ; A = 0.2 +

0.8

100 .00081Rs
 ; B = 0.43 +

0.57

100.00072Rs
  

Chew and Connally II [33] US 51-3544 
0.91-38.92 0.37-50 μob = Aμod

B ; A = 10
[Rs(2.2×10−7Rs−7.4×10−4)]

 ;    

B = 0.68 × 10[−8.62×10−5Rs] + 0.25 × 10 [−1.1×10−3Rs] + 0.062 × 10[−3.74×10−3Rs] 

Chew and Connally III [33] US 51-3544 

0.91-38.92 0.37-50 μob = Aμod
B  

A = 0.987583 − 0.1746773 × 10−2Rs + 0.2067531 × 10−5Rs
2 − 0.1310529 × 10−8Rs

3

+ 0.3229416 × 10−12Rs
4 

B = 0.9900216 − 0.112183 × 10−2 Rs + 0.1427879 × 10−5 Rs
2 − 0.9440539 × 10−9Rs

3

+ 0.2312365 × 10−12Rs
4 

Beggs and Robinson [23] - 20-2070 
0.91-36.30 - 

μob = Aμod
B ; A =

10.715

(Rs + 100)0.515 ; B =
5.44

(Rs + 150)0.338  

Al-Khafaji et al. [26] - 0-2100 

- - μob = Aμod
B ;  X1 = log (Rs) 

A = 0.247 + 0.2824X1 + 0.5657X1
2 − 0.4065X1

3 + 0.0631X1
4 

B = 0.894 + 0.0546X1 + 0.07667X1
2 − 0.0736X1

3 + 0.01008X1
4 

Khan et al. [34] 
Saudi Ara-

bia 
24-1901 

0.74-29.75 0.13-77.4 μob =
0.09γg

0.5

Rsb

1

3 [
T+459.67

459.67
 ]4.5 (1−γo)3

; if P < Pb  →  μo =
μob  e[−2.5×10

−4
(P−Pb )

 (
P

Pb
)0.14

  

Petrosky [27] 
Gulf of 

Mexico 
21-1855 

10.85-65.85 0.21-7.4 
μob = Aμod

B ; A = 0.1651 +
0.6165

10(6.0866×10−4Rs)  ; B = 0.5131 +
0.5109

10(1.1831×10−3Rs) 

Labedi [2] Libya 13-3533 

0.41-43.83 0.115-

3.72 
μob =

10(2.344−0.03542API) μod
0.6447

Pb
0 .426  ; at  P < Pb  →  μo =

μob

1 − (10−3.876 Pb
05423API 1.1302 (1 −

P
Pb

)
 

Kartoatmodjo and Schmidt 
[29] 

Worldwide 2.3-572 
0.10-41.74 0.1-6.3 μob = −0.06821 + 0.9824X2 + 4.034 × 10−4X2

2; 

X1 = 0.43 + 0.5156 × 10 [−8.1×10−4Rs];  X2 = [0.2001 + 0.8428 × 10 [−8.45×10−4Rs] ]μod
X1  

Elsharkawy and Alikhan [15] 
Middle 
East 

10-3600 
0.69-25.51 0.05-21 

μob = Aμod
B ; A =

1241.935

(Rs + 641.026)1.12410  ; B =
1768 .841

(Rs + 1180.335)1.06622 

Hossain et al. [31] Worldwide 19-493 

0.83-43.24 3.6-360 μob = Aμod
B  

A = 1 − 0.001718831Rs + 1.58081 × 10−6Rs
2 ;  A

= 1 − 0.002052461Rs + 3.47559 × 10−6Rs
2 

Naseri et al. [7] Iran 255-4116 
2.89-40.68 0.11-

18.15 
μob = 101.1145Pb

−0.4956μod
0.9961 

 

Bergman and Sutton [35] Worldwide 6-6525 

0.45-71.02 0.21-

4277 
μob = Aμod

B  ; A =
1

1 + (
Rs

344.198
)0.855344

 ; B =
0.617677

1 + (
Rs

567.953
)0.819326
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Table 3. List of the previously reported under-saturated oil viscosity models investigated in this study as well as their applicability ranges and 
formulas 

