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Abstract 

In this research, an adaptive-neuro fuzzy inference system (ANFIS) to model the yield of products 
of vacuum gas oil (VGO) hydrocracker including light naphtha (LN), heavy naphtha (HN), kerosene 
(Ker), diesel (Dis) and unconverted oil (Offtest) is proposed. The input layer of the ANFIS consists 
age of catalyst, feed and recycle flow rates, input temperature to the reactor and initial boiling point 
(IBP) of VGO. For developing the model, a set of 69 data points in different levels of temperature, 

pressure and LHSV (liquid hourly space velocity) are collected from the target plant (called Isomax). 
After training the model using 59 data points, it is confirmed that trapezoidal curve is the most 
suitable membership function for predicting yield of products. After applying unseen data (10 data 
points), results show that ANFIS can predict yields of LN, HN, Ker, Dis and Offtest with the AAD% 
of 1.185%, 0.758%, 0.408%, 0.593% and 2.222%, respectively. 
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1. Introduction 

Vacuum gas oil (VGO) hydrocracking process in a refinery is designed to convert VGO or 

similar boiling-range feedstock into the light and precious commodities. With the attention to 

the profit margins, hydrocracking is widely interested due to its flexibility for upgrading heavy 

feedstock into light precious products such as naphtha, kerosene and diesel. Moreover, it is 

an interested process in a refinery that upgrades the quality and the quantity of refined petro-

leum products, simultaneously [1]. In this process, feed reacts with hydrogen in the presence 

of a Ni-Mo or Ni-W type catalyst on a silica/alumina or zeolite supports [2]. 

In order to have an effective design and a perfect control over it, a model is needed to predict 

product yields and qualities versus variables such as space velocity and temperature [3]. 

Moreover, the model can be also used to select the suitable hydrocracking catalysts [4]. But, 

the complexity of hydrocracking feed makes it excessively difficult to characterize and describe 

its kinetic at a molecular level [5-6]. To develop a reliable fundamental model for a VGO hydro-

cracking process, the complexity of the VGO mixtures makes it highly cumbersome to describe 

its kinetic rate at a molecular level. Existing commercial simulators like Aspen plus or Hysys 

from Aspen Technology do not have such limitations for the number of species, and it is feasible 

to apply a unique set of pseudo components for petroleum assay streams; but, this approach 

rises the calculation time, and following reports become avoidably complicated. One approach 

to simplify the problem is to consider the partition of the components into a few equivalent 

classes called lumps or lumping technique, and then assume each class as an independent 

entity [7]. Developing simple kinetic models (e.g., power-law model) for complex catalytic 

reactions is a common approach that can give basic information for catalyst screening, reactor 

design and optimization [8]. This kind of modeling is proposed by several researches in which 
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hydrocracking process was modeled with three-lump [9-12], four-lump [4,13], five-lump [14-18], 

six-lump [19], seven-lump [20] and eight-lump [21] approaches.  

Furthermore, over the last two decades, soft computing methods such as artificial neural 

networks (ANN) and fuzzy logic were widely applied for modeling, controlling and optimizing 

catalytic processes [22-32]. ANN is an information processing paradigm that is inspired by the 

way the biological nervous system, such as the brain, processes information [33]. This mode-

ling approach has the following advantages: 1. it is highly nonlinear; therefore, its structure 

can be more complex and more representative than most other empirical models; 2. its 

structure does not have to be pre-specified; therefore, they are quite flexible models [34].  

With a combination between ANN and Fuzzy logic rules, it is possible to design the fuzzy 

neural network model to use the both of their advantages. ANFIS (adaptive neuro-fuzzy infe-

rence system) is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference 

system in which both models complement each other [35]. This technique combines the advan-

tages of fuzzy system (deal with explicit knowledge which can be explained and understood), 

and AAN (deal with implicit knowledge which can be acquired by learning) [36]. The appropriate 

selection of model parameters such as number, parameter and type of fuzzy membership 

functions are significant to obtain the desired performance.  

ANFIS has been applied to model various chemical processes [37-39]; but, based on our 

research, there is no report to apply this method for modeling an industrial scale VGO hydro-

cracker. In this study, by using actual data gathered from a commercial scale VGO hydro-

cracking unit which is called Isomax, an ANFIS model is developed for predicting the yield of 

hydrocracking products including light naphtha, heavy naphtha, kerosene, diesel and offtest.  

