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Abstract 
For matrix acidizing operations an appropriate acid implementation requires careful planning to 
minimize well damage while preventing acid overconsumption. Machine learning algorithms allow real-
time stimulation result assessments to accomplish this objective. This research seeks to establish 
advanced machine learning models which provide precise real-time readings for skin factor together 
with bottom-hole pressure at the coiled tubing nozzle during foamed acid treatments. This research 
built nine advanced machine learning models which used standard matrix acidizing operational 
parameters. Real bottom-hole pressure measurements obtained from deployed pressure gauges 
formed the basis for training the developed models. The predicted bottom-hole pressure enabled the 
determination of real-time skin factor measurements. The development of machine learning algorithms 
took place through analysis of an extensive dataset obtained from 31 wells. Through comparison of 
predictive bottom-hole pressure models with actual field measurements the most efficient machine 
learning methods demonstrated exceptionally low root mean square error. The Neural Network, 
AdaBoost, Random Forest and K-Nearest Neighbor algorithms produced root mean square error values 
of 0.047, 0.048, 0.054 and 0.058 respectively. This study introduces novel methods of using advanced 
machine learning models as predictive tools to track bottom-hole pressure and skin factor throughout 
matrix acidizing procedures with foamed acid. These predictive models act as accurate and swift 
replacements for the traditional pre- and post-stimulation well testing, conventional empirical 
multiphase flow correlations as well as mechanistic models and unified models. The proposed models 
function as an economical replacement for downhole pressure gauges as well because they eliminate 
both cost and duration issues. 
Keywords: Machine learning; Acid; Coiled tubing; Stimulation; Skin; Formation damage. 

1.1. The importance of skin factor 

During production, the skin factor acts as a quantitative measure to indicate possible pres-
sure loss increases at the wellbore area [1-2]. The skin factor combines formation damage with 
perforation damage as well as partial penetration, well deviation and pseudo skin according 
to [3-4]. The skin factor represents positive values when the well experiences damage near the 
wellbore, yet negative values manifest when hydraulic fracturing or acid treatments stimulate 
the formation [5-6].The assessment of production efficiency together with well stimulation se-
lection depends heavily on the skin factor measurement [7]. Engineers who understand each 
part of the total skin factor can determine skin damage sources while developing the optimal 
pressure drop reduction solution around the near wellbore area [8]. 

1.2. The importance of predicting skin factor during acid treatment 

Real-time monitoring of skin factor is essential for acid treatment operations because it helps 
optimize pumping parameters together with maintaining efficient acid diversion and distribu-
tion [9-10]. Usually, well tests conducted before and after the treatment allow measurement of 
skin factors, which evaluate how well the stimulation treatment worked [11-12]. However, the 
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dynamic analysis of acid injection treatment becomes possible by real-time monitoring of skin 
factors, which optimizes both acid parameters and volumes of injected acid [13-14].This dynamic 
analysis ensures the damage removal process is effective while simultaneously maintaining 
the formation condition no worse than its initial state. Moreover, real-time monitoring provides 
essential information about acid formation interactions that enhances both treatment practices 
and well results [15]. 

1.3. Calculation methods of skin factor 

Multiple traditional calculations for skin factor depend on pressure transient analysis through 
pressure buildup or falloff testing [16]. The examination of pressure behavior during well closures 
after definite production or injection periods forms the basis of these evaluation methods [17-19]. 
Pressure and time data collection enables the determination of skin factor through predeter-
mined analytical models including Horner plot and derivative analysis according to [20]. How-
ever, the analysis of these methods needs both prolonged periods of well shut-in along with 
precise interpretation before they produce effective results. Moreover, these methods provide 
one global skin value across the entire well while not showing the specific skin factor evolution 
during the acid treatment procedure [21]. Several proposed methods exist for real-time skin 
factor evaluation in matrix acidizing operations [22-24]. These techniques aim to fix the limita-
tions of pre-treatment and post-treatment well testing methods by providing continuous stim-
ulation data feedback [25-26]. Two primary methods exist for this calculation. 

