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Abstract 

Rock-physics monitoring plays a crucial role in forecasting the facies distribution within the subsurface. 
However, litho-fluid estimation is challenging due to the randomness of the relationship between 
reservoir properties and facies distribution. As a result, some facies show similar responses to rock 
properties and attributes. Data-quality, as well as the elasticity difference between different facies, are 
the main factors affecting the efficiency of facies-discrimination. This study aims at predicting the 
distribution of gas-sand, wet-sand, and shale from elastic properties by using logistic regression. The 
effect of sand and gas distributions on fourteen elastic attributes has been tested to reduce the facies 
model's variables and determine the best lithology and fluid predictors. The results show that the near 
and far elastic impedances are the best lithology predictors, while the best fluid predictors are the Mu-
Rho, Lambda-Rho/Mu-Rho, and Poisson's ratio. Accordingly, the coefficients of both models have been 
estimated by Markov-Chain Monte-Carlo simulation to calculate the sand and gas probabilities. 
Eventually, the two models have been merged by using appropriate cut-offs to turn the probabilities 
into facies estimates. The correct-classification-rate values of the gas-sand, wet-sand, and shale are 
0.92, 0.81, and 0.91, respectively.  
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1. Introduction  

A direct hydrocarbon indicator (DHI) is one of the conventional approaches that show some 

amplitude-related anomalies due to the effect of litho-fluid content on seismic velocities [1-4]. 
However, such indicators are, sometimes, misleading because the change of amplitude can 
be related to various reasons rather than the facies change [5-6]. Another facies indicator is 
called Amplitude-Versus-Offset analysis (AVO) [7], which is a technique to analyze the prestack 
seismic data by monitoring the amplitude-change with offset. More pre-stack attributes proved 
efficient detection of facies such as the Elastic-Impedance (EI) [8-9] and Extended-Elastic Im-
pedance (EEI) [10]. However, those attributes are affected by data-quality issues such as the 
tuning effect and seismic anisotropy. 

Unlike amplitude-attributes, elastic properties are reliable facies detectors that can discrim-
inate various litho-fluid classes [11-13]. For instance, the LMR theory shows how to use Lambda-
Rho and Mu-rho to identify different lithologies and fluids [14]. Besides, Young Modulus and 
Poisson's ratio have been used to derive three facies in the Niobrara formation, Powder River 
basins [15]. The integration of the elastic and acoustic impedances has been proved to be an 
efficient way to discriminate brine-sand, hydrocarbon-sand, and shale in the North Sea, Gulf 

of Mexico, and Australia [16]. However, even some facies show the same elastic response, such 
as sandstone and pure-marl, which show the same P-wave velocity as well as the mixed marl-
chalk and basal-chalk that have, mostly, similar ranges of P- and S-wave velocities [17]. Some 
studies detect facies by using petrophysical properties, such as porosity [18]. However, the 
extraction of the petrophysical properties from seismic data is challenging and risky. 

Statistical modeling and machine learning can be applied to various rock properties to fore-
cast facies distribution accurately. One of the statistical methods to estimate facies distribution 
is the Bayesian-classification theory [19- 21]. Also, various unsupervised-learning algorithms 
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can predict the facies distribution without any dependency on the availability of a known re-
sponse variable. Examples of unsupervised-algorithms are the self-organizing map (SOM) [22-24] 
and the principal component analysis (PCA) [25]. Besides, supervised-learning algorithms play 
an essential role in facies classification. For instance, the Multi-Layer Feed-Forward Neural 

Networks (MLFN) has been used to forecast the depositional facies based on the gamma-ray, 
density, neutron, and resistivity logs [26]. The bagged-tree (BT) or bootstrap aggregating al-
gorithm, can generate more accurate facies estimates than the MLFN [24]. 

The limitations of the statistical methods appear in heterogeneous media, where there is a 
significant degree of randomness in the relationships between reservoir properties and facies 
distribution. Also, many studies apply statistical models to a large number of variables result-
ing in over-parameterization. Other studies may postulate over-fitted models due to the false 

selection of facies predictors. Moreover, the combination of various lithologies and fluids may 
enhance the degree of randomness between variables. Accordingly, an efficient variable-se-
lection procedure is needed to reduce the ambiguity in facies detection and avoid over-pa-
rameterization. 

This study uses logistic-regression to study the sensitivity of fourteen elastic attributes to 
facies distribution in a three-class medium consisting of gas-sand, wet-sand, and shale. The 
idea of the model is to estimate the sand and gas probabilities from the scaled elastic-attrib-

utes by estimating the posterior means of the model's coefficients. The probability density 
curve of each variable's coefficient determines whether the variable is a strong facies predic-
tor. The selected lithology and fluid predictors are used to postulate two models, which should 
be combined to estimate the facies distribution based on the cut-off value of each model. 

