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Abstract 

In this work, the radial flow of a two-phase hydrocarbon fluid in a petroleum reservoir is first 

modeled. Using the mass balance equation and Darcy's law as the governing equations, a nonlin-

ear radial diffusion equation is obtained. We then assume that throughout the reservoir, 𝜕𝑃
𝜕𝑟⁄  is 

small and 𝜕𝑃
𝜕𝑟⁄ ≠ 0 also the viscosity (𝜇) is independent of pressure. The recent hypotheses are 

true about the radial flow. Accordingly, the resulting nonlinear equation is converted to a linear 

radial diffusion equation which is a one-dimensional equation (ODE) and it is noticeable to achieve 

the pressure distribution in the reservoir and adjacent to the well. Descriptions of reservoir pro-
cesses have motivated a large volume of work on ODEs. Analytical and numerical methods have 

provided solutions to the problems satisfying a fairly wide range of conditions. However, analytical 

methods continue to be highly valued for the inherent simplicity, their capacity to convey qualita-
tive information about the physical problem, and as a verification for numerical models. In this 

work, after obtaining the linear radial diffusion equation, regarding the transient state (𝜕𝑃
𝜕𝑟⁄ =

𝑓(𝑟, 𝑡) and 𝜕𝑃
𝜕𝑟⁄ ≠ 0 ) for the fluid flow, we apply the related boundary and initial conditions. Af-

terward, we apply the analytical methods for the resulting model to obtain the pressure distribu-
tion. To achieve this goal, we separately apply the separation of variables method (based on Bessel 

equations) and the method of Laplace transform to solve the problem. In the end of the second 

method, as for the resulted fraction any inverse value is not found in most of tables, so we apply 
Heaviside’s theorem. 

Keywords: Radial flow; Darcy's law; Transient state; Bessel equation; Laplace transform. 

 

1. Introduction 

Generally, after digging a well in a petroleum reservoir, the difference in pressure between 

the reservoir and the wellbore causes to the flow of fluid into the wellbore in three states: 

transient ( 0




t

P
), semi-steady ( constant





t

P
) and steady ( 0





t

P
) [1].  

When digging a well in the middle of the reservoir, the hydrocarbon fluid flows from the 
surrounding area to the wellbore, then a radial flow occurs (Fig. 1). When numerous wells are 
digged at a short distance from each other, the flow lines are parallel and a linear flow is 
created. The spherical flow occurs when the reservoir has a nearly hemispherical shape [2]. In 
this study, we assumed that the desired fluid has a radial flow in a hydrocarbon reservoir.  

The pressure distribution at any time ( t ) and at any point ( r ) in a reservoir producing a 

hydrocarbon fluid with radial flow is an applied function that is used daily by reservoir engi-
neers in order to predict pressure drop and provide methods of stabilizing or increasing the 
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pressure. Therefore, it is significant to provide a suitable model for determining the distribution 
of this important parameter in a reservoir.  

 

Figure 1. Radial flow into a wellbore 

In recent years, various studies have been carried out to calculate the distribution of pres-
sure in the reservoir. In this regard, the use of the diffusion equation in calculations has been 
of interest to many researchers. It seems that provision of analytical models (if applicable) 

with mathematical structures can play a decisive role in proving the validit y and reliability of 
numerical models in addition to problem solving. The analytical method of diffusion equation, 
which is superior in calculation to the existing analytical methods such as the integral trans-
formation method of Fourier or Laplace and/or the variable separation method, was thus es-
tablished in the parabolic space [3]. 

In this work, in order to achieve the pressure distribution throughout the reservoir, the 
problem is only studied in the transient state which is undoubtedly difficult to analyze. The 
semi-steady and steady states (due to the simplicity of the problem) will not be studied in this 
work.  

2. Mathematical formulation 

We consider the following assumptions: 

A. In a hydrocarbon reservoir, since deposition of some materials such as asphaltene, causes 
to changing the porosity in terms of time, so we ignore the deposition and assume that 
physical properties of the reservoir including porosity and permeability are constant. In 
general, we assume that the reservoir is homogeneous.  

