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Abstract 

In this research, the group method of data handling (GMDH) networks is applied for estimating the 
significant process variables of a commercial scale thermal cracking (visbreaking) unit. This model 
can predict the fuel oil viscosity, severity and yield of products i.e. fuel oil, gasoline and light gasses 
by using a grand polynomial correlation which is a function of flow rate, viscosity and initial boiling 
point of feed, furnace outlet temperature, and steam flow rate. To this fifty data points research, are 
obtained from the target plant during a life cycle about 422 days. Then, the GMDH network uses 

70% of these data points for self-training while using the remained ones for the validation step. The 
results show that the developed network can precisely estimate the fuel oil product properties during 
the life of the process. Moreover, it is confirmed that the proposed model is capable of predicting 
severity, gas, gasoline and fuel oil product yields, and fuel oil viscosity with the average absolute 
deviation (AAD%) of 0.462%, 0.448%, 0.458%, 0.051%, and 0.016%, respectively. Moreover, the 
root mean square error (RMSE %) of the mentioned parameters are 0.717%, 0.709%, 0.716%, 
0.078% and 0.025%, respectively. 
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1. Introduction 

Visbreaking is a mild liquid phase pyrolysis of atmospheric or vacuum bottoms of crude oil 

distillation. The aim of this process is to reduce the viscosity of the residue and to significantly 

increase the production of lighter distillates, such as light gas, gasoline, and kerosene. The 

process with the name of "visbreaker" refers to the fact that the process reduces (i.e. breaks) 

the viscosity of the residual oil [1-2]. 

There are two types of visbreaking technology that are commercially available: the ‘coil’ or 

‘furnace’ and the ‘soaker’ processes. In the coil process, conversion is achieved by high tempe-

rature cracking for a predetermined and relatively short period in the heater. In the soaker 

process, with low temperature and high residence time, the majority of conversion occurs in a 

reaction vessel or soaker drum where the two-phase heated effluent is held at a lower 

temperature for a longer period. Therefore, its heater duty, and in turn its fuel consum-ption, 

is only 70% of that for the coil-visbreaking process [3]. 

The kinetic modeling of visbreaking unit is limited by the complexity of the process. There 

is a large gap between fundamental studies and practical kinetic model reactions [4-7]. In this 

respect, artificial neural networks (ANNs) may constitute a powerful approach to develop 

estimators that can be used for on-line applications [8-10].  Moreover, as a data-based modeling 

approach, they are widely applied in process modeling and control which are even capable of 

modeling non-linear process [11-12]. However, ANN’s structure contains a massive complicated 

of equations within its nodes and layers. Furthermore, the arrangement of the network is 

chosen manually or randomly which does not assure the best possible network. 
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On the contrary, the group method of data handling (GMDH) provides a self-organizing 

neural network to express the genome of the system. To do such a task, it uses the most 

suitable configuration by applying minimization process. In the other word, the GMDH utilizes 

feed-forward network whose coefficients are determined by using regression with the imitation 

of self-organizing activity. The algorithm chooses the most suitable polynomial expressions 

built by a combination of two independent variables at a time.  

Up to now, ANNs have been utilized to monitor and model the performance of many refinery 

and petrochemical processes. However, there are few studies in which GMDH network can be 

applied for modeling such processes while no work is reported for modeling visbreaking unit 

by using this approach [13-15]. Therefore, the aim of the present study is to investigate the 

capability of GMDH network to predict the yield of visbreaking products, process severity, and 

fuel oil viscosity for a commercial scale visbreaking plant.  

2. Process description 

A commercial soaker-visbreaker unit was chosen as a case study. This unit was designed 

to process about 20,000 barrels per day of a mixture including vacuum residuum and slop 

vacuum gas oil; both are taken from a vacuum tower. The specifications of the feed are 

presented in Table 1 which can vary slightly with time from start of the run (SOR) to end of 

the run (EOR). As shown in Fig. 1, the fresh feed is charged to the coil furnace at the 

temperature about 340°C. This furnace is constructed from two sections, fired independently. 

After the coil furnace, two hot streams are drained into a transfer line, and the mixed product 

is entered into the soaker drum. 

Table 1. Feed characterization 

Property Unit Value 

Specific gravity - 1.006 
Sulfur content wt % 3.19 
V + Ni content wt ppm 188 

Distillation (ASTM D1160) 
Vol % Temperature (°C) 
IBP 303 

5 409 
10 457 
20 503 
30 543 
50 585 
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Figure 1. Scheme of the visbreaking plant 

The specifications of coil and soaker drum are presented in Table 2. Then, the outlet stream 

from the soaker drum is quenched using the cold recycle stream to stop cracking reactions 

and to inhibit the coke formation. Finally, the combined stream is transferred to the 

fractionation tower and side strippers. 