1.3.1. Steady-state model (Paccaloni's technique) 

This method calculates skin factors using real-time pressure and rate information under a 
steady-state approach [27]. Paccaloni’s method provides convenient application yet delivers an 
exaggerated skin factor because it does not account for transient flow effects according to [28]. 
The method results in a higher-than-actual skin factor, particularly during changes in rate, 
and it makes no adjustments for diverting agent effects as well. The acid bank radius of 4 ft 
was chosen by Paccaloni as estimation to simplify the calculations. Paccaloni derived the for-
mula to determine steady-state skin factor as presented in Equation (1). 

𝑆𝑆(𝑡𝑡) =
0.00708𝑘𝑘ℎΔ𝑝𝑝

𝜇𝜇 ⋅ 𝑞𝑞𝑖𝑖
+ ln 

𝑟𝑟𝑏𝑏
𝑟𝑟𝑒𝑒

 (1) 

1.3.2. Transient model (Prouvost and Economides’ technique) 

The transient model depends on actual injection rate histories and fluid sequences to create 
pressure simulations by maintaining a steady skin factor [19].The difference between actual 
observed pressure values and simulated pressure readings becomes the basis for determining 
the skin factor variation. The transient model offers greater accuracy in estimating the skin 
factor through its ability to deal with flow transients because it considers actual flow rates and 
fluid sequence changes [29]. However, this method needs a computer simulator with advanced 
functionalities. The method uses pressure transient analysis under infinite acting boundary 
and initial conditions according to Equation (2). 

p(r, t) = pi −
qiμ
4πkh

ln �
4kt

γΦμctrw2
� (2) 

Including skin effect and modifying to acid injection, the equation becomes Equation (3). 

𝑝𝑝𝑠𝑠𝑖𝑖𝑠𝑠 = 𝑝𝑝𝑖𝑖 +
162.6𝑞𝑞𝑖𝑖𝐵𝐵𝜇𝜇

𝑘𝑘ℎ
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𝑘𝑘
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After changing the injection rate, the transient response would follow a superposition relation-
ship; the injection pressure for one rate change would be Equation (4). 

𝑝𝑝𝑠𝑠𝑖𝑖𝑠𝑠  = 𝑝𝑝𝑖𝑖 +
162.6𝑞𝑞𝑖𝑖𝐵𝐵𝜇𝜇
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The difference between the simulated pressure and the measured value is interpreted as 
due to the difference between the actual skin value and the initial value used for the simula-
tion, Equation (5). 

𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑜𝑜 +
𝑘𝑘ℎ

2.34 × 105𝑞𝑞𝑖𝑖
𝐵𝐵𝐵𝐵 [𝑝𝑝meas (𝑡𝑡) − 𝑝𝑝sim (𝑡𝑡, 𝑆𝑆𝑜𝑜)] (5) 

1.4. Calculation methods of bottomhole pressure in a dynamic injection of foam fluid 

The estimation of bottomhole pressure (BHP) is possible through various multiphase flow 
correlations. The correlations differ in their prediction accuracy as well as their computational 
complexity and their suitability for predicting foam flow characteristics. Empirical correlations, 
mechanistic models, unified models represent the three main categories at hand. 

Empirical correlations proposed by Beggs and Brill [30] besides Orkiszewski and Hagedorn 
and Brown [31] find frequent use because they require minimal computational effort during 
field work. The use of experimental data in these correlations enables their practical applica-
tion for fast BHP estimations in field scenarios. The correlations used for BHP estimation gen-
erally stem from conventional gas-liquid systems but do not completely address the rheolog-
ical and stability behavior of foam [32]. 

A more physics-based modeling method called mechanistic models applies mass, momen-
tum and energy conservation laws as presented in Ansari et al. [33] and Taitel and Dukler [34]. 
These improvement methodologies deliver more precise BHP predictions through comprehen-
sive calculations of phase interactions along with measurement of slip velocities and flow re-
gime changes. Real-time applications restrict the use of these models because they need de-
tails about fluid properties and well geometry as well as extensive input data which make their 
practicality limited due to increased complexity. 