2. Methodology 

The objective of this study is to determine which elastic properties can discriminate litho-
fluid classes. One way to do so is to fit several models with various combinations of the elastic 
properties and then compare the models by determining the most effective combination, which 
leads to the maximum separation between the litho-fluid classes. Another way to select the 
appropriate variables is to fit a linear regression model between the response variable (facies) 
and the elastic properties such that the priors of the model's coefficients favor values near 
zero. Therefore, a variable is considered a weak facies-predictor if its coefficient has a near-
zero mean. On the other side, if a coefficient's mean is far from zero, the variable of the 

coefficient is assumed as a strong predictor. The coefficients are obliged to have a near-zero 
value by centering and scaling each variable by using the "scale" function in R. Because the 
response variable is discrete, the logistic-regression approach has been chosen for modeling. 

2.1. Logistic-regression modeling 

Logistic regression is one of the linear regression families that can model discrete variables 
by providing model estimates that represent the probability of occurrence of each possible 

event [27]. The likelihood of the logistic-regression model follows a Bernoulli distribution, as 
shown below: 

Yk|φk ∼ Bernoulli(φk) (1) 
where Yk is a discrete event at an observation (k); while φk is the probability of occurrence of 
this event. Accordingly, a model's variables can be related to the value of φk by using the 
following link-function: 

log(φk / 1-φk) = β0 + β1 (X1)k +.. βn (Xn)k (2) 
where β0 is the intercept; β1 to βn are the model's coefficients; and (X1)k to (Xn)k are the 
model's variables at an observation (k). Therefore, the φk can be obtained, as shown below: 

φk  = (1/1 + e−(β0 + β1 (X1)k +.. βn (Xn)k)) (3) 
The coefficients of this model can be obtained, according to the Bayes' theory [28], from the 

joint distribution of the likelihood and priors, as shown below: 
P(b|y) = P(y|b)P(b)/P(y) (4) 

where P(b|y) is the posterior probability of the coefficient (b) given the likelihood (y), which 
represents the logging data observations; P(y|b)P(b) is the joint distribution of the likelihood 

526



Petroleum and Coal 

                        Pet Coal (2020); 62(2: 525-541 
ISSN 1337-7027 an open access journal 

and the priors of the coefficients; and P(y) is the marginal distribution of the likelihood (y). 
Therefore, the posterior probability is equivalent to the joint distribution of the likelihood and 
priors, as shown below: 

P(b|y) ∝ ∫ P(y|b)P(b)db (5) 

In some cases, the joint probability of the model is too complex to be integrated. That's 
why the Markov-Chain Monte-Carlo Simulation can be used to obtain the posterior distribution 
of such models [29]. 

2.2. Markov-Chain Monte-Carlo Simulation(MCMC) 

A Markov-chain (MC) is a chain of numbers such that each number depends on the previous 
one in the sequence. If {X1, X2, X3, .., Xt} is a Markov-chain, where {1, 2, 3, ..t} are successive 

points in time, the probability of the variables can be expressed, according to the chain role, 
as shown below: 

P (X1, X2, X3, .., Xt) = P (X1).P (X2| X1).P (X3| X2, X1), .., P (Xi| Xt −1, Xt −2, .., X2, X1) (6) 
Assuming that the transition probabilities are not time-dependent, the probability at the 

time (t) depends only on the value of {Xt −1}: 
P (X1, X2, X3, .., Xt) = P (X1).P (X2| X1). P (X3| X2), .., P (Xt| Xt −1,) (7) 
The stationary distribution of the MC is the initial distribution at which the transition prob-

ability doesn't change in any given state. The idea of the MCMC is to draw multiple random 
values from a proposed distribution such that the sequence of all simulations is a Markov-
chain, and the stationary distribution of that chain is the posterior distribution. According to 
the law of large numbers [30], the MC should converge to the true mean of the posterior 
distribution which can be assigned to the coefficient. Therefore, each variable's coefficient in 
the litho-fluid facies models will be obtained by calculating the posterior mean of all realiza-
tions drawn from the proposed distribution. 

2.3. Solving for sand and gas probabilities 

After getting the litho-fluid facies models' coefficients, the sand and gas probabilities can 
be calculated by the equation (3.9). The lithology variable is a two-class categorical variable 
that has the value 1, for sand, and 0 for shale. Similarly, the fluid variable has the value 1, 
for gas-sand, and 0 for wet-sand. Figure 1 shows how the predicted sand and gas probabilities 
relate to the lithology and fluid variables, respectively. The dashed lines should be the cut-

offs that best discriminate the litho-fluid facies classes. 