B. Height of drilling well is equal to the reservoir thickness, in this case, assumption of radial 

flow for the fluid is correct. 
C. In a two-phase reservoir, the desired fluid is oil or gas and water is immobile. 

The mass balance equation is considered as “rate of mass accumulation = rate of input 
mass –rate of output mass” [4]. 

According to Fig. 2 and defined parameters earlier, the mass balance equation can be written as 

follow:  

dt

d
drrh

r
q

drr
q


 )2(


        or      

dt

d
rh

dr

r
q

drr
q 




)2(


             (1) 

where: drrh2  is the volume of vacant space in the cylindrical layer in which the fluid is 

placed. Equation (1) can be written as below: 

dt

d
rhq

r


 )2()( 




                                                                                                            (2)  

On the other hand, for a radial flow in horizontal mode, Darcy's law is [5-6]: 
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r

rkh
q










2
                                                                                                                          (3) 

where: rh2 is the surface which is perpendicular to the direction of flow. Using equations (2) 

and (3) we can obtain: 

dt

d
rh

r

rkh

r










)2(

2






















                                                                                           (4) 

 

 

Figure 2. A cylindrical part of a hydrocarbon reservoir with length h  (thickness of the reservoir) and 

thickness dr  and inner radius r  

The above equation can be written as follow: 

dt

d

r
r

k

rr






























1
                                                                                                          (5) 

Considering the compressibility of fluid is defined as follow: 

P

v

v
c






1
                                                                                                                                (6) 

Hence, according to definition of mass density (
v

m
 ), we can have: 

PP

m

m
c















 1
)(

                                                                                                             (7) 

By differentiating of both sides of equation (7) in terms of time, we can have: 

tt

P
c








 
                                                                                                                               (8) 

By substituting equation (8) in (5): 

t

P
c

r
r

k

rr 


















)(

1
                                                                                                       (9) 
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Equation (9) is called the radial diffusion equation in the reservoir which is nonlinear be-
cause the pressure indirectly affects the density, compressibility and viscosity. In general, 
equation (9) does not have any simple solution but in particular conditions can be linearized 
and can be solved. After differentiation, equation (9) can be extended as follow: 

t

P
c

r
r

k

r

k

r
r

rr

k

r
r

k

rr 

























































 2

2

)()()()(
1                             (10) 

On the other hand, equation (7) can be written as follow: 

rcr

P








 



1
                                                                                                                           (11) 

In a two-phase reservoir of oil or gas and water (water is considered immobile), the follow-
ing assumptions are true about the radial flow: 
A. Viscosity (  ) is independent of pressure. 

B. 
r

P




 is very small, so 

2)(
r

P




 can be ignored. Furthermore, we can ignore 

2)(
r

P
c



, if  1c  

Substituting equation (11) in equation (10) and according to the assumptions A and B, we 
can write equation (10) as follows: 

t

P

k

c

r r

P

r

P













 1
2

2
                                                                                                                  (12) 

Or: 

t

P

k

c

r

P
r

rr 


















 1
                                                                                                                   (13)        

Assuming c  is constant (independent of pressure), 
𝜑𝜇𝑐

𝑘⁄   is constant and equations (12) 

and (13) can be linearized.  Now, we define   as: 

c

k


                                                                                                                                               (14) 

Equations (12) and (13) can be written as follows: 

t

P

r r

P

r

P

















11
2

2

                                                                                                             (15) 

t

P

r

P
r

rr 






















11
                                                                                                                        (16)  

This equation is a linear form of the radial diffusion equation and   is known as the diffusion 

constant [7]. 