Method 
Origin of 

data 
P (MPa) Pb (MPa) µob (cP) μo (cP) Formula 

Beal [22] USA - - 0.142-127 0.16-315 μo = μob + [0.001(P − Pb )](0.024μob
1.6 + 0.038μob

0.56) 

Vazquez and Beggs 

[36] 

Worldwide 
0.87-

65.50 

- - 0.117-148 
μo = μob e

[(5.50318×10−5+3.77163×10−5μob
0.278)(P−Pb )] 

Khan et al. [34] Saudi Ara-

bia 
- 

0.74-

33.05 
0.13-77.4 0.13-71 

μo = μob e
[9.6×10−5(P−Pb

)] 

Petrosky [27] Gulf of 

Mexico 

11.03-

70.67 

10.85-

65.86 

0.211-

3.546 
0.22-4.09 

μo = μob + 1.3449 × 10−5(P − Pb
)10X2 ;X1 = log(μob

) ; X2

= −1.0146+1.3322X1 − 0.4876X1
2 − 1.15036X1

3  

Labedi [2] 

Libya - 

0.41-

43.84 

0.115-

3.72 

- μo = μob +
μod

0.9036Pb
0.6151

10(2.488+0.01976 API) (
P

pb

− 1) 

Orbey and Sandler 

[37] 

- 
5.10-

100.00 

- 0.217-3.1 0.225-7.3 
μo = μob e

[α(P −Pb)] ; α = 6.89 × 10−5 

Kartoatmodjo and 

Schmidt [29] 
Worldwide 

0.17-

41.47 

0.17-

32.92 

0.168-

184.86 

0.168-517.03 

μo = 1.0081μob  + 1.127 × 10−3(P − Pb )(−6.517 × 10−3μob
1.8148

+ 0.038μob
1.59) 

Elsharkawy and 

Alikhan [15] 
Middle East 

8.87-

68.94 
- - 0.2-5.7 μo = μob +

10−2.0771(P − Pb )μod
1.19279

μob
0.40712Pb

0.7941  

Hossain et al. [31] 

Worldwide 

2.07-

23.44 

0.83-

43.24 

3.6-360 3-517 

μo = μob + [0.004481 (P − Pb )](0.555955 μob
1.068099 − 0.527737μob

1.063547) 
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To develop these types of correlations, the common reservoir fluid data, including the oil 

gravity (API), solution gas oil ratio (GOR), bubble point pressure, and reservoir temperature, 
were used. Comparative correlations were used in this study to detemine the most significant 

variables to apply for each of the three models. Reservoir temperature and crude oil API grav-
ity were found to be essential for the estimation of dead oil viscosity. Dead oil viscosity and 
saturated pressure were essential parameters needed for saturated reservoir oil viscosity de-
termination. Reservoir pressure, as well as bubble point pressure and viscosity at bubble point 
were essential variables for accurate estimation of under-saturated reservoir oil viscosity.  

As a result, the reservoir parameters used to develop the GEP-based models for the deter-
mination of dead, saturated, and under-saturated crude oil viscosities are as follows: 
μod = f1(TR, API)                        (1) 
μob = f2(μod , P)                        (2) 

μo = f3(μob, P, Pb )                       (3) 
The above equations were applied to more than 1000 sets of experimental data of Iranian 

oil fields, comprising the gravity of oil, reservoir temperature, solution gas oil ratio, and bubble 
point pressure. A rolling ball viscometer (Ruska, series 1602) was used to measure the Iranian 

reservoir oil viscosities at different pressures above and below saturation pressure.  
Tables 4-6 list the ranges of the applied variables used to develop the GEP-based models 

for the estimation of dead, saturated, and under-saturated oil viscosities, respectively. It is 
worth noting that the range of data presented in Tables 4-6 includes almost all of the data 
available, related to Iranian oil fields. 

