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Abstract  

Due to increase in environmental legislation against the deposition of oil based mud on the 
environment, drilling companies have come up with an optimum drilling mud such as plant oil based 
mud with little or no aromatic content, which its waste is biodegradable. Optimum mud carry out the 
same function as diesel oil based drilling fluid and equally meets up with the HSE (Health, safety and 
environment) standard. It is expedient to determine the down hole mud properties such density in the 

laboratory or use of available correlation but most time; the range of data is not either reliable or 
unavailable.  
In this study, artificial neural network (ANN) was used to address the unreliable laboratory data and 
unavailable correlation for environmentally friendly oil based drilling mud such as jatropha and canola 
oil. The new artificial neural network model was developed for predicting the down hole mud density of 
diesel, jatropha and canola oil based drilling mud using 30 data sets. 60% of the data were used for 

training the network, 20% for testing, and another 20% for validation. 
The test results revealed that the back propagation neural network model (BPNN) showed perfect 
agreement with the experimental results in term of average absolute relative error returned. 

Keywords:  
 

1. Introduction 

The drilling mud density is a very important physical property that controls and influences 

the simultaneous flow of fluids and cuttings during drilling operation and is a strong function 

of reservoir conditions and compositions. Drilling mud density could be determined in the 

laboratory studies on available bottom hole samples at reservoir temperature and pressure. In 

case where laboratory data are not available or unreliable, the complexity and inaccuracy can be 

addressed by the new predictive tool developed in this study to estimate the effect of down hole 

temperature on environmentally friendly oil based mud using artificial neural networks (ANNs). 

A new model was developed using 30 data sets:  60% of the data were used for training the 

network, 20% for testing, and another 20% for validation. 

2. Theory of neural networking  

An artificial neural network (ANN), usually called neural network (NN), is a mathematical 

model or computational model that is inspired by the structure and/or functional aspects of 

biological neural networks. A neural network consists of an interconnected group of artificial 

neurons, and it processes information using a connectionist approach to computation. In most 

cases an ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network during the learning phase. Modern neural 
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networks are non-linear statistical data modeling tools. They are usually used to model 

complex relationships between inputs and outputs or to find patterns in data. 

In modern software implementations of artificial neural networks, the approach inspired 

by biology has been largely abandoned for a more practical approach based on statistics and 

signal processing. In some of these systems, neural networks or parts of neural networks 

(such as artificial neurons) are used as components in larger systems that combine both 

adaptive and non-adaptive elements. While the more general approach of such adaptive 

systems is more suitable for real-world problem solving, it has far less to do with the 

traditional artificial intelligence connectionist models. What they do have in common, 

however, is the principle of non-linear, distributed, parallel and local processing and 

adaptation. 

Neural networks are composed of simple elements operating in parallel. These elements 

are inspired by biological nervous systems. As in nature, the network function is determined 

largely by the connections between elements. A neural network can be trained to perform a 

particular function by adjusting the values of the connections (weights) between elements. 

Commonly neural networks are adjusted, or trained, so that a particular input leads to a 

specific target output. Such a situation is shown below. There, the network is adjusted, based 

on a comparison of the output and the target, until the network output matches the target. 

Typically many such input/target pairs are needed to train a network. Neural networks have 

been trained to perform complex functions in various fields, including pattern recognition, 

identification, classification, speech, vision, and control systems. 

Today neural networks can be trained to solve problems that are difficult for conventional 

computers or human beings. Emphasis is placed on neural network paradigms that build up 

to or are themselves used in engineering, financial, and other practical applications. 

The figure below shows a typical Neural Network process: 

 

Fig 1 Neural network schematic 

The word network in the term 'artificial neural network' refers to the interconnections 

between the neurons in the different layers of each system. An example system has three 

layers. The first layer has input neurons, which send data via synapses to the second layer of 

neurons, and then via more synapses to the third layer of output neurons. More complex 

systems will have more layers of neurons with some having increased layers of input 

neurons and output neurons. The synapses store parameters called "weights" that 

manipulate the data in the calculations. 