2. Process description 

A commercial first stage hydrocracking unit, called Isomax, licensed by Chevron research 

cooperation with the nominal capacity of 16,500 barrel per day is chosen as a case study. The 

feed of the plant is a mixture of fresh VGO and the unconverted oil. The latter is recycled from 

the separation section at the end of the process. The schematic diagram of the Isomax process 

is presented in Fig. 1. The properties of VGO fresh feed during the period of the study can vary 

slightly with time from the start of run (SOR) to end of run (EOR). The design pressure of this 

unit is 156 bar, but dependent to the feed specification, hydrogen availability and the catalyst 

type, operating pressure of the plant can be varied up to 165 bar during the catalyst cycle life. 

During the data gathering for this research, the pressure fluctuations were between the design 

value and 160 bar, so that the effect of pressure on hydrocracking yield is negligible.  

  

Fig 1. The process flow diagram of the target hydrocracking unit [21] 
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In this process, the combined feed is mixed with hydrogen and it is heated before entering 

the reactor. The hydrocracking section has three similar parallel reactors each of which has four 

beds with the total amount of catalyst being 36600 kg. The percentage weight of loaded cata-

lyst in Beds 1, 2, 3 and 4 is 14%, 26%, 31% and 29%, respectively.  

As seen in Figure 1, there are 5 main streams, containing light dry gases (C1 and C2) and 

LPG (C3, C4 and C5), which are named as HPS vent, LPS gas, sponge gas, stabilizer gas and 

LPG. Because all streams consist of C1 to C5, as well as H2O, NH3 and H2S components, their 

flow rate and composition are separated to light gases and LPG as distinct products. It is 

obvious that the output products of reactors containing light gases, LPG, naphtha, kerosene, 

diesel and residue are separated in different separation units. The hydrocracking catalyst is a 

commercial dual functional amorphous type. The VGO feed, recycle stream (or offtest) and 

diesel samples were analyzed according to the ASTM D1160 standard procedure whilst 

kerosene, light and heavy naphtha samples were analyzed according to the ASTM D86 

method.  

Table 1. Average specifications of vacuum gas oil feed 

Density at 50°C g/cm3 0.89 Distillation analysis (ASTM D1160 

Sulfur wt% 2.1 IBP oC 372.3 

Total nitrogen ppmwt 1100 10% oC 393.3 

Conradson carbon wt% 0.043 30% oC 431.9 

Refractive index at 20°C - 1.53 50% oC 453.8 

Ultimate analysis 70% oC 479,9 

C wt% 86 90% oC 502.1 

H wt% 12.1 FBP oC 528.4 

3. Mathematical model 

In this study, to create the ANFIS, Matlab-fuzzy logic toolbox version 2013 (Mathworks, Inc.) 

and ANFIS syntax were used. This syntax is the major training routine for Sugeno-type fuzzy 

inference systems. ANFIS uses a hybrid learning algorithm to identify parameters of Sugeno-

type fuzzy inference systems. It applies a combination of the least-squares method and the 

backpropagation gradient descent method for training fuzzy inference system to emulate a 

given training data set. The type of membership functions for the Isomax unit is selected from 

all supported types in Matlab i.e. Sigmoid, Bell, Gaussian, Trapezoidal, Π and Triangular 

shapes.  

For the Isomax plant, the input vector consists age of catalyst (Age), volume flow rates of 

VGO fresh feed (Ff) and unconverted oil as recycle feed stream (Rf), initial and final boiling 

points (IBP and FBP) of VGO, and inlet temperature of catalytic beds (Tb1, Tb2, Tb3 and Tb4). 

The output layer is included yield of products i.e. light and heavy naphtha, kerosene, diesel, 

and offtest. To train the neuro-fuzzy inference system, 59 data points (see Table 3) are 

chosen, and 10 unseen data points are remained for validating step.  

To train the fuzzy model, two fuzzy rules are selected from the ANFIS toolbox, and training 

process is stopped whenever the designated epoch number (20) is reached. To evaluate the 

accuracy of the model, the absolute average deviation (AAD%) between the experimental and 

predicted data is calculated as follows: 
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where X, Nt are the output variables (i.e. yield of LN, HN, Ker, Dis and Offset) and number of 

data points, respectively; superscripts exp and model show the experimental data and the 

predicted values by the model, respectively. 
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4. Results and discussions 

In Table 2, the AAD% of trained data versus the experimental values is presented. As seen 

from this table, trials with different membership functions of the neuro-fuzzy model indicate 

that the trapezoidal shape curve is the best choice for simulating the yield of the hydrocracking 

products. By using this fruition, the yield of LN, HN, kerosene, diesel and offtest can be 

simulated with the AAD% of 1.221%, 0.687%, 0.261%, 0.622% and 2.13%, respectively.  

