AN INNOVATIVE APPROACH TO MANAGING THE INTEGRITY OF OIL AND GAS PIPELINES: PIPELINE INTEGRITY MANAGEMENT SYSTEM

M. A. Usman¹* and S. E. Ngene²

¹ Department of Chemical Engineering, University of Lagos, Akoka, Lagos, Nigeria ² Department of Petroleum Resources, Lagos, Nigeria, *corresponding author: mawwal04@yahoo.com; musman@unilag.edu.ng

Received August 17, 2011, Accepted January 5, 2011

Abstract

In the oil and gas industry, management of the integrity of pipeline has grown to become a serious business because of the overall consequence of pipeline failure: economic, social, environmental, and possibly legal. This research is an attempt to check pipeline failures by carefully following a suite of activities. This suite of activities, also called Pipeline Integrity Management System (PIMS), is generated for an operational pipeline and populated with data gathered on the pipeline system. An analysis of the data collected on the pipeline over a period of five years indicates improved monitoring, reliability, availability, and compliance to regulatory guidelines in the operation of the pipeline systems.

Key Words: Pipeline; Failure; Integrity; Management; System.

1. Introduction

In the past, management techniques for pipelines were minimal. In general, pipelines were typically not maintained regarding their structural integrity until a failure occurred, at which time either the failed section, or the entire pipeline would be replaced. These pipelines may have been inspected at planned outages, at which time obvious problems were typically repaired. Systematic methods of managing pipe, pipelines, or pipe systems were not used to anticipate failures and attempt to conduct preventive maintenance or replace the pipe before failure occurs ^[1]. The approach of fixing the pipeline when it fails may not be acceptable in cases where burst of pipe may lead to huge damage to property or injury to people, or where loss of the fluid would have deleterious environmental consequences. The upward and continuous surge in the cost of energy will also compel the operator to make appropriate plans to avoid production down time due to pipeline failures. A pipeline integrity management program is needed for these pipeline systems to increase their reliability and availability, and to effectively manage and minimize maintenance, repair, and replacement costs over the long run.

Pipeline Integrity Management System is an innovative approach to generate a suite of activities required to properly manage pipeline assets so as to deliver greater safety by minimizing risk of failures, higher productivity, longer asset life, increased asset availability from improved reliability, lower integrity related operating costs, and ensure compliance with the regulations. Pipeline Integrity Management Systems are developed to serve unique operational needs peculiar to particular pipeline system. For new pipelines systems, the functional requirements for integrity management shall be incorporated into the planning, design, material selection, and construction of the system. However, for pipelines which are already in operation, the integrity management plan is drawn after baseline assessments and data integration. An integrity management program provides the operator with information to effectively allocate resources for appropriate prevention, detection and mitigation activities that will result in improved safety and reduction in the number of incidents ^[2].In the development of the Pipeline Integrity Management Systems, the integration of information from some relevant sources with the evaluated results of integrity assessment on the pipeline system is necessary. The operator will normally use a risk-based approach in prioritizing repair and maintenance activities, and thus the need to identify the location, nature and relative risk of features that could threaten the integrity of each pipeline segment

beforehand. In Nigeria's oil and gas industry, the development of a plan for the maintenance of the pipeline system is a requirement for the grant of Oil Pipeline License to the pipeline system. On this instance, the Pipeline Integrity Management System is preferred to any other form of plan: it has the capacity to manage all known type of operational difficulties with pipeline failures.

2. Methodology

2.1 The Pipeline System

This work relied on System A (Table 1), a major crude oil export pipeline, to show the effectiveness of the Pipeline Integrity Management System (PIMS) in providing availability, reliability, and regulatory compliance for oil and gas pipelines. The pipeline system was commissioned in 1971 with a crude oil export capacity of 550 Kbpd and had operated till 2005 without a formal integrity management plan. External corrosion, internal corrosion, and fatigue cracking were the most likely deterioration mechanisms for this pipeline system. CO_2 and Sulfate Reducing Bacteria (SRB) are the key internal corrosion agents. Stagnant water is swept from pipeline by high flow rates thus making water unavailable to sustain SRB growth.

2.2 The Process

The process could be summarized in the chart below:

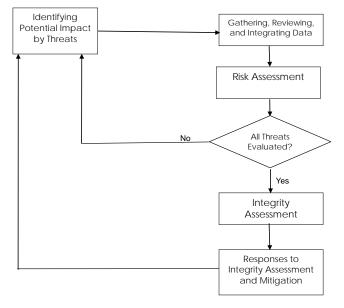


Fig. 1 Integrity Management Process Flow Diagram^[2].