Table 4. Applicability ranges and units of the applied variables for developing the dead oil viscosity model 

Reservoir property Unit Min. Max. Avg. SD Type 

Temperature °F 50.27 290.26 176.11 42.84 Input 

Oil API gravity - 17.30 43.56 29.32 7.00 Input 

Dead oil viscosity  cP 0.55 69.50 7.41 11.44 Output 

Table 5. Applicability ranges and units of the applied variables for developing the saturated oil viscosity model 

Reservoir property Unit Min. Max. Avg. SD Type 

Saturation pressure psi 158.09 5 701.43 1 705.64 7.50 Input 

Dead oil viscosity cP 0.55 37.18 4.55 5.05 Input 

Saturated oil viscosity cP 0.18 25.58 1.92 2.59 Output 

Table 6. Applicability ranges and units of the applied variables for developing the under -saturated oil 
viscosity model 

Reservoir property Unit Min. Max. Avg. SD Type 

Bubble point pressure psi 729.53 5 115.47 1 135.39 7.81 Input 

Bubble point viscosity cP 0.18 18.16 1.62 2.19 Input 

Pressure MPa 5.03 86.18 25.38 11.63 Input 
Under-saturated oil viscosity cP 0.18 31.00 1.84 2.97 Output 

3. Methodology 

Gene expression programing, which was first proposed by Ferreira [21], is regarded as one 

of the most reliable artificial intelligence techniques. Along with the use of evolutionary algo-
rithms, computation-based models can be built. A search and tuning method was applied in 
the GEP mathematical approach. This is employed for selecting, and it enables an evolutionary 
process to occur [38]. Furthermore, a number of soft-computing models have been applied in 
the GEP algorithm, in order to solve a specific symbolic regression problem based on some 

fitness functions. 
In the GEP algorithm, individuals are recognized as fixed length linear strings, and then are 

presented as nonlinear entities of various size and shape [39]. The individuals are composed 
of multi-genic chromosomes, so that each GEP gene includes two distinct sections, head and 
tail. The head domain involves symbols from a function set and a terminal set, and the tail 
section involve symbols composed of only a terminal set as follows [40]: 
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t = h × (n − 1) + 1                       (4) 

where: t and h are symbol sets (function and terminal), and n denotes the gene number.  
To illustrate the performance of the GEP approach mathematically, a simple GEP-based 

model including a chromosome composed of two genes connected together by a multiplication 
fitness function is presented as follows: 

(
x

y
) ∗ (r − z)                          (5) 

where: x, y, r and z are recognized as input variable to predict the target parameter; and - , 

* and – denote the fitness functions of division, multiplication and deduction, respectively. It 
should be noted that there are more fitness functions in the GEP mathematical approach in-
cluding +, ln, log, power, and root square. 

There are certain important steps to follow in order to perform a symbolic regression by 
means of a gene expression programing algorithm. These steps require randomly generating 

an initial population related to the chromosomes by means of Karva language and; translating 
the chromosomes into soft-computing models. In order to complete the models, it is necessary 
to select proper fitness functions; apply these fitness functions to evaluate the performance 
of the generated computer programs or models; check the final computational model in terms 
of accuracy and simplicity; use the most suitable individual population selected to reproduce 

the chromosomes; propose a new, generated soft-computing model, as a consequence of 
reproducing the chromosomes and, finally; repeat the above-mentioned steps until a more 
reliable and accurate soft-computing symbolic model is obtained [38]. In order to develop the 
model, three distinct datasets for dead, saturated, and under-saturated oil viscosities were 
prepared. In order to evaluate the capability of the models developed, 80% of the experi-

mental data points in each database was used to train the models, and 20% of the data was 
taken to test the models’ predictive ability. 

4. Results and discussion 

The results will be discussed in three sections, in line with the nature of the three models 
that were developed, namely: dead oil, saturated, and under-saturated oil viscosity. 

Normally, in the GEP-based symbolic regression approach, the most effective input varia-
bles with respect to the target parameter, are selected automatically from the set of all of the 
independent predictors. In this study however, the algorithm in each case was fixed on the 
most significant variables, obtained from a comprehensive review of the literature, as de-
scribed in Section 2 above. 

