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Abstract 

In this paper, the group method of data handling (GMDH) networks are applied for modeling the 
momentous process variables of a bench scale zeoforming. The proposed model can predict the 
product research octane number (RON), benzene content in the product, liquid recovery (%), coke 
deposition (%) on the catalyst and sulfur removal conversion (%) by using a grand polynomial 
correlation which is a function of weight hourly space velocity (WHSV), reactor inlet temperature and 

reactor pressure. To do such a task, twelve experiments were performed in the bench scale pilot for 
1,400 hours. Then, modeling were done by GMDH software. 
The results showed that this model can precisely estimate the process variables and product properties. 
Moreover, it is confirmed that the proposed model is capable of predicting of the product research 
octane number (RON), benzene content in product, liquid recovery (%), coke deposition(%) on the 
catalyst and sulfur removal conversion (%) with the average absolute deviation (AAD%) of 0.29% , 
0.33%, 0.41%, 0.28% and 3.2% respectively. Moreover, the root means square error (RMSE %) of the 

mentioned parameters are 0.34%, 0.41%, 0.64%, 0.41% and 3.4%, respectively. 
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1. Introduction

Like typical catalytic reforming, the Zeoforming process converts low-octane hydrocarbons

into high-octane gasoline components. n-Alkanes are transformed mainly into aromatic hy-

drocarbons via recombination of olefins formed as a intermediate phase whereas the conver-

sion of iso-alkanes and naphthenes takes place on a limited scale [1-2]. In this way the for-

mation of aromatic rings is possible from n-pentane and other light n-alkanes as well as from 

n-hexane or higher. The Zeoforming process runs with an endothermic heat effect in the pres-

ence of catalyst consisting of hydrogen form of zeolite ZSM-5 and a binder Al2O3. Contrary to

typical reforming [3-8], where the dehydrogenation of naphtenes and dehydrocyclization of n-paraf-

fins are the dominating reactions, practically no hydrogen is produced and light hydrocarbons

are main by-products only. The Zeoforming process was first developed in the Institute of

Catalysis Zeosit in Novosybirsk, Russia and it was investigated on a pilot plant in 1987–1992 [1-2].

On the other hand, developing a black box model, which is exclusively obtained from ex-

perimental data, can provide other practical methods in the field of process modeling. These 

models provide a dynamic relationship between input and output variables and bypass under-

lying complexity inside the system. Most of these common approaches rely on linear system 

identification models. The major processes found in chemical engineering are unfortunately 

nonlinear processes, and previously mentioned approaches fail to respond regarding process 

nonlinearity. As an alternative to fundamental models, artificial neural networks (ANNs) are a 

valuable estimate tool, and up to now, numerous applications of ANN models in the engineer-

ing area have been reported [9]. ANN can perform better than regression models, and is tole-

rant to noise in data [10-13]. The increased importance of ANNs arises from their possibility to 

parallel process of data despite their components are independent of each other [14]. On the 
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other hand, straightforward theories do not offer adequate precision for estimation of experi-

mental data.  

However, ANN’s structure contains a massive complicated of equations within its nodes and 

layers. Furthermore, the arrangement of network is chosen manually or randomly which does 

not assure the best possible network. As a better alternative, the group method of data han-

dling (GMDH) provides a self-organizing neural network to express the genome of system as 

well as using the most suitable configuration by means of minimization process. In the other 

word, the GMDH utilizes feed-forward network whose coefficients are determined using re-

gression together with imitation of self-organizing activity [15]. The algorithm chooses the most 

suitable polynomial expressions built by combination of two independent variables at a time.  

Some artificial neural network models have been developed in the literatures to predict and 

control parameters in industrial processes such as catalytic reforming unit [16-17]. But based 

on our literature review, there is no study on using GMDH to model the Zeoforming process. 

Therefore, the present study is devoted to model the RON of the product, benzene content in 

product, liquid recovery (%), coke deposition(%) on the catalyst and sulfur removal conver-

sion using GMDH for a pilot scale test of Zeoforming process. To validate the proposed model, 

several tests were performed with different operating conditions in the Zeoforming pilot plant 

(about 1440 hrs). 

2. Materials and methods 

2.1 Process description of the industrial scale Zeoforming unit 

A block flow diagram of the industrial scale zeoforming unit is presented in Figure 1. 
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Figure 1. Block flow diagram of the industrial scale Zeoforming unit 

The Zeoforming plant has been producing unleaded gasoline component during the last few 

years. In the conventional Zeoforming plant there are two lines of reactors work alternatively. 