Unified models, these models combine mathematical precision from conservation laws with 
observations from real-world measurements. The compatibility of OLGA [35] and TUFFP [36] 
operates at high standards yet their need for detailed wellbore geometry and foam properties 
demands intensive resources and input. This reduces their performance potential during real-
time applications. Moreover, their sophisticated equations do not prevent them from needing 
adjustments through real-field data measurements to achieve optimal performance. 

1.5. Machine learning models for predicting skin factor 

The oil and gas industry has shown extensive interest in machine learning algorithms be-
cause these models solve problems that traditional techniques cannot handle effectively [37-39]. 
These models provide real-time processing and tracking features, which help engineers make 
rapid operational decisions and implement modifications through their systems [40-41]. There-
fore, we introduce machine learning models as a powerful replacement for traditional ap-
proaches because these models can automatically process and predict critical parameters with 
accessible data sources [42-45]. Moreover, the automated process decreases human interac-
tion, thus allowing engineers to focus on critical strategic issues [46-49]. During the last several 
decades, the industry gathered substantial data quantities, yet finding valuable patterns from 
these big data sets remains challenging [50-52]. However, machine learning algorithms excel 
in analyzing extensive and intricate datasets to find meaningful correlations for forecasting 
applications and process enhancement [53-55]. Although many experts consider ML models 
optimal for real-time parameter tracking, these systems receive minimal research interest. To 
the best of our knowledge, the machine learning approach has not been implemented to pre-
dict real-time bottom-hole pressure and skin in any of the available studies about foamed acid 
treatments. Therefore, in an effort to address this knowledge gap, this study seeks to develop 
nine advanced ML algorithms that can predict real-time bottom-hole pressure and skin factor 
throughout matrix acidizing treatments with foamed acid. These predictive models act as ac-
curate and swift replacements for the traditional pre- and post-stimulation well testing, con-
ventional empirical multiphase flow correlations, mechanistic models, and unified models. The 
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proposed models function as an economical replacement for downhole pressure gauges as 
well because they eliminate both cost and duration issues. 

2. Methodology 

This study follows a systematic research approach which is demonstrated in Figure 1 through 
four connected stages. The strategic planning of every research phase generates a systematic 
approach that links various steps to fulfill the project objective. 

 
Figure 1. A diagram of the methodology. 

2.1. Data collection  

Surface and downhole sensors are commonly used by operators in modern acid treatment 
operations for process management and enhancement purposes. To conduct this research, a 
comprehensive set of 33,453 actual field measurements was collected. The data came from 
31 wells present in the Western Desert of Egypt. Effectiveness in machine learning model 
development depends on large dataset implementation because it enables three fundamental 
capabilities. Firstly, the implementation of extensive data boosts model generalization effec-
tiveness for unknown cases. The extensive range of examples and edge cases that the model 
encounters through this method protects against overfitting. Using large training data also 
enables models to detect actual patterns while eliminating background noise, which results in 
more accurate predictions. Machine learning algorithms, particularly deep learning models, 
require access to large amounts of data in order to optimize their parameters for making 
reliable decisions. The dataset supported model evaluation and looked at disparities between 
modeled nozzle outlet bottomhole pressures and real pressure measurements conducted by 
downhole pressure gauges. Table 1 displays the dataset information that includes pressure at 
a coiled tubing outlet (BHP), coiled tubing depth (CTD), coiled tubing inside diameter (CTID), 
temperature at a coiled tubing outlet (BHT), acid flow rate at surface (AFR), coiled tubing 
pressure at surface (CTP), and nitrogen rate at surface (NFR). Various operating conditions 
appear throughout the presented data set. A generalized model will be developed as part of 
this paper because the data includes various parameters across different operating conditions. 
Table 1. Statistical analysis for the collected database. 