3. Solving the problem in the transient state 

In this case, the initial short time is considered and pressure P  throughout the reservoir 

(including err  ) is a function of time which is not affected by production yet, so 0




r

P
. We 

consider the followings; 

0
)0,( PrP                    

e
rr                                                                                               (17) 

w
PtP ),0(                                                                                                                          (18) 

ww
PtrP ),(                                                                                                                        (19) 
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3.1. Solving the problem by using the separation of variables method 

We do the following transform: 

w
PtrPtr  ),(),(                                                                                                            (20) 

Hence, we can write equation (15) and conditions (17), (18) and (19) as below: 





























trtt

1

2

2

                                                                                                  (21) 

00
)0,( 

w
PPr                                                                                                        (22) 

0),0(  t                                                                                                                              (23) 

0),(  tr
w

                                                                                                                          (24)      

By using the separation of variables method, we have: 

)().(),( tQrRtr                                                                                                                (25) 

According to equations (21) and (25): 

2

2

2 1

)(

1

)(

1
























r

R

rdr

Rd

rRdt

dQ

tQ
                                                                         (26) 

Note that the separation constant is chosen, the function )(rR  will be as orthogonal (Bes-

sel). Therefore, from eqaution (26): 

02  Q
dt

dQ
                                                                                                                    (27) 

and: 

t
etQ

2
)(


                                                                                                                     (28) 

We can also have: 

02
2

2 1





 R

r

R

rdr

Rd
                                                                                                        (29) 

Equation (29) is a Bessel equation with the following solution [8]: 

)()()(
00

rBYrAJrR                                                                                                 (30)     

From equation (25) and boundary conditions (23) and (24) we can have: 

0)(0)().(),( 
www

rRtQrRtr                                                              (31) 

0)0(0)().0(),0(  RtQRt                                                                 (32) 

As second-order Bessel functions are not defined at point zero, therefore in equation (30) 

when 0r  and in according to (32), 0B . On the other hand:  

0)()(
0


ww

rAJrR                                                                                           

The values of   are obtained by solving 0)(
0


w

rJ  : 

w
w r

r
405.2

405.2
11
   

w
w r

r
520.5

520.5
22
              
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w
w r

r
654.8

654.8
33
              

w
w r

r
792.11

792.11
44
              

Now, we put the values of )(tQ and )(tR in equation (25): 

)(),( 0

2

1

rJeAtr n
tn

n
n 





                                                                                               (33) 

By applying the condition (22): 

)(
0

1
0

rJA n
n

n 




                                                                                                               (34) 

Therefore, 
0  has been expanded in terms of Bessel sentences. Now, we use the orthogo-

nality property of Bessel functions. We multiply two sides of (34) in drrrJ n )(0   and after 

integrating, we will have: 

 
wr

n

wr

nn drrrJAdrrrJ

0

2
0

0
00 )()(                                                                                     (35) 

And: 

)(
2

)(

)(

)(

2
1

2

1
0

0

2
0

0
00

wn
w

wn
n

w

wr

n

wr

n

n

rJ
r

rJ
r

drrrJ

drrrJ

A




















                                                                           (36) 

Then: 

)(

2

1

0

wnwn
n

rJr
A




                                                                                                             (37) 

Finally, we write (33) as below: 

)()(

)(2
),(

1

0

1

2
0

wnwn

n

n

tn

w rJr

rJ
e

r
tr










                                                                            (38) 

 

Or: 

)()(

)()(2
),(

1

0

1

2
0

wnwn

n

n

tn

w

w
w

rJr

rJ
e

r

PP
PtrP










                                                         (39) 

            

3.2. Solving the problem by using Laplace transform 

First, we do the following transform: 

0
),(),( PtrPtr                                                                                                              (40) 

We can write equation (15) and conditions (17), (18) and (19) as follows: 

t

tr

r

tr
r

rr 


















 ),(1),(1 




                                                                                            (41) 
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0)0,(
00
 PPr                                                                                                            (42) 

ww
PPt  

0
),0(                                                                                                        (43) 

www
PPtr  

0
),(                                                                                                      (44) 

After applying Laplace transform on equation (41), we can have: 