Based on the Chart above, the following tools were generated for the pipeline:

- i. Segment Data for System A (Table 1) shows the necessary pipe attributes, design and construction information as well as some vital operational data. These information are required to fully define System A.
- ii. Integrity Assessment Plan (Table 2) which is focused on the major threats on the system: external corrosion, internal corrosion, fatigue cracking, and to a lesser extent third party damage. Operational information and regulatory compliance were used as guides in determining integrity assessment intervals for the identified threats. Mitigative measures suggested were also dependent on the outcome of the assessment and are as stated in the plan. The Failure Mode and Effect Analysis (FMEA) is evaluated using the Risk Matrix in the Appendix B. The Likelihood of Occurrence (LOO) and the Consequence of Failure are obtained from the Risk Matrix and recorded on the MRP.
- iii. Maintenance Reference Plan (Table 3) activities are scheduled with keen interest on checking external corrosion, internal corrosion, and 3rd party damages ^[4]. CO₂, H₂S, and SRB are key internal corrosion agents and thus were be properly monitored through the plan to ensure reliability and availability of the pipeline system. Pigging, CP installation and upgrade, inhibition, and other corrosion control activities are included in plan ^[3,4].
- iv. The Integrity Verification Plan (Table 4) considered a five-year review period for the system (2005 2009). The Technical Integrity Indicators and Performance Indicators (PI) for the various activities were calculated and recorded to indicate the integrity

status of the pipeline and the degree of execution of the prepared MRP. The overall integrity of the pipeline indicates that it is still fit for purpose at its de-rated operating pressure of 400 psi.

v. The performance Measurement Plan (Table 5) shows a 5-year plan which could lead to verifiable deductions that PIMS leads to improved monitoring and management of the system's failures and repairs. There is marked reduction in failure rates, leaks, and volume of fluid spilled and subsequently the total number of repairs but an increase in the percentage of planned of planned activities completed as well as action that impacted safety as the year progressed.

3. Results

The summary of the recorded effect of PIMS is shown in the table below:

Indices for Evaluation	Year						
	2000	2005	2006	2007	2008	2009	
Volume of Fluid Spilled (Barrels)	4000	2400	1100	600	400	100	
Repair Actions due to Direct Assessment Results	3	7	6	5	4	2	
Leaks due to Pipeline Failures (willful damage not included)	4	2	1	1	1	1	
Actions Completed which Impact on Safety	1	4	6	9	10	12	
Anomalies Found Requiring Mitigations	12	8	7	6	5	4	

4. Conclusions

The current continuous and sustained increase in the price of steel has placed the cost of steel pipes in international markets in a continuous hike and thus the reason for series of cost reviews in most recent pipeline projects. The availability and reliability of pipelines for operations are threatened by pipeline failures. Environmental degradation due to spills from line failures has also created a regulatory demand for new and operating pipeline systems to be appropriately monitored. These are obvious reasons why generation and implementation of Pipeline Integrity Management System for oil and gas pipelines is necessary.

This research work generated Pipeline Integrity Management Systems for System A, an operating pipeline system. The effectiveness of PIMS was monitored over five years period using the information from the operating System A whose operator has been taking some actions considered components of PIMS in the last six years to ensure reliability and availability of the pipeline. Evaluation of the results generated from the PIMS for the operating pipeline system using the review period indicated improvement on the threat situation and failures observed as the years progressed. This corresponds to decrease in anomalies requiring repairs not minding that the pipeline system is already past its design life. It is an indication of how important PIMS is to the life of an operating pipeline. In all, PIMS has been found to be effective tool for resources allocation in the prevention, detection, and mitigation activities that will lead to improved safety and reduction in the number of incidents on pipeline systems.

References

- [1] Pittalwala, S.H and Wittas, D. J (2006) "System and Method for Pipeline Reliability Management" Patent No: US 7,043,373 B2.
- [2] ASME B31.8s (2001). "Managing System Integrity of Gas Pipelines" Supplement to ASME B31.8.
- [3] Mobil Producing Nigeria Unlimited (2008): Presentation to Department of Petroleum Resources (DPR) on "Critical Crude Pipeline Segments Replacement".
- [4] Shell Petroleum Development Company of Nigeria Limited (2006): A Presentation to the Department of Petroleum Resources on "PIMS Engagement".
- [5] API Recommended Practice 1160: "Managing System Integrity for Hazardous Liquid Pipelines" First Edition (August 2001).