3. Literature review  

Over the years, a lot of research has gone into the drilling fluid industry with various 

outcomes and results bringing out various ways of solving different problems encountered in 

the industry, ranging from technical to environmental and also economical challenges. In 

recent times, following the outcomes of the past researches carried out, synthetic oils are now 

considered more environmentally friendly than the conventional diesel or mineral oil based mud. 

Bailey et al. [1] in 1986 examined fluid viscosities of muds formulated with a low toxicity 

mineral oil (LTOBM) and diesel oil (OBM) with temperature and pressure. The use of mineral 

oils as replacements for diesel in drilling fluids was rapidly spreading at the time. They found 
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that the greatest change in fluid apparent viscosity occurred when the testing temperatures 

were increased from 77°F (25°C) to 212°F (100°C), and at higher temperatures the rate of 

change was less. 

Fisk and Jamison [2] used a Dynamic HPHT testing unit to measure the behavior of OBM, 

LTOBM, and water-based muds with pressure and temperature. Equations were developed to 

predict fluid PV. Coefficients for fifteen OBM having different properties were averaged to 

obtain constants that could be used to predict the behavior of OBM on a general basis. 

Yassin et al. [3] carried out tests on palm oil derivatives as the continuous phase for oil 

based drilling fluids, and the toxicity effect on plant and aquatic life. The oils used in this 

case include: Methyl esters of Crude Palm Oil, and Methyl esters of Palm Fatty Acid Distilled. 

Tests were carried out on the physico-chemical properties of these oils such as flash point, 

pour point, aniline point, etc at varying temperatures and pressures. 

Bleier et al. [4]  conducted studies along with the Environmental Protection Agency (EPA) 

in the USA, on various technologies in the drilling fluid sector of the industry, and at that 

time, also analysed future projections, to encourage the adoption of emerging technologies. The 

studies conducted include: Biodegradability, toxicity, effects of additives, chlorides, salts 

heavy metals, and means of minimizing waste volumes. 

Hemphil [6]  carried out studies to predict the rheological properties of ester based drilling 

fluids under down hole conditions. Rheological tests that simulated field conditions were run 

in the laboratory on an ester-based drilling fluid from the field. The rheological behavior of the 

fluid was tested under varying ranges of temperature, pressure, and ester/water ratios. A 

predictive down hole rheological model of the ester-based drilling fluid was constructed using 

over eight hundred (800) fluid viscosity measurements. A general model has been developed to 

predict the downhole behavior of moderate-density ester-based drilling fluids with 

temperature and pressure.  

Sundermann et al. [7]  eliminated drilling problems with high temperature gas wells in 

northern Germany via the development and use of potassium formate (KCHO2) biopolymer 

fluids. The formulated drilling fluid allowed a higher mud weight with fewer solids. It was 

then tested by drilling a 5 in section well at 16860 ft in 42 days. The ROP was 31.23 ft/D as 

against the 26.48 ft/D obtained using the CaCO3 polymer mud. The biopolymer system 

proved to be very stable requiring only small chemical additions of viscosity and filtration 

control agents to keep the fluid properties within the desired range.  

Sanchez et al [9] formulated drilling fluids from mineral oil (< 0.1% aromatics) and palm 

tree oil (without aromatic), both produced in Venezuela. Their work evaluated the toxicity and 

biodegradability of mineral and palm tree oil-base drilling fluids compared to those formulated 

with Diesel. Standard procedures were performed for both tests. The results indicate that 

mineral and palm tree oil based fluids are no toxic while diesel showed high toxicity levels. 

Osman and Aggour [10] proposed an Artificial Neural Networks (ANN) model to predict mud 

density as a function of mud type, pressure and temperature. Data used were for 

temperature and pressure ranges up to 400°F and 14,000 psig respectively. The study 

showed the effect of temperature and pressure on the density of oil-base and water-base 

drilling fluids and presented experimental measurements of densities in the temperature 

range of 70 to 400°F and pressure range of 0 to 14,000 psig. Their finding was that the 

change in mud density with pressure and temperature is independent of the initial mud 

density (at 70°F and 0 psig). They also concluded that for equal densities at the surface 

conditions, oil-base drilling fluids become denser than water-base drilling fluids at high 

temperatures and pressures 

4. Experimental procedure 

4.1 Mud preparation  

Three oil in water mud samples were prepared for this study: Diesel OBM- Diesel, 

Jatropha OBM- Jatropha oil, Canola OBM- Canola oil.The densities of the various base fluids 

(water, canola oil, jatropha oil and diesel) were measured using the mud balance. 
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1. Using the weighing balance, the various quantities of materials were measured. 