4.1. Dead oil viscosity model 

Reservoir temperature and crude oil API gravity are required for the estimation of dead oil 
viscosity. Consequently, using the GEP algorithm, the best GEP-based model, based on the 
independent predictors (reservoir temperature and oil gravity), was obtained after the GEP 
evolution process, which is given as follow: 

𝜇𝑜𝑑 =
614.82 𝐴𝑃𝐼 ×𝑇 – 63529.0 𝑇+2.0359 ×107

𝑇× 𝐴𝑃𝐼3  − 482088
                    (6) 

where: 𝜇𝑜𝑑 denotes the dead oil viscosity (cP); T represents reservoir temperature (°F) and 
finally, API stands for dead oil gravity. 

Table 7 (top section), summarizes the statistical error factors, including average absolute 
relative deviation (AARD), root mean square error (RMSE) and R-squared error (R2), for the 

model associated with dead oil viscosities. The table reports reasonable values for these error 
parameters, for example, AARD = 17.29%, RMSE = 1.82, and R2 = 0.97.  
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Table 7. Summarized statistical error factors including AARD, RMSE and R2 for the models developed for 

dead, saturated and under-saturated oil viscosities 

Developed model AARD a % RMSE b R2 c 

Dead oil viscosity model    
Training 17.40 1.95 0.974 

Testing 16.86 1.16 0.900 

Overall 17.29 1.82 0.973 
Saturated oil viscosity model    

Training 14.06 0.53 0.966 

Testing 11.53 0.26 0.961 
Overall 13.55 0.49 0.966 

Under-saturated oil viscosity model    

Training 1.51 0.10 0.999 
Testing 1.29 0.06 0.998 

Overall 1.47 0.09 0.999 

a 



n

i

iE
n

AARD
1

|%|
1

%  where ni
X

XX
Ei ,...,3,2,1100%

exp

 rep./predexp












 
  

b  



n

i

ii XX
n

RMSE
1

2

 rep./predexp

1
 

c

 

 







 

N

i

predrepi

N

i

i

averageXX

XX

R
2

/)( rep./pred (i)

1

2

 rep./pred (i)exp)(
2 1  

In order to graphically illustrate the performance of the model, a comparison between the 
calculated values of dead oil viscosity using Eq. (6), and the actual values from the dataset 
used is demonstrated in terms of a parity plot, or crossplot, as well as a relative error distri-
bution (Fig. 2).  

  

Fig. 2. Parity plot and relative deviation distribution plot for the dead oil viscosity model  

Furthermore, in order to evaluate and demonstrate the accuracy and capability of the model 

for dead oil viscosity, a comprehensive comparative study was conducted by applying the 
most reliable empirically-derived correlations available in the literature [2, 7, 15, 22-32]. Table 8 
reports the results of the comparative study conducted for the estimation of dead oil viscosi-
ties. It is clear from the table that the model proposed for dead oil viscosities is more accurate, 
than the empirically-derived correlations reviewed, in terms of all error factors investigated.  
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Table 8. Summarized statistical error factors including AARD, RMSE and R2 for the model developed for 

dead oil viscosity as well as the studied empirical correlations results from the actual data  

Method AARD % R2 RMSE 

Beal [22] 891.2 0.1088 83.14 
Beggs and Robinson [23] 216.7 0.0376 245.05 

Glaso [24] 33.4 0.9270 3.84 

Kaye [25] 52.0 0.2268 10.19 
Al-Khafaji et al. [26] 29.9 0.7283 6.04 

Petrosky [27] 41.6 0.8695 4.18 

Egbogah and Ng [28] 55.6 0.9208 3.26 
Labedi [2] 177.9 0.3910 14.95 

Kartoatmodjo and Schmidt [29] 36.8 0.9065 4.50 

Bennison [30] 70.9 0.6689 12.25 
Elsharkawy and Alikhan [15] 72.9 0.9065 13.25 

Hossain et al. [31] 68.9 0.6000 16.24 

Naseri et al. [7]  27.5 0.8233 3.88 
Alomair et al. [32] 72.4 0.8275 6.36 

This study 17.2 0.9730 1.82 

The comparative study shows that the work of Naseri et al. [7] for the determination of 

dead oil viscosity of Iranian crudes is second to the model proposed in this study, according 
to the AARD results, which are equal to 27.5 %, as shown in Fig. 3.  