Parameter Unit Max Min Average Median 
Pressure at a coiled tubing outlet PSI 6565 1006 3557 3408 
Acid flow rate at surface BBL/min 2.17 0.25 1.57 1.73 
Temperature at a coiled tubing outlet °F 300 134 220 244 
Coiled tubing pressure at surface PSI 7342 897 4675 4672 
Coiled tubing depth FT 13971 2920 9103 10554 
Nitrogen rate at surface SCF/M 953 77 672 732 
Coiled tubing inside diameter Inch 1.25 1.23 1.24 1.23 
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Figure 2 displays a violin plot that reveals the value distributions for all study parameters 
through box plot and density estimation fusion. Each violin represents probability density dis-
tribution across value levels in the data while displaying the distribution patterns. The inter-
quartile range (IQR) occupies the black inner bars of this plot and demonstrates the range 
where 50% of data lies. The white dot shows the median position of the data points. CTID 
distribution displays skewness because two different coiled tubing sizes were used during well 
activities while BHP along with CTP follow a more extensive distribution pattern. The visual 
presentation aids in observing how data distributions extend and centralize and shape them-
selves among various parameters. 

 
Figure 2. Violin plots for each parameter in the dataset. 

2.2. Data preprocessing 

The core essential requirement for effective machine learning model development is data 
preprocessing, which transforms unprocessed data into a ready analysis format. At the initial 
stage of research, we performed strict data cleaning to eliminate both inaccurate values and 
stuck sensor readings. The analysis dealt with missing data by using complete row elimination 
or running linear interpolation according to different situations. Outlier detection and removal 
constituted the subsequent vital step because anomalous data points deteriorate the predic-
tion accuracy and disrupt model training. Box plot analysis served as the main statistical tech-
nique for detecting these outliers. The data went through an organization process together 
with normalization steps that standardized the data format suitable for machine learning al-
gorithm execution. The thorough method used for data preprocessing leads to high-quality 
input for model training sessions. 

Data normalization functions as a preprocessing technique utilized in machine learning to 
rescale numerical features into a uniform value scope which extends from 0 to 1 or from -1 to 
1 without altering the original feature distributions. The normalized rescaling procedure safe-
guards all features by providing them equal importance in model contribution without any 
large-scale features surpassing smaller features. The normalization process stands vital be-
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cause gradient-based machine learning algorithms which include SVMs and k-means cluster-
ing along with logistic regression and neural networks achieve better results when dealing 
with features normalized to uniform scales. Using normalization makes the model train faster 
while preventing biases from larger feature values and improves both the consistent and pre-
cise outcome of training. The Min-Max Scalar normalization method was adopted here to 
change all numerical data points into values between 0 and 1 using minimum and maximum 
values. By using the following equation the data transformation occurs: 

Xscaled =
X − Xmin

Xmax − Xmin
 (6) 

where: X is the original data point; 𝑋𝑋min is the minimum value in the feature; Xmax is the 
maximum value in the feature; Xscaled is the normalized value within the [0,1] range. 

Finally, the preprocessed data underwent a division process that assigned 80% of the data 
for training purposes and 20% for testing functions. The machine learning model receives 
training input from the training set so it can detect patterns and data relationships. We sepa-
rated the testing set from the rest of the data for performance assessment because it contains 
new inputs the model must function with correctly. Our decision to use an 80/20 split came 
because the data size falls into the medium category. This ratio provides increased training material 
to learn from so models can avoid underfitting. Moreover, this ratio is essential for neural 
network models because of their complexity. The 80/20 ratio achieved optimum performance 
in our research through applications of cross-validation and hyperparameter tuning methods. 

2.3. Model structure  

The development and evaluation of nine machine learning models through Python 3.10.12 
required the implementation of specific hyperparameters as listed in Table 2.  