2. The quantities of water and oil were measured using measuring beakers. 

3. Using the Hamilton Beach Mixer, the measured materials were thoroughly mixed until a 

homogenous mixture was obtained. 

4. The mud samples were aged for 24 hours. 

4.2. Experimental procedure  

1. The aged mud samples were agitated for 2 minutes using the Hamilton Beach Mixer. 

Density 

 
Diagram 1,  4 scale Mud Balance 

2. The clean, dry mud balance cup (Diagram 1) was filled to the top with the newly agitated 

mud. 

3. The lid was placed on the cup and the balance was washed and wiped clean of 

overflowing mud while covering the hole in the lid. 

4. The balance was placed on a knife edge and the rider moved along the arm until the cup 

and arm were balanced as indicated by the bubble. 

5. The mud weight was read at the edge of the rider towards the mud cup as indicated by 

the arrow on the rider and was recorded. 

6. Steps 2 to 5 were repeated for the other samples. 

Temperature effects on density 

7. The newly agitated mud sample was heated using a hot plate stirrer to temperatures of 

40OC, 50OC, 60OC, 70OC, and 80OC. 

8. The density of the heated mud Diesel OBMt various temperatures was checked and recorded. 

9. Steps 7 and 8 were repeated on other samples.  

10. The values were recorded 

11. The values were imputed into Microsoft Excel, and then extrapolated up to a 

temperature of 320OC. 

Artificial neural network (ANN) predictions 

After extrapolation of values in Microsoft excel, the various values were then trans-posed (still 

in the Microsoft excel interface), and exported to the Neural Network tool in MATLAB 2008. 

The following procedures were carried out, using the Log Mean Square Error, Back 

Propagation. 

 Input the data into the MATLAB 2008 workspace 

 Type ‘nntool’ 

 Set the Temperature values as ‘INPUT DATA’ P 
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 Set the Density values as ‘TARGET DATA’ T 

 Data were imported from the workspace 

 Varying numbers of neurons were selected in the layers- in this case, 10 neurons were used. 

 The network was trained and created. Details of the codes are contained in Appendix 1D. 

Density variation with temperature.  

Densities were measured for the various samples at temperatures ranging from 30OC to 

80OC and are summarized in Table 1 

Table 1 Density changes at varying temperatures. 

Temperature Diesel Jatropha Canola 

30OC 10 10 10 

40OC 10.1 10.05 10.05 
50OC 10.17 10.1 10.05 
60OC 10.2 10.15 10.1 
70OC 10.2 10.15 10.15 
80OC 10.25 10.2 10.17 

The mud samples were heated at constant pressure, and in an open space, hence the 

density increment. 

 

Fig 1 Plot of density against temperature (Diesel, Jatropha and Canola OBM’s) 

At temperatures of 60OC and 70OC, the densities of Diesel and Jatropha OBM’s were 

constant, while that happened with Canola OBM at a lower range of 40OC and 50OC. This is 

shown in Figures 1. This could be due to the differences in temperature and heat energy 

required to dissipate bonds, which vary with fluid properties (i.e the continuous phases). 

After the results were recorded, extrapolations were made in Microsoft excel, and 

hypothetical values were derived for temperatures as high as 320OC, to enhance the 

prediction using Artificial Neural Network (ANN). These values are summarized Table 2. 

