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Abstract 

After production and transmission, natural gas is odorized by the injection of mercaptan substances 
due to safety issues. Mercaptan concentration distribution in transmission pipelines is sometimes non-

uniform which fails to meet safety standards of gas companies. Thus, contributing factors including 

gas flow velocity, distance of city gas station (CGS), pressure, temperature and mass transfer 
coefficient in mercaptan concentration distribution were determined to attain a uniform distribution. 

To obtain the odor substance concentration, first, olfactometry operation was conducted at 147 

different points in a pipeline with a length of 72 km, faced with non-uniform odor distribution. Then, 
experimental and computational data were modeled by merging the group method data handling  

(GMDH) and genetic algorithm with the aim of obtaining efficient polynomial correlation. The modeling 

results indicate that gas flow velocity and distance from injection points are among the most effective 
parameters on odorant distribution. Based on the obtained results, the odor substance concentration 

can be adjusted to the investigated pipeline with the aim of reaching safety standards. 

Keywords: Odor substance; Concentration distribution; Mercaptan; Genetic algorithm;Neural network. 

 

1. Introduction  

In all chemical plants, there are strict regulations regarding health, safety and environment 
which are referred to as HSE. These regulations also involve gas distribution networks, and 

since these networks are generally located in residential areas, the odorization process is 
vitally important. Odorants with low molecular weights in the forms of synthetic chemicals, 
such as mercaptans and sulfides with molecular weights of about 60 mg/mol, have been used 
after the Second World War [1]. 

The need for a gassy odor was heightened with the development of chemical industry and 
also the hydrocracking units across the world [2]. The minimum natural gas amount that leads 

to explosion is a concentration between 0.5% and 4.5% which is defined as explosion thresh-
old. Therefore, the minimum odorants should be a specific amount (the gas concentration 
should be 1% in air) so that the gas can be easily smelled [1]. The different chemical combi-
nations would be selected based on physical and chemical conditions of flow gas and geo-
graphical conditions in order to achieve desirable odorant properties and optimize the odori-

zation process performance [1,3]. A study has previously shown that higher operating pressures 
could increase the possibility of tert-butyl mercaptan (TBM) absorption on iron oxide resulting 
in an increase and a decrease in odor concentration. In addition, low temperature could cause 
TBM to fade from gas flow [4]. By investigating the fading smell parameters in gas distribution 
systems, Saadatmand et al. [5] found that the gas average temperature rate, gas pressure 

and flow rate velocity are effective on odor substances concentration distribution. Moreover, 
according to a study conducted by National Iranian Gas Company (NIGC), odorants adding 
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and fading factors are under the influence of two parameters, a- odorants oxidation in pipe-
lines and b- sedimentation of odor substances during transportation via pipelines. In a study, 
it was indicated that odorants transfer rate in gas flow depends on injection point distance 
(odorizer station) and odorants carrying velocity in transfer lines [6]. 

Group method of data handling (GMDH) has several applications such as modeling the 

complicated systems, forecasting, data mining of multi-variable processes, pattern recogni-
tion, diagnostics and clusterization of data sample [7-12]. Additionally, the forecast about sys-
tems behavior which is used in engineering, medicine and economics show successful results 
[8,11,14]. The GMDH neural networks are created by utility of network structures for GMDH 
algorithm, and hence, have significant effect on its software and conceptual implementation. 

Therefore, the use of neural self-organized networks in GMDH algorithm leads to success in 
different scientific areas such as engineering, science, and economic s. 

According to the NIGC’s HSE standards, odorants concentrations must be in the range of 

10 to 20 mg/m3 for city gas pipelines [15]. The concentration non-uniformity has been observed 
in some transfer pipelines. This non-uniformity causes two major problems: 1- Odorants high 
concentrations may lead to environmental damages, and 2- the low concentrations of odorants 

can lead to a lack of odorants detection when gas leakage occurs (the most important scope 
of odorization). The correlation between odor substances and concentration distribution fac-
tors must be determined in order to monitor the odorant behavior integration of odor sub-
stance concentration and achieving determined standards. 