 

Figure 1. Plots of the (a) Sand probability Vs. the lithology variable, (b) Gas probability Vs. the fluid variable 

3. Results and discussion 

A sensitivity analysis has been applied to fourteen variables, which can be classified into 
three groups, as shown in Table 1. The separate modeling of each group helped to prevent 
over-parameterization and reduce the number of linearly-related covariates that affect the 
model's accuracy. The purpose of the sensitivity analysis is to reduce the variables and classify 
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them into lithology predictors to estimate the sand probability, and fluid predictors to forecast 
the gas probability. 

Table 1. The preliminary variables of the litho-fluid facies model 

Group Variables 

1 P-Impedance (Zp ), S-Impedance (Zs) , Vp /Vs , and (Vp /Vs )2 

2 Near-EI, Mid-EI, and Far-EI, Near-EI/Far-EI, and Mid-EI/Far-EI 
3 Lambda-Rho (LR), Mu-Rho (MR), LR/MR ratio (LMR), Poisson’s Impedance (PI), and 

Poisson’s Ratio (PR) 

The variable selection has been achieved by R-Studio, firstly, by centering and scaling the 
explanatory variables, to quantify the effect of each variable on each of the sand and gas 

probabilities, and, secondly, by postulating various models with different sets of variables and 
selecting the best model according to the correct classification rate of each model. 

3.1. Variable selection for the lithology model 

After Beginning with the lithology model, the Markov-chains have been diagnosed for au-
tocorrelation, as shown in Figure 2. After a gradual increase of iterations from 5,000 to 40,000, 
there is still high autocorrelation for some variables, such as the Mu-Rho and Poisson ratio. 

However, the chains’ convergence is acceptable for the variable-selection procedure, as the 
simulation’s objective is to determine whether the coefficients’ means are close to zero or far 
from it. 
 

(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 
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(j) (k) (l) 
 

(m) (n) 

Figure 2. The trace-plots of the Markov-chains that simulates the coefficients of the lithology model’s variables 

The probability density curves of the variables' coefficients are shown in Figure 3. The pos-
terior means of the coefficients of the squared Vp/Vs, mid-EI, near/Far-EI, mid/Far-EI, LR, 
and PI are close to zero, which means that those variables are not strong lithology-predictors. 
That’s why these variables have been excluded from the lithology modeling. On the other 
hand, the posterior means of the coefficients of Zp, Zs, Vp/Vs, Near-EI, Far-EI, Mu-Rho, 
Lambda-Rho/ Mu-Rho, and Poisson ratio are significantly away from zero which indicates a 
significant relationship with the lithology distribution. Consequently, these variables are con-
sidered for lithology modeling. 
 

 
(a) (b) (c) 

 

(d) (e) (f) 
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(g) (h) (i) 
 

(j) (k) (l) 

 
(m) (n) 

Figure 3. The probability density curves of lithology model’s coefficients showing the effect of each 
rock property on lithology distribution 

The variables Zp, Vp/Vs, Far-EI, Mu-Rho, and Poisson ratio have negative coefficients. This 
means that an increase in these properties indicates a low sand probability and high shale 

probability. On the other hand, the Zs, Near-EI, and Lambda-Rho/ Mu-Rho ratio have positive 
coefficients. In other words, an increase in these properties raises the sand probability and 
reduces the shale probability. 

3.2. Variable selection for the fluid model 

The Markov-chains of each coefficient are plotted in Figure 4, where the number of itera-
tions is on the X-axis, while the value of each coefficient is on the Y-axis. All coefficients show 

relatively low autocorrelation, which is obvious through the trace-plots, where the conver-
gence of the Markov-chains happens at 20,000 to 25,000 iterations. However, the coefficient 
of the Poisson's ratio shows very good convergence of the chains at 5000 iterations. 

The probability density curves of variables' coefficients are shown in Figure 5. The Zp, 
Vp/Vs, near-EI, mid/Far-EI, and LR seem to have a weak relationship with the fluid distribution 
because their coefficients have posterior means centered on zero. However, the variables Zs, 
squared Vp/Vs, Mid-EI, Far-EI, near/Far-EI ratio, MR, PR, LMR show higher coefficients' values 
away from zero which means a strong relationship with the fluid variable. 