Table 2. Specifications of the coil and soaker of the visbreaking unit 

                                                 Coil specification 

Number of tubes - 128 

Number of convection tubes - 76 

Number of radiation tubes - 52 
Tube length m 18.745 
Outside diameter m 0.114 

                                                    Soaker specification 

Outside diameter m 2.405 
Length m 16.5 
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3. GMDH network modeling of experimental data 

The basic structure of the brain has been widely employed in various fields such as 

modeling, control, and pattern recognition. The GMDH, introduced by Ivakhnenko [16-17], is a 

hierarchical and learning network structure that provides an effective approach to identify higher 

order non-linear systems. Its main purpose is the identification of relations in large complex 

non-linear multidimensional systems as well as their approximation and prediction. In the 

GMDH network, the part which corresponds to the neuron of a neural network is called the 

“N-Adaline”, and is generally expressed by a polynomial. The N-Adaline is composed of two 

inputs and one output, and the output is generated by combinations of two inputs [18]. Two 

inputs, xi and xj, are then combined to produce a partial descriptor based on the simple 

quadratic transfer function as the following:  

2 2

n n n n n n0 1 i 2 j 3 i j 4 i 5 jn
y a a x a x a x x a x a x


     
            (1) 

where n
y


 is determined using the least squares method, and the coefficients a0 to a5 are 

determined statistically and are unique for each transfer function. The coefficients can be 

thought as analogous to weights found in other types of neural networks.  

The GMDH topology is usually determined using a layer by layer pruning process based 

on a pre-selected criterion of what constitutes the best nodes at each level. The traditional 

GMDH method is based on an underlying assumption that data can be modeled by using an 

approximation of the Volterra Series or Kolmogorov-Gabor polynomial as shown as follows: 
M M M M M M

0 i i i j i j i jk i j k

i 1 i 1 j 1 i 1 j 1 k 1

y a a x a x x a x x x ...
     

     
 
        (2)

 
where X (x1,  x2 ,…., xM ) is the vector of input variables, and A ( a1 , a2 ,…., aM ) is the 

vector of summand coefficients [18].  

When constructing GMDH, all combinations of the inputs are generated and sent into the 

first layer of the network. The outputs from this layer are then classified and selected as input 

for the next layer with all combinations of the selected outputs, sent into the layer 2. This 

process is continued as long as each subsequent layer (n+1) produces a better result than 

layer (n). When layer (n+1) is found not to be as good as layer (n), the process will be 

stopped. Now, each layer consists of nodes that a pair of inputs is its source. In GMDH 

topology, each node produces a set of coefficients (ai &  i 1,2,3, . . ,5 ) that are estimated 

by using training data. Then, the fitness is tested by evaluating the mean square error of the 

predicted y


 and actual y values as follows: 

N
2

n n

n 1

Error ( y y )




 
 
                    (3) 

To identify the coefficients with the best fit, the partial derivatives of equation (3) are 

calculated on each constant value ai, and set it equal to zero as follows: 

i

Error
0

a





 
                       (4) 

Finally, to compare the predicted and actual values, average absolute deviations (AAD%) 

and root mean squared error (RMSE) were calculated as follows: 

tN 50 Actual Pr edict

i i

Actual
i 1 i

t

Y Y
( )

Y
ADD% 100

N







 


             (5) 
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where tN ,
actual

iY , 
Pr edict

iY  are the number of test runs, actual variables, and the predicted 

values, respectively. 

4. Results and discussion 

To build up the GMDH model, fifty data points were gathered from the target visbreaking 

unit from the start of the run (SOR= 1st day) to the end of the run (EOR= 422th day). These 

points were included of gas, gasoline, and fuel oil product yields, severity, fuel oil viscosity, 

feed flow rate, outlet coil temperature, initial boiling point (IBP) of feed, steam flow rate, and 

viscosity of the feed.  

Among these data points, 70% were selected for training the GMDH network, and the 

remained ones (i.e. 30%) were applied for validating that. To model the output variables of 

the plant (i.e. severity, the yield of products and viscosity of fuel oil), five different structures 

were selected. The input layer of each structure includes the significant process variables of 

the visbreaking unit i.e. feed flow rate, coil temp, steam flow rate, viscosity and IBP of feed.  