))0,(),((
1),(1

rsrs
dr

srd
r

rr



















                                                                          (45) 

Now, with regards to equation (42) we can write equation (45) as below: 

0),(
),(),( 1

2

2

 sr
dr

srd

dr

srd s

r





                                                                                (46) 

Or:  

022   


rrr
s

                                                                                                       (47) 

Equation (47) is a modified Bessel equation. In general, a modified Bessel equation is pre-
sented in the form of equation (48), which has a solution such as equation (49) as bellow [8]: 

02222 )1(()2(   yxbxmabdxcybxax mmnmyx                           (48) 














 





 )()(2

1

)( n
p

n
p

m

mbx
a

x
n

d
BZx

n

d
AZexxy                                                 (49) 

where c
a

n
p 


 2)

2

1
(

1
 and Z  is one of the functions I , J , Y , K  which are determined 

by using Table 1.  

Table 1. Z in the solution of modified Bessel equation 

 
pZ  pZ  

p  
d  

1 
pJ  pJ  Non-integer Real 

2 
pY  pJ  Integer Real 

3 
pI  pI  Non-integer Imaginary 

4 
pK  pI  Integer Imaginary 

Accordingly, the solution for equation (47) will be: 

)()(),( 00 


s
rBK

s
rAIsr                                                                                          (50) 

On the other hand, after applying Laplace transform on (43) and (44): 

s

ws


 ),0(                                                                                                                         (51) 

s

wsr
w


 ),(                                                                                                                      (52) 
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Now, we apply the above conditions on equation (50) and we determine the coefficients A 

and B. For 0r  the left side of equation (50) is defined but 
0K  has an undefined value, hence 

B  must be zero. Now, for wrr   we can have: 

)(0 

 s
rAI

s
w

w   

And then: 

)(
0 



s
rsI

A

w

w  

Accordingly, the solution of the equations (46) and (51) and (52) is: 

w

w
s

rsI

s
rI

sr 






)(

)(

),(

0

0

                                                                                                        (53) 

Now, by applying inverse Laplace transform on the equation above, ),( tr  is resulted. 

There are many techniques to find the inverse Laplace transform of a Laplace domain function [9], 

but its discussion is outside the scope of this study. On the other hand, by referring to most 
of tables, any inverse value will not be found for the fraction above, thus, we use Heaviside’s 
theorem as follows. 

3.3. Heaviside’s expansion theorem [10] 

If )(sP  is a polynomial with degree less than n  and 
k

  is the roots of 0)( sQ , as well as 

)(
k

Q   is derivative of )(sQ  in terms of s at 
k

s   then: 

tk
n

k k

k e
Q

P

sQ

sP
L







 










1 )(

)(

)(

)(1
 

According to this theorem we can write: 

tks

k

kss

k

w

e

ds

dQ

sP

s
rsI

s
rI

L 


































0
0

0 )(

)(

)(
1




                                                                                  (54) 

where 
k

s  is the root of the following equation: 

0)(0 


s
rsI w  

In other words: 

00 s  

,...3,2,10)(0  k
s

rI k
w


 

There is the following relation between nI  and nJ : 

1046



Petroleum and Coal 

                        Pet Coal (2018); 60(5): 1039-1049 
ISSN 1337-7027 an open access journal 

)()()( 2 ixJeixJixI n

in

n
n

n


                                                                                           (55) 

,...3,2,10)(0  k
s

irJ k
w


                                                                                          (56) 

 Or: 

,...3,2,1.0)(0  k
s

irtsJ k
wkk 

                                                           (57) 

The first four roots of the recent equation are: 

2

2

11

)4048.2(
4048.2

wr
s


   

2

2

22

)5201.5(
5201.5

wr
s


   

2

2

33

)6537.8(
6537.8

wr
s


   

2

2

44

)7915.11(
7915.11

wr
s


   

It can be seen that regarding the values of 
k

 , the roots of 
k

s  can be easily obtained.  