Table 2 Hypothetical temperature-density values (extrapolated from MS Excel) 

t Diesel Jatropha Canola t Diesel Jatropha Canola 

30OC 10 10 10 180OC 10.71762 10.59048 10.51524 
40OC 10.1 10.05 10.05 190OC 10.76276 10.62905 10.54952 
50OC 10.17 10.1 10.05 200OC 10.8079 10.66762 10.58381 

60OC 10.2 10.15 10.1 210OC 10.85305 10.70619 10.6181 
70OC 10.2 10.15 10.15 220OC 10.89819 10.74476 10.65238 
80OC 10.25 10.2 10.17 230OC 10.94333 10.78333 10.68667 
90OC 10.31133 10.24333 10.20667 240OC 10.98848 10.8219 10.72095 
100OC 10.35648 10.2819 10.24095 250OC 11.03362 10.86048 10.75524 
110OC 10.40162 10.32048 10.27524 260OC 11.07876 10.89905 10.78952 
120OC 10.44676 10.35905 10.30952 270OC 11.1239 10.93762 10.82381 

130OC 10.4919 10.39762 10.34381 280OC 11.16905 10.97619 10.8581 

140OC 10.53705 10.43619 10.3781 290OC 11.21419 11.01476 10.89238 
150OC 10.58219 10.47476 10.41238 300OC 11.25933 11.05333 10.92667 
160OC 10.62733 10.51333 10.44667 310OC 11.30448 11.0919 10.96095 
170OC 10.67248 10.5519 10.48095 320OC 11.34962 11.13048 10.99524 
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5. Results of neural networking  

From the Artificial Neural Network Toolbox in the MATLAB 2008a, the following took place: 

60% of the data were used for training the network, 20% for testing, and another 20% for 

validation. On training the regression values returned are summarized in Table 3 

Table 3 Regression values 

 Diesel Jatropha Canola 

Training 0.99999 0.99999 0.99995 

Testing  0.99725 0.99056 0.99898 

Validation 0.99706 0.98201 0.99328 

All 0.99852 0.99414 0.99675 

Since all regression values are close to unity, this means that the network prediction is a 

successful one. The graphs of training, testing and validation are presented below: 

  
Fig 2 Estimated Data against Experimental Data 
(Diesel OBM Validation values) 

Fig 3 Estimated Data against Experimental Data 
(Diesel OBM Test values) 

 

  

Fig 4 Estimated Data against experi-mental 
Data (Diesel OBM Training values) 

Fig 5 Estimated data against experimental data 
(Diesel OBM Overall values) 

  
Fig 6 Estimated data against experimental 

data (Jatropha OBM Validation values) 

Fig 7 Estimated data against experimental data 

(Jatropha OBM Test values) 
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The values were returned after performing five iterations for each network. This also goes to 

say that the Artificial Neural Network, after being trained and simulated is a viable and 

feasible instrument for prediction. 

Figures 2 to 13 present plots of Experimental data against Estimated (predicted) data for 

training, testing and validation processes using MATLAB 2008. 

We can see from the Figures that the data points all align closely with the imaginary/ 

arbitrary straight line drawn across. This validates the accuracy of the network predictions and 

this also gives rise to the high regression values (tending towards unity) presented in Table 2 

  

Fig 8 Estimated Data against experimental 
data (Jatropha OBM Training values) 

Fig 9 Estimated data against experimental data 
(Jatropha OBM Overall values) 

  

Fig 10 Estimated data against experimental 

data (Canola OBM Validation values) 

Fig 11 Estimated data against experimental data 

(Canola OBM Test values) 

  
Fig 12 Estimated data against experimental 
data (Canola OBM Training values) 

Fig 13 Estimated data against experimental 
data (Canola OBM Overall values) 

Errors, estimated values and experimental values are summarized in Tables 4 to 6 

The minute errors encountered in the predictions further justify the claim that the ANN is 

a trust worthy prediction tool. 

The Experimental outputs were then plotted against their corresponding temperature values, 

and also fitted into the polynomial trend line of order 2. 
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From Figures 14 to 16, which are plots of Experimental data against temperature and 

Estimated data against temperature on the same charts. Due to the accuracy of the 

networks, the graphs tend to overlap each other, except for a few minute deviations. 