 

Fig. 3. Graphical comparison between the AARD % values obtained by the model developed in this work 
for the determination of dead oil viscosity as well as the studied comparative methods  

 

Fig. 4. 3D plot of change of dead oil viscosity ver-
sus change in temperature and oil API gravity 

The smoothness of the model for dead oil 
viscosity is represented by means of a trend 
analysis, which illustrates the changes of 
viscosity versus input variables. To this end, 
a 3D plot of changes to dead oil viscosity, oil 
API gravity, and reservoir temperatures is 

presented. Fig. 4 shows that dead oil viscos-
ity decreases with an increase in tempera-
ture and oil API gravity. The results in this 
figure confirm the general trend of change 
[41] of dead oil viscosity versus oil API gravity 

and temperature, which is captured using 
the model. 
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4.2. Saturated oil viscosity model 

In developing a reliable model for the estimation of saturated oil viscosity of Iranian crudes 
using GEP methodology, pressure at bubble point as well as dead oil viscosity were found to 

be the most effective input variables or predictors (see section 2). As a result, the encoded 
GEP algorithm was run until there was no significant improvement in the efficiency, simplicity 
and accuracy of the equations obtained. Consequently, the final model for the determination 
of saturated oil viscosity which was obtained is as follow: 

𝜇𝑜𝑏 =
3.5752 𝜇𝑜𝑑 + 1.9812

145.0377𝑃𝑏 – 0.1379 𝜇𝑜𝑑 + 9.4204
+ 0.71308𝜇𝑜𝑑

7.3
+  0.083617           (7) 

where: 𝜇𝑜𝑏 is the saturated oil viscosity (cP); 𝜇𝑜𝑑 expresses the dead oil viscosity (cP); Pb 
stands for the  bubble point pressure (psi). 

The middle section of Table 7 lists the statistical error parameters calculated for Eq. (7). The 
results show that the equation proposed in this study, for the determination of saturated oil viscosity, 

has an acceptable accuracy with an AARD %, RMSE and R2 equal to 13.55, 0.49 and 0.96, respectively.  
Fig. 5 illustrates the estimated saturated oil viscosity versus the experimental data points. 

The top view is a crossplot, and the bottom view demonstrates the relative error distribution 
plot of saturated oil viscosity. As can be seen, there is satisfactory agreement between the 
estimated and experimental saturated oil viscosity data.  

  
Fig. 5. Applicability ranges and units of the applied variables for developing the saturated oil viscosity model 

Moreover, the results obtained were compared with empirical correlations available in open 

literature [2, 7, 15, 23, 26, 27, 29, 31, 33-35]. Table 9 summarizes the calculated AARD %, RMSE and 
R-squared values for this model along with the comparative methods studied. The table clearly 

reveals that Eq. (7) is the most accurate with regard to all of error factors. Additionally, Fig.  6 
graphically shows an AARD % analysis of the reviewed models, which confirms the low devi-
ation of Eq. (7) in comparison with them. As a result, it is confirmed that an increase in 
pressure, ultimately to the pressure at bubble point, leads to a reduction of saturated oil 
viscosity [17], and Fig. 7 confirms this change of saturated reservoir oil viscosities. 

Table 9. Summarized statistical error factors including AARD, RMSE and R2 for the model developed for 

saturated oil viscosity as well as the studied empirical correlations results from the actual data  

Method AARD % R2 RMSE 

Chew and Connally I [33] 29.6 0.8238 1.18 

Chew and Connally II [33] 39.6 0.7999 1.46 
Chew and Connally III [33] Out of range 0 Out of range 

Beggs and Robinson [23] 31.9 0.5320 1.35 

Al-Khafaji et al. [26] 20.7 0.7992 1.32 
Khan et al. [34] Out of range 0 Out of range 