Table 2. Summary of the machine learning models used and their algorithm hyperparameters 

Model Algorithm parameters 

GB 

 Method: xgboost 
 Number of trees is 100. 
 Learning rate is 0.099. 
 Regularization is 0.6 
 Limit depth is 6. 

AdaBoost 
 The number of estimators is 50. 
 Learning rate is 1. 
 Regression loss function is linear. 

RF  Number of trees in the forest is 10. 
 Minimum subset size is 5. 

SVMs 

 SVM Cost is 1. 
 Regression loss epsilon: 0.1. 
 Kernel type is radial basis function. 
 Numerical tolerance: 0.001 
 Iteration limit is 100. 

DT 

 Minimum instances in leaves are 19. 
 Minimum subset size: 9. 
 Maximal tree depth is 100. 
 The stopping point is at 95% of the majority. 

KNN 
 Number of nearest neighbors is 5. 
 Metric is Euclidean. 
 Weights are uniform. 

LR  None. 

NN 

 Neurons per hidden layer are 500. 
 Activation is ReLu. 
 Solver is L-BFGS. 
 Regularization is 0.04. 
 Maximum iterations are 500. 
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Model Algorithm parameters 

SGD 

 loss function is hinge. 
 Regularization is Lasso (L1). 
 Learning rate is constant. 
 Initial learning rate is 0.01. 
 Number of iterations is 1000. 

The diverse model structure provides essential benefits to this research. By applying dif-
ferent machine learning models on the same dataset, we gain access to each method's bene-
fits and identify their weaknesses. For example, the linear regression model provides easy 
interpretation but fails when working with complex data patterns, whereas neural networks 
excel at relationship detection but tend to overfit data. The analysis of diverse models enables 
us to determine the best data pattern model that maintains generalization power through a 
balance between bias and variance. Moreover, different stakeholder priorities can be accom-
modated through this extensive modeling approach, which provides options from interpretable 
to efficient to predictive models. Usually, organizations maintain dual perspectives regarding 
decision-making transparency versus accuracy achievement because they either need simple 
transparent models (e.g., linear regression) or the precise predictive capabilities (e.g., gradi-
ent boosting). The models used regularization techniques to avoid overfitting through penalty 
terms that were added to the loss function calculations. The additional penalty term in the 
model prevents complexity from reaching excessive levels to promote accurate predictions on 
new data points. Perfect training data fitting becomes impossible through regularization even 
if complex models demonstrate this ability. Regularization methods enforce the restriction of 
model complexity to allow detection of relevant path. 

The Pythagorean Forest depicts the 10 trees that resulted from the RF model application 
(Figure 3). Each random tree construction appears as a display element in the Pythagorean 
tree structure. The most accurate tree emerges from branches with maximum length and 
highest brightness, indicating that a few main attributes can properly divide the branches. 
Standard deviation served as the basis for data coloring in the resulting trees, which were 
developed from regression trees. The accuracy and generalization power along with the sta-
bility of machine learning models increase through the optimized random forest technique 
included in the Pythagorean Forest. This methodology improves feature interactions while de-
creasing bias and variance along with overfitting prevention by implementing optimized dis-
tance-based metrics in the framework. This approach delivers more dependable prediction 
results together with easier interpretation than advanced models such as deep learning sys-
tems.  

 
Figure 3. Pythagorean Forest shows all learned Decision Tree models from the RF model. 
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3. Results and discussion  