The variables Zs, squared Vp/Vs, near/Far-EI ratio, MR, LMR, PI, and PR have negative 
coefficients. This means that an increase in these attributes indicates a decrease in the prob-
ability of gas and an increase in the probability of water. On the other hand, the Mid-EI, Far-
EI, Poisson's impedance, and Poisson's ratio have positive coefficients. In other words, an 
increase in these properties enhances the gas-sand probability and reduces the wet-sand 
probability. 
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(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 
 

(j) (k) (l) 
 

(m) (n) 

Figure 4. The trace-plots of the Markov-chains that simulates the coefficients of the fluid model’s variables 

It can be concluded that the acoustic domain is not enough for litho-fluid facies modeling. 
For instance, the P-impedance and Vp/Vs ratio can discriminate sand and shale rocks but can't 
identify the fluid type. Unlike the acoustic domain, the elastic attributes can solve this ambi-
guity such that both the litho-fluid facies classes will be separated efficiently. In addition to 

that, a combination of some properties may lead to a better separation than a single property. 
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As a result, different combinations of variables have been used to create various models to 
forecast the distribution of the litho-fluid facies. 

 
(a) (b) (c) 

 

(d) (e) (f) 

 

(g) (h) (i) 
 

(j) (k) (l) 
 

(m) (n) 

Figure 5. The probability density curves of fluid model’s coefficients showing the effect of each rock 
property on fluid distribution 
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3.3. Lithology modeling  

The selected lithology predictors have been arranged to postulate different logistic-regres-
sion models from which the best model should be selected. Six models have been created to 
forecast the sand probability, which equals (1-shale probability). After filtering the data points 

from thin layers and coal beds, the total number of data points collected from well (8) is 3559 
points, which are classified into 2526 shale samples, having the value (0), and 1033 sandstone 
samples having the value (1). The data has been randomly divided into 2659 points for train-
ing and 900 for validation. The training data includes 1929 shale samples, and 730 sandstone 
samples, while the validation data consists of 597 shale samples and 303 sandstone samples.  

The six models are nominated from FM-1 to FM-6, as shown in Table 2, where each model 
consists of different sets of explanatory variables. The objective of lithology modeling is to 

estimate the coefficients’ means to calculate the probability of sand at each observation. A 
convenient cut-off value is selected to differentiate between the sand and shale observations 
for each model. Finally, the correct classification rate is calculated to determine the most 
accurate model. 

Table 2. The explanatory variables of the six lithology models; FM-1 to FM-6 

Model Name Explanatory Variables 

FM-1 Zp, Zs, and Vp/Vs 
FM-2 Zp and Vp/Vs 
FM-3 Near-EI and Far-EI 
FM-4 Vp/Vs, Near-EI, and Far-EI 
FM-5 Mu-Rho, Lambda-Rho/Mu-Rho, and Poisson’s ratio 
FM-6 Mu-Rho and Poisson’s ratio 

The next step is to estimate the coefficients of each model by MCMC simulation, such that 
three chains are fully converged to the posterior mean of each coefficient at a specific number 
of iterations. The posterior means of the coefficients are shown in Table 3. 

Table 3 The posterior means of the coefficients of the lithology models 

Model Name Intercept (β1) (β2) (β3) 

FM-1 0.6988 -19.893 11.5432 -2.1789 
FM-2 0.7849 -9.0109 -6.5863 N/A 
FM-3 0.9626 8.5906 -20.0666 N/A 
FM-4 1.029 -0.2036 3.345 -14.676 
FM-5 2.05 -11.255 5.053 -21.239 
FM-6 1.488 -10.116 -13.837 N/A 

The sand probabilities have been calculated for each model. The predicted sand probabili-
ties of the training data are plotted against the lithology variable, as shown in Figure 6. As 

expected, the sand probability seems generally high, where the lithology variable equals 1, 
indicating a sandstone observation, and it’s relatively low, where the lithology variable equals 
0, meaning a shale observation. To specify the exact lithology for each observation, a cut-off 
is set where the highest correct-classification rates (CCR) of the sandstone and shale are 
reached as shown in Table 4. 