The equations derived are: 

Diesel OBM: 915.9004.0104 27   TT      (1) 

Jatropha OBM: 994.9003.0107 27   TT      (2) 

Canola OBM: 827.9004.0102 26   TT      (3) 

 

Fig 14 Graph of estimated and experimental values against temperature (Diesel OBM) 

 

Fig 15 Graph of estimated and experimental values against temperature (Jatropha OBM) 

 

Fig 16 Graph of Estimated and Experimental Values against Temperature (Canola OBM) 

Also by comparing the networks created with that of Osman and Aggour [10], we can see 

that this work is technically viable in predicting mud densities at varying temperatures as the 

network developed in the course of this project showed regression values close to those 

proposed by Osman and Aggour. 
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Errors, percentage errors and average errors as compared with Osman and Aggour are 

relatively lower, thus guaranteeing the accuracy of the newly modeled network. 

Table 7 shows the regression values of Osman and Aggour for oil based mud density 

variations with temperature and pressure. 

Table 7 Table Showing the Regression Values from Osman and Aggour 

Training Testing Validation All 

0.99978 0.99962 0.99979 0.9998 

The Relative deviation Ei was calculated using function in equation 4 and the following values 

were returned: 

Ei= 100






 

e

pe




        (4) 





n

i

iE
n

AAPE
1

1
        (5) 

Table 8 Table of the Relative Deviations 

Temperature Diesel Jatropha Canola 

30 0.49 0 1.159 

40 0.40297 0 0.453731 

50 0.092429 0.00198 0.0199 

60 0.021569 0.014778 0.074257 

70 0.231373 1.040394 0.050246 

80 0.097561 1.207843 0.018682 

90 0.235986 0.692808 0.078054 

100 0.013748 0.031076 0.077606 

110 0.107859 0.382504 0.007183 

120 0.235115 0.428105 0.119538 

130 0.080107 0.008473 0.006675 

140 0.157991 0.157237 0.010553 

150 0.346719 0.020412 0.116025 

160 0.132049 0.006975 0.069241 

170 0.136087 0.023647 0.176011 

180 0.024081 0.019604 0.035776 

190 0.080259 0.00896 0.039587 

200 0.23682 0.01049 0.107622 

210 0.074195 0.03447 0.03386 

220 0.008346 0.035012 0.074922 

230 0.173317 0.254405 0.019963 

240 0.06392 0.521209 0.097495 

250 0.057271 0.529223 0.174223 

260 0.056307 0.108703 0.000221 

270 0.039597 0.001088 0.013022 

280 0.193818 0.107419 0.106789 

290 0.082846 0.000346 0.043324 

300 0.143289 0.000302 0.064369 

310 0.442092 0.155111 0.145538 

320 0.724421 0.000214 0.355045 

AAPE is calculated using equation 5. Table 9 compares the AAPE, Maximum Ei and 

Minimum Ei for Diesel, Jatropha and Canola OBM’s as well as the values from Osman and 

Aggour. 
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Table 9 Table Comparing Maximum Ei, Minimum Ei, and AAPE 

 Diesel Jatropha Canola Osman et al 

Minimum Ei 0.008346 0.000214 0.000221 0.102269 

Maximum Ei 0.724421 1.207834 1.159 1.221067 

AAPE 0.172738 0.193426 0.124949 0.36037 

5. Conclusion 

The results of the tests carried out indicate that jatropha and canola OBM’s posses great 

chances of being among the technically viable replacements of diesel OBM’s. The results also 

show that additive chemistry must be employed in the mud formulation, to make them more 

technically feasible. 

The density increased with temperature difference and became constant at some point, 

and begins increasing again. These temperature points of constant density varied for the 

different samples. The diesel OBM showed the highest variation range, while the canola OBM 

showed the lowest. 

Artificial Neural Network works well for prediction of scientific parameters, due to 

minimized errors returned. 

Limitation  

1. The temperature-density tests were carried at surface conditions under an open system 

and at a constant pressure due to the absence of a pressure unit thus, the equations 

developed are not guaranteed for downhole circulating conditions. 

2. During the temperature-density tests, it was observed that some of the mud particles 

settled at the base of the containing vessel, and this reduced the accuracy of the 

readings. 

3. The mud samples were aged for only 24 hours, hence the feasibility of older muds may 

not be guaranteed. 

Recommendations  

1. This work should further be tested and investigated for the effect of temperature on 

other properties of the formulated drilling fluids. 

2. The temperature-density tests should also be carried out at varying pressures, to 

simulate downhole conditions. 
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