The main scope of this study was predicting the odor substance behavior in a pipeline 

located in northern part of Iran with a length of 72 km, which faced the lack of uniform distri-
bution of odor substances, by merging GMDH neural network and genetic algorithm. Moreover, 
the effect of different parameters were compared in a big scale of length for a period of one 
year, and the most significant parameters of inappropriate distribution in pipelines were es-
tablished by neural network. 

2. Material and method 

2.1. GMDH neural network 

Among different identification algorithms, group method of data handling (GMDH) is a self-

organized system in which complicated models are formed step by step based on multiple 
input initial data and evolved output. The GMDH was introduced by Ivakhneko [13] as a multi-
analysis method for modeling and identifying complicated and developed systems. The GMDH 
can be implemented in modeling without technical information about its algorithm. The main 
scope of GMDH is to establish an analytical function based on feed forward network, which 

each of its element is a second-degree transfer function and its coefficients are obtained by 
recursive method. 

The GMDH neural network is a unidirectional network made up of several layers including 
several neurons with a similar structure of two inputs and one output. The input variables of 
each neuron, output, or estimated values are selected by each two neurons and are placed in 

previous layer, so that the main system is remodeled for each N output. 
Generally, the systems identification problems are presented so that the unknown function, 

f, with variables {(xip, xiq), i= 1,2,3,…,N} and corresponding values, yi, such as {(yi), i= 
1,2,3,…,N} are established. The f function can be estimated so that the sum of error squares 
for a sample of input and output data in equation (1) are minimized. 

∑[(�̂�(𝑥𝑘𝑖 ,𝑥𝑘𝑗) − 𝑦𝑘)
2
]

𝑁

𝑘=1

→𝑀𝑖𝑛 (1) 

It might be linear or non-linear of input variables in equation (1). The map established 

between input and output variables by GMDH neural network, is a non-linear function as following 
[16-17]: 

�̂� = 𝑎0+∑𝑎𝑖𝑥𝑖+∑∑𝑎𝑖𝑗
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The equation (2) is known as Volterra series functions. The GMDH algorithm is based on 
decomposition of Volterra series functions to two variables second-degree polynomial. In fact, 
the scope of this algorithm is finding unknown coefficients (a) in Volterra series functions. 
Therefore, these coefficients are distributed in decomposed factors by decomposing to two 
variables second-degree polynomial, so unknown coefficients in this second-degree polyno-

mial are regulated according to equation (3): 
𝑦𝑖 = 𝑓(𝑥𝑖𝑝,𝑥𝑖𝑞) = 𝑎0+𝑎1𝑥𝑖+ 𝑎2𝑎𝑖+𝑎3𝑥𝑖

2+𝑎4𝑥𝑖
2+𝑎5𝑥𝑖𝑥𝑖 (3) 

The y function has 6 variables, so they must be adjusted so that the desired output {(yi), 
i= 1,2,3,…,N} would be established for all two variables samples depending on system {( xip, 
xiq), i= 1,2,3,…,N}. For this reason, the G function will be based on minimum square error 

according to equation (4) [8]. 

∑[(𝐺(𝑥𝑘𝑖 ,𝑥𝑘𝑗)− 𝑦𝑘)
2
]

𝑁

𝑘=1

→𝑀𝑖𝑛 (4) 

The equation (5) can be shown as matrix (8) by conditions dominated on problem: 
𝐴𝑎 =𝑌 (5) 
𝑎 = {𝑎0 ,𝑎1,𝑎2,𝑎3,𝑎4 ,𝑎5}

𝑇 (6) 
𝑎 = {𝑦1 ,𝑦2, 𝑦3, …, 𝑦𝑁} (7) 
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(8) 

It is necessary to calculate non-square inverse matrix A for solving the equation. So the 
orthogonal equations solving method is used for calculating non-square inverse matrix A. 
Therefore, the unknown coefficient vector can be calculated by equation (9). 
𝑎 = (𝐴𝑇𝐴)±1𝐴𝑇𝑌 (9) 

The genetic algorithm as an accidental method in neural network training and linking between 

the coefficients, has a performance better than methods based on traditional gradient  [11]. 
In most GMDH neural networks, neurons in each layer are connected to same layer’s neuron [18]. 