Table 4. The cut-off values and correct classification rates of the lithology models applied to the training data 

Model Name Cut-off 
CCR of sand-

stone 
CCR of shale Total CCR 

FM-1 0.3 0.91 0.91 0.91 
FM-2 0.3 0.88 0.93 0.905 
FM-3 0.3 0.91 0.92 0.915 
FM-4 0.2 0.81 0.93 0.87 
FM-5 0.2 0.90 0.93 0.915 
FM-6 0.2 0.90 0.92 0.91 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 6. The plots of the predicted sand probabilities of the training data, on the X-axis, and the 
lithology variable, on the Y-axis, for the lithology models from FM-1 to FM-6 corresponding to figures 
from a to f, respectively 

The best cutoff points lie between the sand probabilities from 0.2 to 0.3, such that the 
sample is most likely to be sandstone if the sand probability is higher than the cutoff. The 
models FM-1, FM-3, FM-5, FM-6 show good correlation for both sandstone and shale with total 
CCR values 0.91, 0.915, 0.915, and 0.91, respectively. The models FM-2 and FM-4 have re-

sulted in slightly low CCR values for sandstone, which are 88% and 81%, respectively. 
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The models have been applied to the validation data to determine the best model. Figure 7 
shows the plots of the predicted sand probabilities of the validation data against the lithology 
variable. Table 5 shows the best cutoff as well as the CCR value of the sandstone and shale 
for each model.  

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The plots of the predicted sand probabilities of the validation data, on the X-axis, and the 
lithology variable, on the Y-axis, for the lithology models from FM-1 to FM-6 corresponding to figures 
from a to f, respectively 
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Table 5. The cut-off values and correct classification rates of the lithology models applied to the validation 
data 

Model Name Cut-off CCR of sandstone CCR of shale Total CCR 

FM-1 0.3 0.88 0.86 0.87 
FM-2 0.4 0.88 0.85 0.865 
FM-3 0.45 0.89 0.89 0.89 
FM-4 0.6 0.82 0.92 0.87 
FM-5 0.8 0.90 0.79 0.845 
FM-6 0.8 0.90 0.85 0.875 

Unlike the models FM-4, FM-5, and FM-6, the training and validation data of the models 
FM-2 and FM-3 have, mostly, similar cutoffs. The total CCR value of the model FM-3, for the 

validation data, is 0.89, which is the highest among those of the models; FM-1, FM-2, FM-4, 
FM-5, and FM-6, which are 0.87, 0.865, 0.87, 0.845, 0.875, respectively. 

Table 6 shows the total CCR values of all data points, including the training and validation 
data. Accordingly, the model FM-1 has been selected to be the best lithology model due to the 
high CCR value (0.9), compared to the other models, and the similarity of the cutoff values of 
both training and validation data, which indicates the stability of the model. 

Table 6. The total CCR values of the lithology models applied to the training and validation data 

Model name FM-1 FM-2 FM-3 FM-4 FM-5 FM-6 
Total CCR 0.89 0.885 0.9 0.87 0.88 0.89 

3.4. Fluid modeling  

The same steps of lithology-modeling apply to the fluid model. Four logistic regression 
models have been created to predict the probability of gas-sand and wet-sand. The total num-
ber of the collected sandstone samples is 1035 points, which are classified into 778 water 
samples, having the value 0, and 257 gas samples having the value 1. The data have been 
randomly divided into 713 points for training and 322 for validation. The training data includes 
533 water samples, and 180 gas samples, while the validation data consists of 245 water 
samples and 77 gas samples. The explanatory variables of the four fluid models, from FLM-1 
to FLM-4, are shown in Table 7. 

Table 7. The explanatory variables of the four fluid models; FLM-1 to FLM-4 

Model Name Explanatory Variables 
FLM-1 Zs and squared Vp/Vs 
FLM-2 Mid-EI, Far-EI, Near/Far-EI 
FLM-3 Mu-Rho, Lambda-Rho/Mu-Rho, and Poisson’s ratio 
FLM-4 Lambda-Rho/Mu-Rho, Poisson’s Impedance, and Poisson’s ratio 

Table 8 shows the predicted posterior means of the coefficients. Accordingly, the gas prob-

ability has been calculated for the training data and plotted against the fluid variable, as shown 
in Figure 8. The gas probability is, generally, high, where the fluid variable equals 1, indicating 
gas, and, generally, low, where the fluid variable equals 0, meaning water. The cut-off value 
and CCR of the training data have been obtained, for each model, as shown in Table 9. 

Table 8. The posterior means of the coefficients of the fluid models 

Model Name Intercept (β1) (β2) (β3) 

FLM-1 -2.0861 -2.9419 -0.9383 N/A 
FLM-2 -2.1909 2.1222 0.5859 -5.4184 
FLM-3 -2.703 -3.641 -1.683 1.011 
FLM-4 -3.266 -9.583 10.703 -0.896 

 

 

 

536



Petroleum and Coal 

                        Pet Coal (2020); 62(2: 525-541 
ISSN 1337-7027 an open access journal 

Table 9 The cut-off values and correct-classification rates of the fluid models applied to the training data 