Both lines consist of three reactors. Each line of reactors works during 7-10 days and then the 

catalyst is regenerated. The total time of the catalyst work is about one and a half year. 
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2.2. Experiments in the pilot scale system 

The experiments were carried out in a pilot test system, which is licensed by the Research 

Institute of Petroleum Industry (RIPI). This device can tolerate temperatures and pressures 

up to 500°C and 70 bar, respectively. The simplified diagram of pilot scale is presented in 

Figure 2. As can be seen, the temperature along the reactor bed is controlled by use of three 

thermocouples (TIC 1-3).  
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Fig. 2. Schematic diagram of the experimental Zeoforming unit 

As can be seen, the feedstock is pumped from the reservoir (T-1) using a piston pump (P-1) 

to the top of the reactor. Helium and nitrogen gas for purging are sent from their cylinders to 

the top of the reactor, the flow rate being controlled by mass flow controllers (MFC-1). The unit 

consists of a stainless steel reactor (internal diameter of 2.2 cm and length of 51 cm), kept at 

isothermal condition using a three-zone electric furnace. In the reactor inlet, the temperature 

of inlet feedstock increases to the reaction temperature using the preheating zone of the re-

actor (zone-1). Reactions are carried out at the following conditions: Temperature of 300-

440°C; Pressure of 5-20 bar and WHSV of 1-4. As mentioned, through the bed, there are three 

thermocouples to control the bed temperature. At the reactor outlet, the reaction effluent is 

cooled using a water-cooled heat exchanger (E-1). Then, the vapor and liquid phases are separated 

in a high and low pressure separators (V-1, V-2). After reducing the pressure, the liquid is allowed 

to flow from the separator to the other flash drum, maintained at atmospheric pressure. The 

liquid sample is discharged discontinuously into sampling bottles. Finally, the output of gas 

flow rate was metered by gas-meter and composition of the this stream is determined using 

an online gas chromatograph (Agilent 8790-A).  

The operation conditions for the catalytic activity testing in the pilot and products specifi-

cations are shown in Tables 1 and 2.  

Table 1. Operation conditions of pilot testing 

No. 

WHSV T P 

No. 

WHSV T P 

Units Units 

h-1 °C bar h-1 °C bar 

1 1.22 358 5 7 3.61 361 15 

2 1.02 400 10 8 3.5 402 5 

3 1.2 440 15 9 3.52 440 10 

4 2.35 360 10 10 4.02 314 20 

5 2.33 400 15 11 3.9 340 17.7 

6 2.31 434 5 12 3.01 355 12.5 
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Table 2. Pilot test products specification 

No. Liquid recovery Octane number Coke Deposition S Conversion 
Benzene 
content 

 Units 

 vol /vol - %wt % %wt 
1 55 83.3 1.5 93.3 3.4 
2 56 82.7 21.0 39.5 3.9 

3 39 67.9 38.0 16.7 8.1 
4 71 82.5 9.9 66.7 2.3 
5 70 80.4 22.5 39.5 2.0 
6 52 85.7 35.0 23.3 4.5 
7 82 80.8 2.1 64.3 1.4 
8 79 81.9 12.2 69.5 2.0 
9 46 84.1 31.8 7.1 4.7 

10 84 78.9 8.2 95.7 1.0 
11 93 80.7 6.0 48.2 0.8 
12 80 80.6 4.2 71.7 2.5 

3. GMDH modeling approach for the Zeoforming pilot scale experiments 

The basic structure of the brain has been widely employed for various fields such as mod-

eling, control, and pattern recognition. The GMDH, introduced by Ivakhnenko [18], is a hierar-

chical and learning network structure that provides an effective approach to identify higher 

order non-linear systems. Its main purpose is the identification of relations in large complex 

non-linear multidimensional systems as well as their approximation and prediction. In the 

GMDH network, the part which corresponds to the neuron of a neural network is called the 

“N-Adaline”, and is generally expressed by a polynomial. The N-Adaline is composed of two 

inputs and one output, and the latter is generated by combinations of two inputs [19]. Inputs, 

xi and xj, are then combined to produce a partial descriptor based on the simple quadratic 

transfer function as the following:  