APPENDIX A

Table 1 Segment Data for System A

Segment Data	Туре			
	Pipe Grade	API 5L X60		
	Nominal Diameter	42″		
Ding Attributes	Wall Thickness	12.7mm		
Pipe Attributes	Manufacturer	N/A		
	Date of Manufacture	N/A		
	Seam Type	Spiral Welded		
	Operating Pressure	280 psi		
	Design Pressure	720 psi		
	Coating Type	Coal Tar/Cement		
Decian/Construction	Coating Condition	Good		
Design/Construction	Pipeline Commission Date	1971		
	Joining Method	Electric Arc Process		
	Medium Type	Offshore		
	Hydrostatic Test	890 psi		
	Design Temperature	0 - 80°C		
	Process Fluid Temperature	25°C		
	Crude Quality	°API=36.8		
Operation	Flow Rate	550 KBPD		
Operation	Planned Repair Method	Replacement		
	Leak/Rupture History	3 rd Party Damage / Corrosion		
	Cathodic Protection	Sacrificial Anode		
	SCC Indications	Yes		

Table 2 Integrity Assessment Plan

Threat	Criteria/Risk Assessment	Integrity Assessment	Mitigation	Interval
External Corrosion	Some external corrosion observed	Conduct hydrostatic test or perform Direct Assessment	Replace / Repair locations where CFP is below 1.25 x MAOP.	10 Years
Internal Corrosion	Internal corrosion is suspected	Conduct in-line inspection	-do-	5 Years
Fatigue Cracking	Potential concern for fatigue cracking of spiral weld pipe	Conduct hydrostatic test	Replace / Repair pipe at failure locations	10 Years
Manufacturing	No Manufacturing issues	-do-	-do-	N/A
Construction/Fabrication	No Construction/ Fabrication issues	None Required	N/A	N/A
Equipment	No Equipment issues	-do-	-do-	-do-
Third Party Damage	3 rd party damage is observe	Conduct hydrostatic test, perform ILI and observe repaired locations	Replace / Repair pipe at failure locations	After every repair/replace ment due 3 rd damage
Incorrect Operations No incorrect operation issues		None required	N/A	N/A
Weather & Outside Force	No Weather/Outside Force issues	-do-	-do-	-do-

Table 3	Maintenance	Reference Plan
Table 5	mannenance	Reference Flam

Line		System A Ex	port Pip	eline			
Pacer ID)	SYS A 003		Dia (``)			42
Service		Oil		Installati	on Date		1971
Environi	ment	Offshore	MRP Rev		iew Date		
		Failure Mode a	and Effec				
Failure I	Mode	LOO	COF		Rei	marks	
Externa	Corrosion	М	5				
Line Blo	ckage (Sand)	L	4				
	ckage (Scale)	L	4				
	/ Damages	М	5				
	Corrosion	Н	5				
Line Pig	gability (Y/N)	Yes	Last	IP (2005)	Next	IP (2010)
		No		Last UT ()	Next	
			Activitie				
No	Activity Title		Freque		Commer	nt	
001	Offshore CP Potential	profile and	Six Mo				g / faulty
	anode condition surv			,	anodes		J1
002	Offshore CP shore ap		-do-				
	survey						
003	Offshore risers CP su	rvey	-do-				
004	Offshore riser coating		Annual	ly			
005	Offshore line position		-do-	1			
006	Non-supported span		5 Yearl	v			
007	Routine pigging		Monthl		Debris >	Debris > 0.5 kg; Mechanical	
			/		de-scaling before IP.		
008	Non-routine pigging		As Required			<u> </u>	
009	Third party damage		Monthl				
010	H ₂ S Monitoring (MIC))	Six Mo		H ₂ S and	pH Me	asurement
011	Biocide Treatment &		-do-	- 1			eness on SRB
-	Count						
012	Water Chemistry		Six Mo	nthly			
013	CO ₂ corrosion rate pr	ediction	-do-				
014	Oxygen Ingress Cont		As Req	uired			
015	Acid Corrosion Contro	ol	-do-		pH check	k	
016	H ₂ S Monitoring (Sour	· Service)	Six Mo	nthly			
017	Impingement /Erosio	n Monitoring	As Req	uired			
018	Intelligent Pigging		5 Yearl				
019	ROW Surveillance &	Maintenance	Quarte	rly			
020	Valve Maintenance		Annually				
021	Inspection of offshore	e manifolds	-do-				
	and piping						
022	CP System Upgrade		-do-		Follow the recommenda of CP System Audit		
023	Pipeline equipment c	ondition	Annual	ly		Jun /	Tuur
<u> </u>	survey maintenance						
024	Operational Control		As Req				
025	Manifold painting		5 Yearl				
026	Corrosion Inhibition		As Req				
027	Corrosion Monitoring		Six Mo	nthly			
028	Protection of Mothba	lled pipelines	-do-				
029	CP System Audit		-do-				