Model Name Cut-off CCR of gas CCR of water Total CCR 

FLM-1 0.3 0.93 0.92 0.91 
FLM-2 0.3 0.92 0.92 0.92 
FLM-3 0.3 0.95 0.93 0.94 
FLM-4 0.4 0.97 0.94 0.955 

 

 
(a) (b) 

 
(c) (d) 

Figure 8. The plots of the predicted gas probabilities of the training data, on the X-axis, and the fluid variable, 
on the Y-axis, for the fluid models from FLM-1 to FLM-4 corresponding to figures from a to d, respectively 

The best cut-off value is 0.3 for all models except for that of the model FLM-4, which is 0.4. 
All models show excellent CCR values when applied to the training data. The model FLM-4 
results in the best total CCR value (0.955) compared to those of the models FLM-1, FLM-2, 
and FLM-3, which are 0.91, 0.92, 0.94, respectively. However, when applying the models to 
the validation data, as shown in Figure 9, the models FLM-2 and FLM-4 show shallow CCR 
values for gas (0.38 and 0.35 respectively) and high CCR for water (0.7 and 1 respectively), 

as shown in Table 10. On the other hand, the models FLM-1 and FLM-3 led to a good correla-
tion for both gas and water, where the total CCR values are 0.855 and 0.85, respectively. 

Table 10. The cut-off values and correct-classification rates of the fluid models applied to the validation data 

Model Name Cut-off CCR of gas CCR of water Total CCR 

FLM-1 0.3 0.84 0.87 0.855 
FLM-2 0.3 0.38 0.7 0.54 
FLM-3 0.3 0.86 0.84 0.85 
FLM-4 0.5 0.35 1 0.675 

537



Petroleum and Coal 

                        Pet Coal (2020); 62(2: 525-541 
ISSN 1337-7027 an open access journal 

 
(a) (b) 

 
(c) (d) 

Figure 9. The plots between the predicted gas probabilities of the validation data, on the X-axis, and the 
fluid variable, on the Y-axis, for the fluid models from FLM-1 to FLM-4 corresponding to figures from a 
to d respectively 

All the fluid models, except for the model FLM-4, have the same cut-off value (0.3) when 

applied to the training and validation data. Table 11 shows the total CCR value for each model 
applied to all data, including the training and validation data. Accordingly, the model FLM-3 
has been selected to be the best fluid model due to the high CCR value (0.9), compared to 
the other models. 

Table 11. The total CCR values of the fluid models applied to all data 

Model Name FLM-1 FLM-2 FLM-3 FLM-4 
Total CCR 0.88 0.73 0.9 0.815 

3.5. The integrated Litho-Fluid facies model 

The next step is to merge between the two models; FM-3 and FLM-3, to create an integrated 
litho-fluid facies model by using a straightforward function created in Matlab. The outputs of 
the function consist of the predicted facies and the correct classification rate of each litho-fluid 
class. The inputs of the function are shown below:  
• The lithology predictors (Near-EI & Far-EI) and fluid predictors (MR, LMR, & PR). 
• The facies log, which is a categorical variable having the values; 1, 2, and 3 for the gas-

sand, wet-sand, and shale, respectively. 
• The cut-off values of the litho-fluid facies models, such that the first cutoff value belongs 

to the sand probability and discriminates the shale and sandstone in the lithology model, 
while the other cutoff value belongs to the gas-sand probability and discriminates the 
gas-sand and wet-sand in the fluid model. 
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The combined facies model has resulted in the correct classification rates; 0.92, 0.81, and 
0.91 for the gas-sand, wet-sand, and shale, respectively. These results seem better than those 
of a previous study [16], that uses statistical classification to differentiate between the gas-
sand, wet-sand, and shale by using the near-offset acoustic and far-offset elastic impedances. 

Figure 10.a shows a plot of the acoustic and elastic impedances, where facies classification 
seems ambiguous. Figure 10.b shows that the success rates of gas-sand, wet-sand, and shale 
are about 80%, 75%, and 52%, respectively, for the acoustic impedance (AI) only, while the 
success rates are 93%, 75%, and 65%, respectively, in case of using both the elastic and 
acoustic impedances as facies predictors. 

 
(a) (b) 

Figure 10. Facies classification by using the elastic and acoustic impedances: (a) The plot of the acoustic 
impedance Vs. elastic impedance, (b) The success-rate histogram of facies classification [16] 

The results seem less-accurate than those of the current study, which confirms the ad-
vantage of logistic regression and MCMC simulation over the traditional statistical classifica-
tion. However, both studies proved that the acoustic impedance is not enough for facies de-
tection and that the elastic impedance adds more information that enhances the distinguish-
ability of the facies classes. 