The encryption scheme in generalizing the neural network GMDH (GS-GMDH) has the ability 
to express different lengths and sizes in neural networks [12]. 

2.2. Effective parameters in odor substance concentration 

2.2.1. Odor substance oxidation in pipeline 

The thiol compounds oxidation is presented by equation (10). The short chains of mercap-
tans lead to their oxidation in this chemical interaction. The adsorption and desorption power 

of odorant by gas pipes depends on molecular weight and odor substances structure [19].  
2R− SH+O2→ R −S− S−R +H2O (10) 

The interaction between odorant molecules and pipelines internal surfaces is shown by 
equations (11) and (12), in which some odorants will be adsorbed on the internal parts of 
pipelines. This sweep is continued to achieve a counterpoise, so that the surface adsorption 

rate and return odorant rate to gas phase are constant. The organosulfurs are more prone to 
adsorption onto pipe wall in gas flow [19]. 
4Fe +3O2→ 2Fe2O3(s) (11) 
2Fe2O3(s)+ 2RSH(S) → RSSR +Fe2O3(s)+H2O (12) 

The odorants transfers are based on gas flow velocity in pipelines. This transfer is different 

based on consumers’ consumption and changes in gas flow rates [6].  

2.2.2. Modeling of odorant flocculation evaporation in pipeline and its phase 
change from liquid to gas/vapor 

In this model, it is assumed that the odor substances are transported due to high velocity of 
gas flow and settled in the path due to a decrease in the gas flow velocity, and high molecular 
weight of mercaptans (about 60 mg/mol) than typical composition of natural gas (about 17.8 
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mg/mol). If the transfer level is a fraction of the pipe area, which the odorant is settled in it, 
the odor substance will evaporate in contact with flow gas. Finally, it can be said that CA (Z, 
V, Kc (sc, sh)) is calculated in investigated lines. This model has been investigated with the 
assumption of the rapid reaction in gas and pipe interface CAi=0, lack of moment interaction, 
constant mass transfer level at the moment, very low mass transfer between gas mixture 

components and odor substance concentration in the place of injection CA, mass transfer co-
efficient Kd, sectional area of the pipe A,  odorant mass accumulation  m. Odorant evaporation 
modeling is shown in Figure 1 and mass transfer equation was solved by equation 13 [6]. 

 

Figure 1. Mass transfer equation in a cross section of pipe with odorant evaporation modeling  

𝑄𝐶𝐴 𝑖𝑛|𝑍− 𝑄𝐶𝐴𝑜𝑢𝑡|𝑍+∆𝑍 =  𝑚 = 𝐾𝑑𝐴(𝐶𝐴𝑖− 𝐶𝐴)
𝐴=𝑎п𝐷𝑑𝑧
→       𝑙𝑛

𝐶𝐴𝑖−𝐶𝐴0
𝐶𝐴𝑖− 𝐶𝐴

= [ (
4𝛼𝐾𝑑
𝑉𝐷

)𝑍] (13) 

3. Theory and calculations 

After extraction and refining for subscribers’ consumption, the natural gas is transferred by 
City Gas Station (CNG). The odor substance injection place is shown in Figure 2 by red circle, 
which the gas is odorized for subscribers’ safety and identifying gas leakage; then the odor 

gas is obtained to the subscribers by distribution lines. 