3.1. Model results 

The analysis results from machine learning models appear in Table 3. The mean square 
error (MSE) and root mean square error (RMSE) with mean absolute error (MAE) and coeffi-
cient of determination (R²) values appear for each examined model. MSE uses actual and 
predicted value differences to calculate the average squared variance so it shows higher sen-
sitivity to huge prediction errors from the squaring step. This technique proves useful in re-
gression problems while facing significant influence from outliers. The model achieves better 
performance when the MSE value remains low since it suggests the predicted values closely 
match actual values. The square function brings a problem because it introduces metric skew 
that may not match those of the target variable. The RMSE calculation derives from MSE 
square rooting to produce error metrics that match the units of the target variable for en-
hanced interpretability. The implementation of RMSE provides significant measurement ben-
efits because it increases penalty levels for large errors without losing unit accuracy. A lower 
RMSE value signifies better performance because smaller errors occur. The use of RMSE be-
comes necessary when highly significant errors need to be penalized. The actual and predicted 
values comparison through MAE produces an average of their absolute difference measure-
ments. The error calculation in MAE avoids squaring differences, which provides better sensi-
tivity to outliers with a balanced error evaluation. A model demonstrates superior performance 
when its MAE measurement value reduces. This scoring method shows superior performance 
against outliers because it avoids squaring error values yet provides less discrimination re-
garding error size relative to the RMSE method. The R² score demonstrates the ability of a 
model to explain data point variance. The measure extends from 0 to 1, so a value of 1 
indicates perfect model fit, and lower scores indicate minimal explanation of target variable 
variance. Higher R² values close to one indicate better model performance because they 
demonstrate better variability explanation in the data. However, a very high R² value does 
not guarantee an excellent model when data fits the algorithm too closely. 

Table 3. Performance comparison of the developed machine learning models. 

Model MSE RMSE MAE R2 
Neural network 0.002 0.050 0.017 0.946 
AdaBoost 0.003 0.053 0.016 0.940 
Random forest 0.003 0.054 0.019 0.937 
kNN 0.003 0.058 0.024 0.927 
Gradient boosting 0.006 0.078 0.040 0.866 
Tree 0.006 0.079 0.033 0.863 
SVM 0.009 0.093 0.070 0.813 
Linear regression 0.027 0.163 0.125 0.422 
SGD 0.029 0.171 0.134 0.362 

Figure 4 reveals the normalized anticipated pressure measurements at the coiled tubing 
nozzle’s outlet from neural network predictions align with actual pressure readings obtained 
from memory gauges. The predictions made by the machine learning model remain distributed 
equally while located near the 45° straight line in the results. This means that the developed 
neural network delivered precise predictions for bottomhole pressure values that cover the 
entire range of operational parameters used in foamed acid treatments. Real-time skin factor 
calculations can be performed precisely through the modified Prouvost & Economides’ tech-
nique and the modified Paccaloni’s technique based on these accurate downhole pressure es-
timations. The essential parameters affecting BHP prediction through the neural network 
model appear in Figure 5, which serves as the most precise predictive model in this research. 
Each data instance in the dataset corresponds to SHAP values displayed on the horizontal axis 
throughout the graph for every parameter. The SHAP value measures the degree to which the 
feature value affects the predicted BHP model output relative to the standard model prediction. 
The right side values of the center indicate positive SHAP values, which reveal features that 
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contribute a positive effect on BHP prediction. The BHP prediction receives negative influence 
from features that fall to the left of the central position. The color scheme indicates values in 
two ways: red indicates larger values and blue identifies lower values. Developing the color 
spectrum starts from analyzing all the values found in the specific dataset feature. Among the 
studied parameters, CTP, AFR, and CTD demonstrate the strongest impact on projected BHP 
predictions, but the other features show a smaller influence. 

 
Figure 4. Predicted vs. actual normalized pressure using a neural network model. 

 
Figure 5. SHAP plot of the neural network model. 
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3.2. Model testing and validation 

The evaluation of machine learning model precision utilizes two major methods. The eval-
uation of machine learning model performance through K-fold cross-validation ranks as an 
optimal method for assessing anticipated results from particular learning models. As a de-
pendable measurement approach, it helps decrease model overfitting by specific datasets. The 
model requires splitting a dataset into k sections, which should hold similar proportional val-
ues. The procedure performs a k-time training sequence where k-1 folds serve for model 
training followed by a single fold earmarked for testing until every fold completes its cycle. 
The assessment of performance involves averaging performance metrics obtained from each 
of the k folds. Each iteration in the multi-stage cross-validation procedure uses different ran-
dom divisions to produce a decreased variability of model performance due to data partition-
ing. Table 4 presents the results of the K-fold cross-validation, which operated with 10 folds 
for assessment. 