4. Conclusions 

The variable selection applies to fourteen elastic properties from which the best lithology 
predictors have been selected to be the near and far elastic impedances, while the best fluid 
predictors are the Mu-Rho, Lambda-Rho/Mu-Rho, and Poisson's ratio. The lithology and fluid 

models have been separately postulated by logistic regression. Both models have been 
merged to predict the distribution of the litho-fluid classes. 

Assuming a three-class medium, the correct classification rates of the gas-sand, wet-sand, 
and shale are 0.92, 0.81, and 0.91, respectively. These results are based on the cut-off values 
of the sand and gas probabilities, which are 0.45 and 0.3, respectively. However, these values 
may change from well to another according to the degree of heterogeneity of the field.  

The separate modeling of lithologies and fluids is vital to reduce the ambiguity of facies 

detection. Moreover, selecting the model's predictors is crucial to guarantee the stability of 
the model. Also, the acoustic domain is not enough to forecast the facies distribution. On the 
other hand, the combination of acoustic and elastic attributes is a great way to discriminate 
the different facies classes accurately. 

Acknowledgements  

I would like to thank the Department of Petroleum Geosciences at Universiti Teknologi Petronas. In 
addition, I appreciate all the efforts and support of my colleagues in the Center of Seismic Imaging. 

539



Petroleum and Coal 

                        Pet Coal (2020); 62(2: 525-541 
ISSN 1337-7027 an open access journal 

References 

[1] Ensley RA. Direct hydrocarbon detection with P-and SH-wave seismic data. Inter. SEG Mtg., 
Abs. with Biographies, 349351, 1983. 

[2] Ensley RA. Evaluation of direct hydrocarbon indicators through comparison of compressional-
and shear-wave seismic data: a case study of the Myrnam gas field, Alberta. Geophysics, 
50(1):37–48, 1985. 

[3] Swan HW, Castagna JP, and Backus MM. Properties of direct AVO hydrocarbon indicators. 
Offset Dependent Reflectivity-Theory and Practice of AVO anomalies. Investigations in Geo-
physics, 8:78–92, 1993. 

[4] Sheriff RE. Seismic stratigraphy. Springer Science & Business Media, 2012. 
[5] Shamsuddin SZ, Hermana M, Ghosh DP, and Salim AMA. Reducing uncertainties in hydrocar-

bon prediction through application of elastic domain. In IOP Conference Series: Earth and 
Environmental Science, volume 88, page 012004. IOP Publishing, 2017. 

[6] Yang J, Chang X, and Yang Z. The solution of non-gas bright-spot and non-bright-spot gas 
identification: Elastic prediction. In SEG Technical Program Expanded Abstracts 2015, pages 
595–599. Society of Exploration Geophysicists, 2015. 

[7] Ostrander WJT. Plane-wave reflection coefficients for gas sands at nonnormal angles of inci-
dence. Geophysics, 49(10):1637–1648, 1984. 

[8] Connolly P. Elastic impedance. The leading edge, 18(4):438–452, 1999. 
[9] Veeken PCH and Rauch-Davies M. AVO attribute analysis and seismic reservoir characteriza-

tion. First Break, 24(2):41–52, 2006. 
[10] Whitcombe DN, Connolly PA, Reagan RL, and Redshaw TC. Extended elastic impedance for 

fluid and lithology prediction. Geophysics, 67(1):63–67, 2002. 
[11] Di Luca M, Salinas T, Arminio JF, Alvarez G, Alvarez P, Bolivar F, and Marín W. Seismic inver-

sion and AVO analysis applied to predictive-modeling gas-condensate sands for exploration 
and early production in the lower Magdalena Basin, Colombia. The Leading Edge, 33(7):746–
756, 2014. 

[12] Karbalaali H, Shadizadeh SR, and Riahi MA. Delineating hydrocarbon bearing zones using 
elastic impedance inversion: a Persian Gulf example. Iranian Journal of Oil & Gas Science and 
Technology, 2(2):8–19, 2013. 

[13] Yoong AA, Lubis LA, and Ghosh DP. Application of simultaneous inversion method to predict 
the lithology and fluid distribution in “X” Field, Malay Basin. In IOP Conference Series: Earth 
and Environmental Science, volume 38, page 012007. IOP Publishing, 2016. 

[14] Goodway B, Chen T, and Downton J. Improved AVO fluid detection and lithology discrimina-
tion using lamé petrophysical parameters; “λρ”, “µρ”, & “λ/µ fluid stack”, from P and S inver-
sions. In SEG Technical Program Expanded Abstracts 1997, pages 183–186. Society of Ex-
ploration Geophysicists, 1997. 