 

Figure 2. The schematic diagram of natural gas distribution 

The gas distribution pipeline, located in a region of the northern part of Iran with a length 
of 74.4 (km) which was faced with non-uniform mercaptan concentration, is schematically 
illustrated in Figure 3. This pipeline is between two CGS called feed stations 1 and 2 that are 
illustrated by green triangles. The electrical pump type odorizer is placed in order for the 

injecting mercaptan and providing odorant in transfer line. The CGS and TBS stations (gray 
square) are connected to each other by black lines as pipe; the nominal capacity of the station 
name is shown at the top of its name. Totally, the investigated line includes 18 stations (12 
inches lines are used in stations 4 to 8 and the 16 inches lines are used in other lines). The 
gas reached to stations in path from both sides of CGS station (indicated by red flash).  
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Figure 3. Investigated Nod map in the pipeline 

Different points are selected based on possible velocity change in pipe (around TBS station) 
and different distances to injection point in order to investigate and measure odor substance 
concentration by an odor handy device. At the beginning of the path in CGS stations, the input 
temperature and pressure are measured by gage and flow meter, respectively. The mentioned 
data are entered with gas mixture percentage, distance of measured concentration point 

(point 2 or exit pipe (i+1)), the pipe effective coefficient (0.9), and pipe diameter as input to 
system. The velocity , temperature ,density ,reduced pressure, mass transfer coefficient in 
gas lines, pressure at point 2, Sherwood numbers, Schmidt numbers, Reynolds, fraction co-
efficient, mass transfer coefficient at the exit are calculated after entering inputs and using 
equations of Appendix A (Figure 4).  

Inter Input 

(nod i) 

Qi    From flow meter             

Ti    From temperature gage   

Pi    From pressure gage           

Li    Length of after nod       

PC   Percent of components     

E     Efficiency of pipe           

Di   Diameter of pipe

Calculate 

Output 

(nod (i+1))

 V(i+1)- µ(i+1) - ρ(i+1)-ƒ(i+1)-

Tri+1-Pr(i+1)- DAB(i+1)-

Kd(i+1)-P(i+1)-Sc(i+1)-Re(i+1)-

Sh(i+1)

 V (i+1)

P (i+1)

Kd (i+1)

i=>0

As variable 

inpute into the 

neural network

Li

Ti

 V (i+1)

P (i+1)

Kd (i+1)

 

Figure 4. Computation steps of input data to neural network 
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According to effective parameters on gas concentration distribution in section 2.2, the flow 
gas velocity, pressure, and mass transfer coefficient variables in measured concentration 
points with gas average temperature and distance to odor substance variables are effective 
parameters on odorization. The calculations are done in all 148 investigated systems by en-
tering inputs and calculating outputs, so the input data to neural network is formed. Data are 

gathered during a year from the hot season (low gas consumption), June and September, to 
the cold season (high gas consumption), November, December and January. A set of these 
data is used as input data set to neural network. 

4. Results and discussion 

Figure 5 presents the measured concentrations of odor substances at different gas temper-

atures and velocities. Gas temperatures indicate the temperature of the pipeline. The higher 
gas temperature indicates the lower gas consumption and vice versa. The highest concentra-
tion is measured at 293 K, which is in the range of gas velocity in pipeline from 0.58 to 1.59 
m/s, which seems to be a low velocity. Moreover, it can be seen that, at low temperatures of 
279 and 283 K, the distribution of mercaptan concentration is roughly uniform. This suggests 
that at velocities between 1.77 and 4.7 m/s, a lower amount of odorants sedimentation through 

the pipeline meet NIGC standards. 
Figure 6 depicts the concentrations of odorants at various temperatures and distances from 

the injection point, CGS. The highest odorants concentrations are measured at 291 K. At a 
distance of about 6.8 km from the injection site, mercaptan concentration peaks. This is due 
to the TBS, which transmits a large volume of gas to the city pipelines reducing its velocity, 

and increases the time for sedimentation of odor substance. At lower temperatures the effect 
of distance is insignificant. 

According to the influence hypothesis in Section 2.2.b, the odorants mass transfer and its 
conversion from liquid to gas/vapor is of importance. The distribution of the odorants mass 
transfer coefficients at different gas concentrations are shown in Figure 7. These data were 

calculated from the liquid to gas mass transfer equations. Sherwood and Reynolds numbers, 
diffusion coefficients and other parameters in Appendix A are calculated in order to obtain 
mass transfer coefficients. This diagram shows that the temperature has a reverse relation 
with the rate of mass transfer of odor substances.  