The evaluation of machine learning models uses repeated random sampling as a statistical 
resampling technique. The protocol shares key features with k-fold cross-validation since both 
methods produce multiple training and testing partitions from the dataset. The model receives 
training on each partition through the training set before undergoing evaluation on the test 
set. The performance measurement emerges through averaging performance indicators from 
all simulation rounds. The method provides strong benefits when dealing with limited datasets 
or when users need to determine reliable model performance metrics. The assessment process 
becomes less influenced by random partitioning because smaller data sets and multiple data 
splits receive focused evaluation. The method strengthens the reliability of model performance 
evaluation and simultaneously prevents the model from overfitting to a particular training 
dataset. The repeated random sampling technique yielded its results through 10 separate 
trials, which appear in Table 5. The results include MSE, RMSE, MAE, and R² for every model 
in the analysis. 

Table 4. Results of K-fold cross-validation procedure. 

Model MSE RMSE MAE R2 
Neural network 0.002 0.047 0.017 0.947 
AdaBoost 0.002 0.048 0.016 0.943 
Random forest 0.003 0.054 0.020 0.929 
kNN 0.003 0.058 0.025 0.918 
Gradient boosting 0.005 0.071 0.032 0.878 
Tree 0.006 0.078 0.040 0.853 
SVM 0.009 0.097 0.074 0.770 
Linear regression 0.025 0.159 0.120 0.381 
SGD 0.002 0.047 0.017 0.947 

Table 5. Results of random sampling procedure. 

Model MSE RMSE MAE R2 
Neural network 0.002 0.044 0.017 0.951 
AdaBoost 0.003 0.052 0.018 0.933 
Random forest 0.003 0.054 0.021 0.926 
kNN 0.003 0.057 0.026 0.919 
Gradient boosting 0.005 0.070 0.033 0.878 
Tree 0.006 0.079 0.042 0.845 
SVM 0.008 0.090 0.067 0.800 
Linear regression 0.025 0.158 0.119 0.378 
SGD 0.026 0.161 0.120 0.352 

3.3. Field application 

Well-X operates as a water injection well within the Egyptian Western Desert. The drilled 
well reached a depth of 8,620 feet. A foamed acid treatment through the coiled tube proved 
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to be the most effective method to increase the injectivity index for the damaged carbonate 
reservoir Formation Y. A well test verified the skin factor value of 4 prior to acid treatment 
execution. A complete summary of parameters can be found in Table 6. The developed neural 
network model receives Well-X data for actual pressure prediction at coiled tubing nozzles 
during foamed acid treatment. Figure 06 displays accurate predictions of the neural network 
algorithm compared to bottomhole pressure readings from memory gauge devices. This 
should make it possible to continuously monitor skin factors during the acid treatment and 
make the optimization decision instantaneous while pumping. 

As illustrated in Figure 07, the real-time reservoir skin measurements from acid pumping 
through the coiled tube were determined using modified Paccaloni’s Technique and Prouvoust 
& Economides’ Technique. The initial skin values calculated through modified Prouvost & Econ-
omides’ technique were 3.5, and values recorded through modified Paccaloni’s technique 
reached 6.2. The steady-state calculation method of the modified Paccaloni’s Technique gen-
erates excessive estimations of both the real initial skin compared to pre-stimulation skin 
measurements by well test (+4) and maintains this overestimation throughout the entire 
treatment period. The steady-state pressure drop maintains a higher value than the pressure 
drop occurring in infinite-acting transient fluid movement. The modified Prouvost & Econo-
mides' technique calculated a skin value (3.5), which closely matched the well test result of 
actual skin (4). Paccaloni's approach shows different skin effect calculations because it as-
sumes steady-state pressure, while Prouvost's approach bases its assumptions on transient 
pressure behavior. The calculated skin values from both analysis techniques decreased during 
acid pumping operations while the skin fluctuations were caused by the alternate use of CTD 
and AFR mechanisms. 