[15] Kiche Y, Lyes O, Balogh D, and Ouenes A. Lithology constrained elastic inversion: Application 
to Niobrara brittleness estimation. In SEG Technical Program Expanded Abstracts 2016, pages 
4916–4920. Society of Exploration Geophysicists, 2016. 

[16] Mukerji T, Jørstad A, Mavko G, and Granli JR. Near and far offset impedances: Seismic attrib-
utes for identifying lithofacies and pore fluids. Geophysical research letters, 25(24):4557–
4560, 1998. 

[17] Harryandi S. Facies modeling using 3D pre-stack simultaneous seismic inversion and multi-
attribute probability neural network transform in the Wattenberg field, Colorado. PhD thesis, 
Colorado School of Mines. Arthur Lakes Library, 2017. 

[18] Tabatabaei H and Poursamad R. Evaluation of Asmari reservoir properties via petrophysical 
logs in Mansour-Abad oil field, Sw of Iran. Petroleum & Coal, 61(1), 2019. 

[19] Doyen P. Seismic reservoir characterization: An earth modelling perspective, volume 2. EAGE 
publications Houten, 2007. 

[20] Hampson DP, Russell BH, and Bankhead B. Simultaneous inversion of pre-stack seismic data. 
In SEG Technical Program Expanded Abstracts 2005, pages 1633–1637. Society of Explora-
tion Geophysicists, 2005. 

[21] Babasafari AA, Ghosh DP, Salim AMA, Ratnam T, Sambo Ch, and Rezaee S. Petro-elastic 
modeling for enhancement of hydrocarbon prediction: Case study in Southeast Asia. In SEG 
Technical Program Expanded Abstracts 2018, pages 3141–3145. Society of Exploration Geo-
physicists, 2018. 

540



Petroleum and Coal 

                        Pet Coal (2020); 62(2: 525-541 
ISSN 1337-7027 an open access journal 

[22] Liu R, Zhang B, and Wang X. Patterns classification in assisting seismic-facies analysis. In 
SEG Technical Program Expanded Abstracts 2017, pages 2127–2131. Society of Exploration 
Geophysicists, 2017. 

[23] Zhao T, Li F, and Marfurt KJ. Constraining self-organizing map facies analysis with stratigra-
phy: An approach to increase the credibility in automatic seismic facies classification. Inter-
pretation, 5(2): T163–T171, 2017. 

[24] Keynejad S, Sbar ML, and Johnson RA. Assessment of machine-learning techniques in pre-
dicting lithofluid facies logs in hydrocarbon wells. Interpretation, 7(3): SF1–SF13, 2019. 

[25] Roden R, Smith T, and Sacrey D. Geologic pattern recognition from seismic attributes: Prin-
cipal component analysis and self-organizing maps. Interpretation, 3(4):SAE59–SAE83, 
2015. 

[26] Kapur L, Lake LW, Sepehrnoori K, Herrick DC, Kalkomey CT. Facies prediction from core and 
log data using artificial neural network technology. In SPWLA 39th annual logging symposium. 
Society of Petrophysicists and Well-Log Analysts, 1998. 

[27] Kleinbaum DG and Klein M. Analysis of matched data using logistic regression. Logistic re-
gression: A self-learning text, pages 227–265, 2002. 

[28] Stuart A. Kendall’s advanced theory of statistics. Distribution theory, 1, 1994. 
[29] Banerjee S, Carlin BP, and Gelfand AE. Hierarchical modeling and analysis for spatial data. 

Chapman and Hall/CRC, 2014. 
[30] Gao R, and Sheng Y. Law of large numbers for uncertain random variables with different 

chance distributions. Journal of Intelligent & Fuzzy Systems, 31(3):1227–1234, 2016. 
 

 
To whom correspondence should be addressed: Ahmed M. A. Salim, Department of Geosciences, Universiti Tek-
nologi Petronas, Seri Iskander, Perak, 32610, Malaysia, E-mail: mohammed_17002692@utp.edu.my      

541

mailto:mohammed_17002692@utp.edu.my

	Abstract
	1. Introduction
	2. Methodology
	2.1. Logistic-regression modeling
	2.2. Markov-Chain Monte-Carlo Simulation(MCMC)
	2.3. Solving for sand and gas probabilities

	3. Results and discussion
	3.1. Variable selection for the lithology model
	3.2. Variable selection for the fluid model
	3.3. Lithology modeling
	3.4. Fluid modeling
	3.5. The integrated Litho-Fluid facies model

	4. Conclusions
	References