Now )()( 0 

k
k

s
rIsP   must be calculated. 

1)0()0()( 00  IPsP  

,...3,2,1)()()( 00  k
r

r
J

r
irIsP

w
k

w
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On the other hand: 
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Substituting the obtained values in (54) and according to the (53) we can have: 
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
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Or: 
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



                                                                       (59) 

4. Conclusion 

The recent study has provided a nonlinear radial diffusion equation to achieve the pressure 
distribution in a petroleum reservoir producing a two-phase hydrocarbon fluid with radial flow. 

This nonlinear equation does not have any simple solution. In particular conditions, this equa-
tion is linearized and solved in the transient state of flow by two analytical methods. In the 
separation of variables method (based on Bessel equation), P  is written in the terms of Bessel 

sentences. In the second method (based on Laplace transform), we obtained a modified Bessel 
equation whose solution is determined. Applying the inverse Laplace transform based on 
Heaviside’s theorem, we solved the problem and achieved the pressure distribution which is 
an applied function in a petroleum reservoir. The assumption of an incompressible fluid such 

as oil in the problem, is equivalent to assuming that pressure is maintained constant at the 

well radius ( wrr  ) and at some external radius. In other words, the entire flow into the well 

passes across the external radius.  
In the continuation of this study, it would be interesting to obtain the distribution of pres-

sure in a reservoir producing the fluid by spherical flow. 

Nomenclature 

h  Height of a cylindrical part of reservoir 
r

q   Rate of output mass in cylinder  

dr  Thickness of a cylindrical part of reservoir    Mass density of fluid 

r  Inner radius of a cylindrical part of reservoir P   Pressure 

er  Outer diameter of the reservoir m   Mass of fluid  

eP  Pressure of the reservoir in radius er  c   Compressibility of fluid 

wr  Radius of well    Viscosity of fluid 

q   Amount of fluid flow     Porosity degree of reservoir rock 

drr
q


  Rate of input mass in cylinder    Diffusion constant 

References 

[1] Grant MA, Bixley PF. Geothermal Reservoir Engineering. Academic Press, (2nd ed.) (2011) 

94-95. 
[2] Rezaee R. Fundamentals of Gas Shale Reservoirs. John Wiley & Sons, (2015) 295-296. 

[3] Okino T. New mathematical solution for analyzing interdiffusion problems. Mater. Trans., 

2011; 52: 2220-2227. 
[4] Himmelblau DM. Basic Principles and Calculations in Chemical Engineering. Prentice Hall, (2nd 

ed.) (1967) 59-62. 

[5] Manning JC. Applied Principles of Hydrology. Prentice Hall, (3rd ed.) (1997) 276.  
[6] Freeze RA and Cherry JA. Groundwater. Prentice Hall, (1979) 604.  

1048



Petroleum and Coal 

                        Pet Coal (2018); 60(5): 1039-1049 
ISSN 1337-7027 an open access journal 

[7] Carslaw HS and Jaeger JC. Conduction of heat in solids. 2nd. Oxford Oxfordshire New York: 
Clarendon Press; Oxford University Press. 85026963 (1986). 

[8] Watson GN. A Treatise on the Theory of Bessel Functions. London: Cambridge University 

Press, (1944). 
[9] Churchill RV. Operational Mathematics. New York: McGraw-Hill Book Co. (Vol. 2) (1972). 

[10] Norman LB. Discrete Mathematics. New York: Oxford University Press, (2nd ed.) (1990) 403–

407.  

 

 
To whom correspondence should be addressed: Professor Amir H. Mohammadi, Discipline of Chemical Engineering, 

School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, 
South Africa 

1049


	Abstract
	1. Introduction
	2. Mathematical formulation
	3. Solving the problem in the transient state
	3.1. Solving the problem by using the separation of variables method
	3.2. Solving the problem by using Laplace transform
	3.3. Heaviside’s expansion theorem

	4. Conclusion
	References