Petrosky [27] 27.3 0.7399 1.14 

Labedi [2] 248.6 0.4283 3.70 
Kartoatmodjo and Schmidt [29] 25.7 0.7895 1.11 

Elsharkawy and Alikhan [15] 24.4 0.6576 1.20 

Hossain et al. [31] Out of range 0 Out of range 
Naseri et al. [7] 52.3 0.5672 1.38 

Bergman and Sutton [35] 26.7 0.7339 1.15 

This study 13.5 0.9660 0.49 

  

1040



Petroleum and Coal 

                        Pet Coal (2019); 61(5): 1031-1046 
ISSN 1337-7027 an open access journal 

 

Fig. 6. Graphical comparison between the AARD % values obtained by the model developed in this work 

for the determination of saturated oil viscosity as well as the studied comparative methods; the obtained 

AARDs for Chew and Connally III [33], Khan et al. [34], and Hossain et al. [31] methods are out of range 

 

Fig. 7. 3D plot of change of saturated oil viscosity versus change in pressure ultimately to the pressure 

at bubble point and dead oil viscosity 

4.3. Under-saturated oil viscosity model 

Previously published research, mentioned in section 2, recommends pressure, saturated oil 
viscosity, and bubble point pressure, as the most effective reservoir parameters for the esti-
mation of under-saturated oil viscosity. Therefore, these variables were selected as significant 
parameters in the development of the model. The final model, for the determination of under-

saturated reservoir oil viscosity using the GEP algorithm which was obtained is as follows: 

𝜇𝑜 =
0.01115 𝑃

𝑃𝑏 
+

1.1989×10−8   (𝑃×𝜇𝑜𝑏) 2 + 7.9372×10−4 × 𝑃×𝜇𝑜𝑏 + 10.926 𝜇𝑜𝑏

0.001 𝑃𝑏  + 10.712
           (8) 

where: 𝜇𝑜 represents reservoir oil viscosity (cP); P denotes pressure (psi); Pb stands for pres-
sure at bubble point (psi) and finally 𝜇𝑜𝑏 is saturated oil viscosity (cP). 

In Table 7 (bottom section), the statistical error factors calculated for the model associated 
with under-saturated oil viscosities, are reported. The AARD %, RMSE, and R2 values calcu-
lated are 1.47, 0.09, and 0.99, respectively. From these values of deviations it can be con-
cluded that the model is reliable for the calculation of under-saturated reservoir oil viscosities.  

Fig. 8 provides a crossplot, and a relative deviation distribution plot, for the estimated 
under-saturated oil viscosities against the experiemntal data. As can be seen, the data points 
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are almost on the line of Y = X, illustrating that there is acceptable agreement between the 

GEP-based model calculations and the experimental data for under-saturated reservoir oil 
viscosities. Moreover, a low distribution of data points is observed in the bottom section of Fig. 8.  
 

  

Fig. 8. Parity plot and relative deviation distribution plot for the developed under-saturated oil viscosity model 

 

 
 

Additionally, comparison of the values 
estimated by Eq. (8) with the previously 
published models [2, 15, 22, 27, 29, 31, 34, 36, 37] 
for the determination of under-saturated 
oil viscosities clearly reveals the accuracy 

of the model compared to the other meth-
ods (Table 10 and Fig. 9). 

 
 

Fig. 9. Graphical comparison between the AARD 

% values obtained by the model developed in 

this work for the determination of under-satu-
rated oil viscosity as well as the studied com-

parative methods; the obtained AARD % for 

Labedi [2] method is 1078.4 % 

Table 10. Summarized statistical error factors including AARD, RMSE and R2 for the model developed for 

under-saturated oil viscosity as well as the studied empirical correlations results from the actual data  

Method AARD % R2 RMSE 

Beal [22] 1.8 0.9978 0.133 

Vazquez and Beggs [36] 5.2 0.9713 0.575 
Khan et al. [34] 3.2 0.9881 0.298 

Petrosky [27] 6.7 0.8301 0.940 

Labedi [2] 1078.4 0.0969 43.557 
Orbey and Sandler [37] 1.9 0.9624 0.495 

Kartoatmodjo and Schmidt [29] 3.6 0.9986 0.107 

Elsharkawy and Alikhan [15] 1.8 0.9372 0.618 
Hossain et al. [31] 4.7 0.9948 0.225 