𝑦
∧

𝑛 = 𝑎0 + 𝑎1𝑥𝑖𝑛
+ 𝑎2𝑥𝑗𝑛

+ 𝑎3𝑥𝑖𝑛
𝑥𝑗𝑛

+ 𝑎4𝑥𝑖𝑛

2 + 𝑎5𝑥𝑗𝑛

2               (1) 

where 𝑦
∧

𝑛 is determined using the least squares method, and coefficients i.e. a0 to a5 are de-

termined statistically, and are unique for each transfer function. These coefficients can be 

thought as analogous to weights found in other types of neural networks. The GMDH topology 

is usually determined using a layer by layer pruning process based on a pre-selected criterion 

of what constitutes the best nodes at each level. The traditional GMDH method is based on an 

underlying assumption that data can be modeled by using an approximation of the Volterra 

series or Kolmorgorov-Gabor polynomial as follows: 

𝑦 = 𝑎0 + ∑ 𝑎𝑖
𝑀
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗

𝑀
𝑗=1

𝑀
𝑖=1 𝑥𝑖𝑥𝑗 + ∑ ∑ ∑𝑀

𝑘=1 𝑎𝑖𝑗𝑘
𝑀
𝑗=1

𝑀
𝑖=1 𝑥𝑖𝑥𝑗𝑥𝑘 . ..       (2) 

where X (x1,  x2 ,…., xM) is the vector of input variables, and A (a1 , a2 ,…., aM) is the vector 

of summand coefficients [19].  

During constructing GMDH, all combinations of inputs are generated, and sent into the first 

layer of the network. Outputs from this layer are then classified and selected as input for the 

next layer with all combinations of the selected outputs, sent into the layer 2. This process is 

continued as long as each subsequent layer (n+1) produces a better result than layer (n). 

When layer (n+1) is found to not be as good as layer (n), the process will be stopped. Now, 

each layer consists of nodes that a pair of inputs is its source.  

In GMDH topology, each node produces a set of coefficients (ai & 𝑖 ∈ {1,2,3, . . ,5}) that are 

estimated by using training data. Then, the fitness is tested by evaluating the mean square 

error of the modeled (𝑦
∧
) and actual (pilot data) (y) values as follows: 

𝐸𝑟𝑟𝑜𝑟 = ∑ (𝑦𝑛

∧𝑁
𝑛=1 − 𝑦𝑛)2                       (3) 

To identify the coefficients with the best fit, the partial derivatives of Eq.(3) are calculated 

with respect to each constant value ai, and set it equal to zero as follows: 
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𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑎𝑖
= 0                            (4) 

Finally, to compare the modeled and actual values, average absolute deviations (AAD%) 

and root mean squared error (RMSE) are calculated as follows: 

𝐴𝐷𝐷% =
∑ |(

𝑌𝑖
𝐴𝑐𝑡𝑢𝑎𝑙−𝑌𝑖

𝑚𝑜𝑑𝑒𝑙𝑒𝑑

𝑌𝑖
𝐴𝑐𝑡𝑢𝑎𝑙 |||

𝑁𝑡=50∑
𝑖=1

𝑁𝑡
                    (5) 

𝑅𝑀𝑆𝐸% =
√

∑ (
𝑌𝑖

𝐴𝑐𝑡𝑢𝑎𝑙−𝑌𝑖
𝑚𝑜𝑑𝑒𝑙𝑒𝑑

𝑌𝑖
𝐴𝑐𝑡𝑢𝑎𝑙2

𝑁𝑡=50∑

𝑖=1

𝑁𝑡
                    (6) 

where 𝑁𝑡, 𝑌𝑖
𝑎𝑐𝑡𝑢𝑎𝑙, 𝑌𝑖

𝑚𝑜𝑑𝑒𝑙𝑒𝑑  are the number of test runs, actual variables, and the modeled values.  

4. Results and discussion 

To build up the GMDH model for the Zeoforming pilot plant, as previous mentioned fourteen 

test runs with specific operating condition about 1400 hours have been done. These points 

were included of product research octane number (RON), benzene content in product, liquid 

recovery (%), coke deposition (%) on the catalyst, sulfur removal conversion (%), tempera-

tures of reactor, Weight hourly space velocity (WHSV), reactor pressure. The corresponding 

polynomial equations of the proposed models for the growth period are presented in Table 3 

to 7. Figures 3 to 7 show the comparison between the measured output variables (pilot data) 

and the modeled ones using the GMDH network. From these figures, a reasonable agreement 

can be observed.  