Table 6. Well-X input parameters. 

Parameter Unit Value 
Coiled tubing depth ft 6582 
Coiled tubing ID inches 1.25 
Nitrogen rate at surface scf/m 500 
Bottomhole temperature at memory 
gauge 

F 155 

Reservoir permeability md 5 
Reservoir thickness ft 102 
Reservoir porosity fraction 0.12 
Reservoir pressure psi 1030 

 

 
Figure 6. Bottomhole pressure for Well X. 
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Figure 7. Real-time monitoring of foamed acid matrix acidizing in Well A. 

4. Conclusion 

This research presents innovative machine learning techniques for predicting real-time bot-
tom-hole pressure together with skin factor values in foamed acid matrix acidizing operations. 
The research incorporated 31 wells into a detailed dataset that allowed the neural network as 
well as the AdaBoost, Random Forest, and K-Nearest Neighbor (kNN) algorithms to achieve 
outstanding prediction accuracy through their low root mean square error (RMSE) results. The 
K-fold cross-validation process showed four optimum models to be robust with their respective 
RMSE results of 0.047, 0.048, 0.054, and 0.058, while R² values reached 0.947, 0.943, 0.929, 
and 0.918. The developed models demonstrate reliability for real-time prediction in dynamic 
well stimulation environments because they produce exceptionally accurate results based on 
their low RMSE scores and high R² values. 

By offering real-time assessment of the effectiveness of stimulation, these machine learning 
models offer a transformative alternative to pre- and post-stimulation well testing, empirical 
multiphase flow correlations, mechanistic models, and unified models. This proves the capa-
bility of machine learning algorithms in optimizing the operations of acid treatment, in con-
trolling the pump parameters with high precision, as well as improving the overall treatment 
efficiency. Moreover, real-time bottom hole pressure and skin factor predictions obtained from 
the above predictive models are in close agreement with reliable memory gauge and pre-
stimulation well testing measurements during the field application on Well-X. The successful 
application of these models suggests that they are potentially suitable to replace downhole 
pressure gauges and thus reduce operating costs and speed up decision-making. 

Using real-time data and machine learning systems will allow for the automatic improve-
ment of how acidizing treatments are delivered. This work connects data-based knowledge 
with stimulation operations to create digital improvements for matrix acidizing treatments at 
a practical cost and effective results. 

Nomenclature 

AFR Acid flow rate at surface 
B Formation volume factor, rbbl/stb 
BHP Pressure at a coiled tubing outlet 
BHT Temperature at a coiled tubing outlet 
Ct Total compressibility, psi-1 
CTD Coiled tubing depth 
CTID Coiled tubing inside diameter 
CTP Coiled tubing pressure at surface 
DL Deep learning  
Δp  Pressure difference between reservoir pressure and well flowing pressure, psi 
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Δt Time difference, hour 
DT Decision Tree  
Δ Porosity, fraction 
γ Euler constant 
GB Gradient boosting  
h Reservoir thickness, ft 
KNN K-Nearest Neighbor 
LR Linear Regression  
μ Acid viscosity, cP 
MAE Mean absolute error  
MAPE Mean absolute percent error  
ML Machine learning  
MSE Mean square error  
NFR Nitrogen rate at surface 
NN Neural network  
Pi Initial reservoir pressure, psi 
Pmeas Measured bottomhole injection pressure, psi  
Psim Simulated pressure response, psi 
qi Injection rate, bpm  
R2 Correlation coefficients  
rb Acid bank radius, ft 
re Effective wellbore radius, ft 
RF Random Forest  
RMSE Root mean square error  
S Skin factor, dimensionless 
SGD Stochastic Gradient Descent 
SHAP Shapley additive explanations 
So  Initial skin factor, dimensionless 
SVMs Support Vector Machines  
t Time, hour 
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