Table 4 Integrity	Verification Plan
-------------------	-------------------

Line	42" System A Export Pipeline				Wall Th	ickness (mm)	12.7 0	
Pacer ID	SYSB 03	Coating	Coal Tar	/Concrete	e Diamet	Diameter (")		
Service	Oil	Length (Km)	35.00	-	Commi	Commissioning Year		
Environmen t	Offshore	Grade	API 5L X	LX60 Re		er	SN	
Third Party	Technical I	ntegrity Ind	icator	PI	Comme	ents		
	Period	Sabotage	Mech. Damage					
	09/04- 08/05	4	1	70%				
	09/05- 08/06	3	1	60%				
	09/06- 08/07	2	0	50%				
	09/07- 08/08	2	1	60%				
	09/08- 08/09	2	1	60%				
Internal		ntegrity Ind	icator	Last IP	2005	Comments	1	
Corrosion	Year	Repairs	MRP	Yes/No	PI			
	2005	3	CO ₂ Meas.	Y	100%			
	2006	2	H ₂ O Chem	N	0%			
	2007	2	H ₂ S Check	Y	50%			
	2008	1	pH Check	Y	60%			
	2009	1	Biocide Treatment	Y	75%			
			Bacteria Count	Y	50%			
			Sampling	Y	100%			
			Inhibition	Ý	75%			
External	Technical I	ntegrity Ind		-		Comments		
Corrosion	Year	Repairs	MRP	TII	PI			
	2005	0	CP main stations		75%			
	2006	2	Test post checks		100%			
	2007	0	CIPS		50%			
	2008	1	CP Audit		50%			
	2009	1	Riser Survey		75%			
			Coating Survey		100%			
Failure of And	cillary Equipr	ment	- /	Operatio	nal Error	1		
	During pe	riod of revie equipment occurred	• •		-	None		
Overall Integ			has been de	-rated to		still fit for purpo	50	
	the bit				+00 µSI IS S	in ni ioi puipo	55.	

S/ N	Description	2005	2006	2007	2008	2009
1	Km of pipeline inspected Vs Integrity Management Program requirement	40%	50%	70%	80%	85%
2	Integrity Management Program Changes requested by authorities	8	5	3	2	1
3	Percentage of planned activities completed	40%	55%	70%	75%	80%
4	Fraction of the system included in Integrity Management Program	0.4	0.5	0.7	0.8	0.85
5	Actions completed that impact safety	4	6	9	10	12
6	Anomalies found requiring repairs / mitigation	8	7	6	5	4
7	External corrosion leaks	2	0	1	0	0
8	Internal corrosion leaks	3	2	2	1	0
9	Leaks due to equipment failures	2	1	1	1	1
10	Leaks due to third party damage	3	4	4	2	2
11	Leaks due to manufacturing defects	0	0	0	0	0
12	Leaks due to construction defects	0	0	0	0	0
13	In-service Leaks due to stress corrosion cracking	1	0	0	0	0
14	Repair actions taken due to In-Line Inspection results	0	0	0	0	0
15	Repair actions taken due to direct assessment results	7	6	5	4	2
16	Hydrostatic test failures caused by external corrosion	0	1	0	0	0
17	Hydrostatic test failures caused by internal corrosion	3	2	2	1	0
18	Hydrostatic test failures due to manufacturing defects	0	0	0	0	0
19	3 rd Party damage events detected	3	2	4	2	3
20	Unauthorized crossings	2	0	0	1	0
21	Precursor events detected	1	2	3	3	4
22	ROW encroachments detected	1	2	2	3	2
23	Re-rating of pipelines	0	1	0	0	0
24	Segments with deeper pitting than before	0	0	0	0	0
25	Volume of fluid spilled	2,400	1,100	600	400	100

APPENDIX B

Risk Matrix for Pipeline Systems

	CONSEQUENCES					INCREA	SING LIK	ELIHOOD	
			<u> </u>		А	В	С	D	E
Severity	People	Assets	Environment	Reputation	Never heard of in the industry	Heard of in the industry	Incident has occurre d in our compan y	Happens several times per year in our company	Happens so many times a year in a location
0	No health effect/ injury	No damage	No effect	No impact	\backslash				
1	Slight health effect/ injury	Slight damage	Slight effect	Slight impact					
2	Minor health effect/ injury	Minor damage	Minor effect	Limited impact		Low Risk			
3	Major health effect/ injury	Localise d damage	Localised effect	Considerabl e impact			Medium Risk	\mathbf{i}	
4	PTD or 1 to 3 fatalities	Major damage	Major effect	National impact					
5	Multiple fatalities	Extensiv e damage	Massive effect	Internation al impact				High Risk	

Note: The Risk Matrix has three (3) risk classes: Low (L), Medium (M), and High (H). The Likelihood of Occurrence (LOO) uses these 3 classes of risks.