This study 1.4 0.9990 0.09 

Finally, Fig. 10 demonstrates the smooth behaviour of the GEP-based model, with changes 

of under-saturated oil viscosity in relation to decreasing and/or increasing saturated oil vis-
cosity and pressure, ultimately to the pressure at bubble point. The model is therefore shown 
to be able to estimate under-saturated oil viscosity in terms of a trend analysis. 
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Fig. 10. 3D plot of change of under-saturated oil viscosity versus change in pressure ultimately to the 
pressure at bubble point and saturated oil viscosity 

4.4. Identification of outlier data points 

Normally, there are some outlier data points in the databases used for developing mathe-
matical models. Therefore, it is important to identify these data points in order to improve the 
accuracy and efficiency of the models. A determination of the out of range, or outlier, data 
points, helps in finding the data that may differ from the bulk of the data [42-45]. Therefore, 
the databanks associated with dead, saturated and under-saturated reservoir oil viscosities 

were assessed to find outlier data points, in order to avoid any uncertainties that may lead to 
a high deviation in estimating reservoir oil viscosities.  

The Leverage value statistics technique was employed in this study for detecting outlier 
data points in the reservoir oil viscosities databanks [45-46]. As a consequence, the Williams 
plot, in the Leverage analysis, is used to show outlier data points, on the basis of the H values 

calculated [42-43]. For more information about the Leverage approach, a detailed definition 
related to the computational procedure, and the equations for this technique, can be found 
elsewhere [42- 43].  

Figs. 11-13 illustrate the Williams plots, for the calculated values of dead, saturated, and 
under-saturated reservoir oil viscosities, with the application of the GEP-based models. It is 

evident that the majority of data points are in the range of 0 H 0.08035 and -3R for the 

dead oil viscosity model, 0 H 0.02233 and -3Rfor the saturated oil viscosity, and 0 H 

0.02298 and -3Rfor the under-saturated oil viscosity. These results confirm that the equa-

tions are statistically valid and accurate in calculating the respective viscosities. In fact, Figs. 
11-13 reveal that there are only three points for the developed dead oil viscosity model, five 
points for the developed saturated oil viscosity, and finally, eight data points for the developed 
under-saturated oil viscosity, in comparison with their corresponding experimental values, 
which are outside of the applicability domain of the GEP-based models, and are probably ac-

counted as outliers, whose values may be doubtful. 
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Fig. 11. Detection of outlier data points existing 
in the dead oil viscosity dataset during develop-

ment of the model using Leverage approach 

Fig. 12. Detection of outlier data points existing in 
the saturated oil viscosity dataset during develop-

ment of the model using Leverage approach 

 
Fig. 13. Detection of outlier data points existing in the under-saturated oil viscosity dataset during de-

velopment of the model using Leverage approach 

5. Conclusions 

In this study, a methodology called gene expression programing was utilized to develop 
consistent, accurate and reliable models for the determination of dead, saturated, and under-
saturated reservoir oil viscosities. To this end, more than 1000 sets of experimental data 

drawn from Iranian oil fields, comprising the gravity of oil, reservoir temperature, solution gas 
oil ratio, and bubble point pressure, were used in the model development.  

The results reveal that GEP-based models are able to calculate the dead, saturated and 
under-saturated reservoir oil viscosities, within a wide range of reservoir properties of Iranian 
crude oils.  

Additionally, a comprehensive comparative study was performed, to evaluate the perfor-
mance of the models, by using the most reliable empirically-derived correlations existing in 
the open literature. It was found that the models in this study, for dead, saturated, and under-
saturated reservoir oil viscosities, are more accurate than the comparative methods, in terms 
of all error factors investigated. The calculated AARD % for the dead, saturated and under-
saturated reservoir oil viscosity models are 17.29, 13.55, and 1.47, respectively.  

From the results obtained in this study it can be concluded that the proposed models are 
reliable for the estimation of dead, saturated and under-saturated reservoir oil viscosities. 
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