Table 3. Nodal expressions for GMDH neural network of product RON 

RON = 49.025 + A^2*B*5.9819e-05 

A =-1412.42+T*6.63879–T*D^2*0.0011457-T^2*0.0155909+T^2*D*0.000207261+ ^2*0.25228 

B = 70.918 - T*4.01667 + T*C*0.0978574 - T*C^2*0.000591001 

C = 88.868 - T^2*P*4.82775e-06 

D =199.971-WHSV*181.677 + WHSV *T*0.476092 + WHSV ^2*30.7452 - WHSV ^2*T*0.0806093 - 

T^2*0.000805396 

 

 

Figure 3. Comparison plots: A) pilot product RON vs. modeled and B) pilot RON product vs. modeled 

Table 4. Nodal expressions for GMDH neural network of benzene content in product 

Benzene content= 2.44239 + A*1.4666 - A*B^2*0.0383337 + A^2*B*0.00157376 - B*2.64507 
+ B^2*0.535629 

A = 15.2436 - WHSV*3.56789 + WHSV ^2*C*0.248011 - C*4.63411 + C^2*0.555185 

B = 4.36356 - P*D*0.175582 + P*D^2*0.0362233 

C = -7.74906 + WHSV*3.7904 - WHSV*T*0.0119091 + T^2*8.51803e-05 

D= 4.56679 - WHSV *P*0.121769 + P^2*0.015789 
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Figure 4. Comparison plots: A) Pilot benzene content in product vs. model data and B) Pilot benzene 
content in product vs. modeled 

Table 5. Nodal expressions for GMDH neural network of coke deposition % on the catalyst 

Coke Deposition = -3.32288e-13 + A*1 
A= -1.66955 -WHSV *B^2*0.00282549 + B*1.27244 
B = 360.994 - T*2.10261 + T ^2*0.00310333 

 

 

Figure 5. Comparison plots: A) Pilot coke deposition content on the catalyst vs. model data and B) Pilot 
coke deposition content on the catalyst vs. modeled. 

Table 6. Nodal expressions for GMDH neural network of coke deposition % on the catalyst 

Liquid recovery %=-76.1252+B*A^2*0.000764728-B^2*A*0.000422058+A*4.90851- A^2*0.0645144 

A = -26.7678 + WHSV *B*0.159235 - WHSV ^2*1.68632 + B*1.94443 - B^2*0.011157 
B = -843.718 + WHSV*35.3068 - WHSV*T ^2*0.000166972 + T*4.47515 - T^2*0.00561868 

 

 

Figure 6. Comparison plots: A) Pilot liquid recovery vs. model data and B) Pilot liquid recovery vs. modeled 
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Table 7.  Nodal expressions for GMDH neural network of removal sulfur conversion  %  

S Conversion = -414.602 - B*A*0.375169 + B*A^2*0.00137611 + A*26.6726 
A = 17.1374 + B^2*0.0104304 
B = 328.735 - T *0.679671 - T*P^2*0.000254402 

 

 

Figure 7. Comparison plots: A) Pilot vs. model data and B) sulfur conversion Pilot vs. modeled 

The results show that this model can predict well the RON, benzene content in product, 

coke deposition, liquid recovery, sulfur conversion with the AAD % of 0.29%, 0.33%, 0.28%, 

0.41 and 3.2 %, respectively. Moreover, the RMSE % of the mentioned variables are 0.34%, 

0.41%, 0.41%, 0.64% and 3.4%, respectively. 

It is supposed that the main deviation can be related to some factors including power fluc-

tuation of instruments, calibration of analysis devices, human errors, and signal transmission 

that cannot be excluded from the collected data. However, from the presented results, it can 

be concluded that the proposed approach is reliable enough to be utilized for predicting the 

behavior of the heavy naphtha catalytic reforming unit. 

5. Conclusion 

In this work, a group method of data handling (GMDH) modeling approach was applied to 

predict and model significant output variables of a zeoforming unit on bench scale experi-

ments. These process output variables were RON, benzene content in product, coke deposi-

tion, liquid recovery and sulfur conversion. Then, by using the proposed model, the influence 

of operating conditions variables were studied. 

Twelve test runs were used to construct and train the GMDH network for the target 

zeoforming plant. It was concluded that a GMDH network with three neurons in the interme-

diate layer was satisfying to simulate output variables of zeoforming i.e. RON, benzene content 

in product, coke deposition, liquid recovery and sulfur conversion with small value of the 

AAD% and RSME%. Consequently, the GMDH can be a reliable and accurate tool to model 

zeoforming plant for sensitivity analysis, optimization and troubleshooting purposes without 

tackling the complexity of fundamental methods.  
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