According to the mentioned approach, it was found that a GMDH network with two neurons 

in the hidden layer (intermediate layer) was accurate enough to simulate outputs of the plant, 

and therefore, growing step of the network was stopped. The schematic of developed GMDH 

networks are shown in Fig.2. As seen, all models have one input layer, two intermediate 

layers, and one output layer. Additionally, the corresponding polynomial equations of the 

proposed models for the growth period are presented in Tables 3 to 7.  

 

Fig. 2. A schematic of the proposed GMDH neural network, (a): severity, (b): gas yield (c): gasoline 
yield, (d): fuel oil yield and (e): fuel oil viscosity. 
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Table 3. Nodal expressions for GMDH neural network (severity) 

1

2

1 2
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Table 4. Nodal expressions for GMDH neural network (gas yield) 

2
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Table 5. Nodal expressions for GMDH neural network (gasoline yield) 
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Table 6. Nodal expressions for GMDH neural network (fuel oil yield) 
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Table 7. Nodal expressions for GMDH neural network (fuel oil viscosity) 
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Figures 3 to 7 show the comparison between the measured output variables obtained from 

the target visbreaking plant and the predicted ones using the GMDH network. As seen, a 

reasonable agreement can be observed.  

 

Fig.3. (A) Comparison of actual severity versus predicted, and (B) the regression plot of predicted 
severity versus actual 

 

Fig.4. (A) Comparison of actual gas yield versus predicted, and (B) the regression plot of predicted gas 

yield versus actual. 

 

Fig.5. (A) Comparison of actual gasoline yield versus predicted, and (B) the regression plot of 
predicted gasoline yield versus actual. 
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Fig.6. (A) Comparison of actual fuel oil yield versus predicted, and (B) the regression plot of predicted 
fuel oil yield versus actual. 

 

Fig.7. (A) Comparison of actual fuel oil viscosity versus predicted, and (B) the regression plot of 
predicted fuel oil viscosity versus actual. 

To have a better justification, Table 8 reveals the AAD% and RSME% of the results for the 

mentioned process variables. As observed, the AAD% and RSME% of predicting are less than 

1%, and therefore, the GMDH network is reliable to simulate the outputs of the target 

commercial scale visbreaking plant.  

Table 8. RMSE% and AAD% of proposed GMDH model 

No. 
Process output 
variable 

ADD % RMSE % 

1 Severity 0.462 0.717 

2 Gas yield 0.448 0.709 

3 Gasoline yield 0.458 0.716 

4 Fuel oil yield 0.051 0.078 

5 Fuel oil viscosity 0.016 0.025 

It is supposed that the main deviation of the model is mainly related to some outliers, such 

as power fluctuation of instruments, calibration of analysis devices, human errors, and signal 

transmission that cannot be excluded from the measured data points. However, from the 

presented results, it can be concluded that the proposed approach i.e. GMDH network is 

reliable enough to be applied for engineering applications such as process optimization. 

5. Conclusions  

In this research, a group method of data handling (GMDH) network was applied to predict 

momentous output variables of a commercial scale visbreaking unit located in an oil refinery. 
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These process output variables were severity, gas, gasoline, and fuel oil product yields, and 

fuel oil viscosity. GMDH considered the influence of feed flow rates, outlet coil temperature, 

steam flow rate, feed viscosity and IBP of feed. 

To establish the model, 50 data points from the SOR to the EOR were used to build and 

train the GMDH network. It was found that a GMDH network with two neurons in the 

intermediate layer was accurate enough to simulate outputs of the plant i.e. severity, gas, 

gasoline, and fuel oil product yields, and fuel oil viscosity with the AAD% and RSME% of less 

than 1%. Therefore, the GMDH network is reliable to simulate the outputs of the target comer-

cial scale visbreaking plant, and it is also applicable to model such complex systems. 

Nomenclature 

n
y


 

Predicted value 
FeedQ

 
Flow rate of feed (m3/h) 

ni
x

, nj
x

 
Two input neurons 

Feed
 

Kinematic viscosity of feed 
(cSt) 

a0 to a5  Coefficients ANN Artificial neural network 

y  Actual  value GMDH  Group method of data 
handling 

tN
 

Number of test run SOR Start of run 

Steam
m
0

 

Mass flow rate of steam (kg 
/h) 

EOR End of run 

CoilT
  

Outlet coil temperature (°C) RMSE Root mean square error  

IBPT
 

Initial boiling point of feed 
(°C) 

AAD Absolute average deviation 
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