 
 

Figure 5. Mercaptan concentrations at various 

gas temperatures and velocities at real condi-
tions 

Figure 6. Mercaptan concentrations at different 

temperatures and distances from CGS. 
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In Table 1, the maximum, minimum and 
average of training data (103) and experi-

ment data (45) are indicated. 
The genetic parameters, according to Figure 

8, are considered in optimization stage for 
investigated systems. The network forecasting 
is done in 3 layers to obtain output model. 
 
Figure 7. Calculated mercaptan mass transfer co-
efficients for the conversion from liquid to gas/va-

por at various gas concentration 

 

 

Figure 8. The proposed structure of the GMDH Multi-purpose neural network for estimation of the con-

centration of odor substance 

Table 1. Descriptive statistics of variables used to develop the GMDH 

Variable  Train (103 data set)  Test (44 data test) 

  Maximum Mean Minimum 
 Maximum Mean Minimum 

 V(m/s) 4.703064 2.01229 0.039014  3.999188 2.057561 0.107756 

 P(kPa) 1825.125 1794.037 1651.777  1823.673 1788.2 1655.625 

Input L(km) 39.99542 16.0355 0.214043  0.399 10.868 23.509 

 Kc(m/s) 0.004267 0.001829 0  0.003658 0.001829 0.000305 

 T(K) 293.15 286.14 279.15  293.15 285.7722 279.15 

Output CA(mol/L) 47.200 23.548 14.000  40.8 23.19027 14.7 

The evolutional scheme of neural network structure is used by genetic algorithm with the 
purpose of designing GMDH network. The genetic algorithm is used for producing initial pop-

ulation, which leads to producing new chromosome. Among these chromosomes the one with 
less training error and better forecast is selected in order to evaluate the power of obtained 
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model. The error values are indicated in Table 2, which show that the model is reliable (ob-
tained using the equations in Appendix B). After selecting the best chromosome for forecasting 
model, its polynomial graph is formed based on Table 3 that its value is calculated based on 
genetic data. The data are divided in two groups in Figure 9 that training data are validated 
by experimental data, and it is shown that results are acceptable according to formed model. 

Table 2. Statistical results for odor substance concentration 

 RRSE AADP (%) NRMSE RMSE MSE R2 

train 1.219 10.553 0.1107 3.676 13.5157 0.9773 

test 1.683 11.561 0.1789 4.671 21.825 0.9618 

total 0.367 10.894 0.1204 3.999 15.996 0.9727 

Table 3. Model multi-substant equal GMDH (Volttera Series) for estimating odor substant concentration 

Basic regression polynomial (Volttera Series) 

Y=Y9(Y8(Y6(Y3(5,3),3),Y1(3,2)),Y7(Y5(Y3(5,3),Y2(4,3)),Y4(Y1,1))) 

Yi(zj,zk)=a0(i)+a1(i) zj+a2(i)zk+a3(i) zjzj+a4(i) zkzk+a5(i)zjzk 

i a0 a1 a2 a3 a4 a5 

1 8.875754 0.475174 1.328846 -0.02348 -0.0067 -0.01743 

2 0.191467 -2.88694 36.28694 0.011272 -0.07802 -0.13145 

3 47.32473 -0.14197 -4532.79 -0.03862 179084.6 59.23848 

4 10.04962 0.191445 -0.14456 0.015436 0.000573 0.006022 

5 -15.9467 1.845944 2.108465 0.070071 -0.00816 -0.14609 

6 5.664134 -0.06307 0.568644 -0.0478 -0.0707 0.13018 

7 22.81855 -0.68887 -0.20673 -0.01632 -0.02877 0.083305 

8 22.81855 -0.68887 -0.20673 -0.01632 -0.02877 0.083305 

9 -9.20191 4.517381 -2.59854 0.026331 0.161005 -0.20983 

 

 

Figure 9. Odor substance amount graph based on the data number. (●) Training data. (▲) Testing data. 