Table 2. AAD% of different membership function for data training by ANFIS 

Fraction 
Sigmoid 
shape 

Bell shape Gaussian 
shape 

Trapezoidal 
shape 

Π shape 
Triangular 
shape 

LN (%) 1.301 8.270 6.836 1.221 2.179 1.432 

HN (%) 10.532 13.839 2.624 0.687 0.861 3.160 

Kerosene (%) 0.346 8.018 4.986 0.261 0.254 1.926 

Diesel (%) 23.064 22.992 7.784 0.622 0.548 2.942 

Offtest (%) 23.825 21.198 18.770 2.130 3.064 6.283 

After training the Isomax model with ANFIS syntax, the input layer of the unseen data 

(Age, Ff, Rf, IBP, FBP, Tb1, Tb2, Tb3 and Tb4) are fed to the trained Anfis model, and output 

variables (i.e. LN, HN, Ker, Dis, Offtest) are evaluated by using Evalfis syntax. The AAD% of 

the predicted values versus the experimental ones is presented in Table 3. From this table, it 

is confirmed that that the developed ANFIS model is reliable enough to be applied for 

predicting the yield of products of Isomax plant. 

Table 3. AAD% of prediction 
using the trained ANFIS model 

 AAD% 

LN (%) 1.185 
HN (%) 0.758 
Kerosene (%) 0.408 
Diesel 0.593 
Offtest 2.222 

Average (%) 1.033 
 

To have a better justification, comparisons between the 

simulated yields (training and predicting data) and actual 

yields of light naphtha, heavy naphtha, kerosene, diesel 

and offtest are presented in Figs 2 to 6, respectively. As 

observed, ANFIS model can appreciably predict yields of 

hydrocracking product with a high accuracy. Additionally, 

from these figures, it is observed that yields of light 

products i.e. naphtha and kerosene decrease versus 

operation time or age of the catalyst whereas that of diesel 

and offtest increases. The main reason for these variations  

is deactivation of the catalyst which is indispensable for an industrial scale catalytic fixed-bed 

reactor. This unit has been designed to operate at least for 3 years without any regeneration 

process. As seen, the developed ANFIS model can appreciably distinguish the deactivation of 

the catalyst, and predicts yields of hydrocracking products versus cycle time.   

 

Fig. 2. The comparison between trained and predicted values of light naphtha yield vs. age of catalyst 
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Fig. 3. The comparison between trained and predicted values of heavy naphtha yield vs. age of catalyst 

 

Fig. 4 The comparison between trained and predicted values of kerosene yield vs. age of catalyst 

 
Fig. 5.The comparison between trained and predicted values of diesel yield vs. age of catalyst 

Fig. 4 The comparison between trained and predicted values of kerosene yield vs. age of catalyst 

 

 

199



Petroleum and Coal 

                         Pet Coal (2016); 58 (2): 195-201 
ISSN 1337-7027 an open access journal 

 

Fig. 6. The comparison between trained and predicted values of offtest yield vs. age of catalyst 

5. Conclusions 

In this study, an adaptive-neuro fuzzy inference system (ANFIS) was proposed for modeling 

an industrial scale vacuum gas oil hydrocracking plant with the commercial name of Isomax. 

This model was trained and validated on the basis of 69 experimental data points obtained 

from the target plant.  

For training ANFIS, 59 data points were randomly selected, and the remained ones were 

put aside for validating the model. It was observed that among all supported membership 

functions in the Matlab software, trapezoidal shape curve was the most appropriate member-

ship function for simulating yields of Isomax.  

Results showed that the average AAD% of the trained yields of hydrocracking products was 

less than 0.984%. Moreover, by using the validation data, it was confirmed that the proposed 

ANFIS model could predict yields of light naphtha, heavy naphtha, kerosene, diesel and offtest 

with the AAD% of 1.185%, 0.758%, 0.408%, 0.593% and 2.222%, respectively. Achieve-

ments of this work are momentous for simulating industrial scale hydrocracking plants, and 

also making the best decision to select the optimized operating conditions from start of run (SOR) 

to the end of run (EOR). 
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