(─) Data model by combining neural network and genetic algorithm  
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5. Conclusion 

This study was conducted in order to evaluate and forecast the odorization process by the 

GMDH network. Forecasting results, based on relationship among neurons, show that the most 
effective parameters on mercaptan concentration distribution are distance from injection point 
and gas flow velocity. The most significant part of the study indicates that velocity reduction 
beside TBS stations due to catching a part of flow gas volume (subscribers’ consumption) 
leads to non-uniformity of odor substance concentration, which can be explained by modeling 
the odor substance flocculation evaporation on pipeline ground. This phenomenon is increased 

in the hot seasons due to a sharp drop in gas velocity. The selection of odorizers considering 
stations distance, flow gas capacity, and number of stations must be attained due to non-
uniform distribution of odor substances. It was also observed that the problem points in mer-
captan distribution path can be identified and increasing or decreasing odorization and 
achieved safety can be helped by forecasting. Studying the gas pipeline in the region and 

different temperatures during years can have a significant role in more accurate evaluation of 
odor substance behavior forecast. 
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Nomenclature 

ρ density(g/m3) Ppr  sub-critical pressure(kPa) 

m mass and weight(g) Q volume flow(m3/s) 
v volume(m3) u velocity (m/s) 
G specific gravity Re Reynolds number 

M molecular weight(g/mol) D diameter(cm) 

ν viscosity(m2/s) CA odor substance concentration(mol/L) 

T temperature(K) DAB diffusion coefficient(cm3/s) 
P pressure(kPa) VA atomic volume per molecule(m3/kg.atm) 
Tr reduced temperature Sc  Schmidt number 

Pr  reduced pressure Sh Sherwood number 
Tc critical temperature Kd  mass transfer coefficient(m/s) 
Pc  critical pressure E efficiency pipeline 

Z compressibility factor Le length of the section(km) 
Tpr sub-critical temperature(K)&(Rankin)   
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Appendix A. Relations used for calculations in pipelines 
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𝑆𝑐 =
μ

ρDAB
 (A .16) 

0.5 ≤ SC ≤ 2000 
3000 ≤ Red ≤ 5 × 10

6 
f = [1.82 log(Re) − 1.64]−2 

 

(A .17) 

𝐾d =
ShDAB

d
 (A .18) 
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Appendix B. Statistical analysis 

1- Mean Squared Error 

 
 

MSN =
1

𝑛
∑(𝑌(𝑖,𝑒𝑥𝑝) − 𝑌(𝑖,𝑚𝑜𝑑𝑒𝑙))

2

𝑛

𝑖=1

 (B .1) 

2-Root-Mean Squared Error  

RMSE = √
1

𝑛
∑(𝑌(𝑖,𝑒𝑥𝑝)− 𝑌(𝑖,𝑚𝑜𝑑𝑒𝑙))

2

𝑛

𝑖=1

 (B .2) 

3- Normalized Root-Mean Squared Error  

NRMSE = [
1

𝑛
∑(𝑌(𝑖,𝑒𝑥𝑝) − 𝑌(𝑖,𝑚𝑜𝑑𝑒𝑙))

2

𝑛

𝑖=1

]

0.5

(𝑌(𝑖,𝑒𝑥𝑝) − 𝑌(𝑖,𝑚𝑜𝑑𝑒𝑙))⁄  (B . 3) 

4-Average Absolute Deviation Percent  

AADP(%) =
100

𝑛
∑|(𝑌(𝑖,𝑚𝑜𝑑𝑒𝑙) 𝑌(𝑖,𝑒𝑥𝑝)⁄ ) − 1|

𝑛

𝑖=1

 (B . 4) 

5-Root relative-squared error  

RRSE = ∑√(
(Y(i,exp) − Y(i,model))

2

(Y(i,model) − Y)
2

)

n

i=1

 (B . 5) 

  

6-Coefficient of Determination 

R2= 1 −[∑ (𝑌(𝑖,𝑒𝑥𝑝) − 𝑌(𝑖,𝑚𝑜𝑑𝑒𝑙))
2 ∑(𝑌(𝑖,𝑒𝑥𝑝))

2

𝑛

𝑖=1

⁄

𝑛

𝑖=1

] (B . 6) 
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