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Abstract 

The rheological properties of drilling fluid change owing to elevated temperature and aging time and 
these in effect, cause problems in drilling deep wells. A laboratory investigation of the effects of temperature 
and aging time on the properties of water-base drilling fluid is made with Fann Model 800 HighTemperature, 
High Pressure (HTHP) Viscometer. It is evident from the findings that effective viscosity, plastic viscosity 
and yield point decrease steadily with increase in temperature for all values of aging time. It  is observed as 

well that viscosity at a given temperature decreases with increase in aging time and the aging effect 
are diminishing as the aging time increases especially for the effective viscosity and yield point.  It is 
also observed from this study that viscosity, yield point, gel strength and shear stress at a given shear 
rate decrease with increase in temperature and aging time. Finally, this paper presents a predictive 
model equation good enough to analyse trends and predict future values for effective and plastic viscosities. 
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1. Introduction  

There is no doubt that to successfully drill a well for the production of either crude oil or 

gas, the properties of the drilling fluid used has to be continuously monitored and controlled 

during the drilling operation. However, the determination of the mud properties requires the 

experimental examination of the mud system at both the standard API and the high 

temperature, high pressure conditions at intervals throughout the duration of the drilling 

process. It is quite easy to determine the mud properties at the surface conditions. These 

properties do not in any way represent the true bottom-hole conditions. In addition, 

maintaining bottom-hole conditions at the surface for experimental reasons is difficult and 

risky. In order to investigate the properties of a drilling fluid at bottom-hole conditions from 

the surface conditions, the concept of aging is used. 

Most drilling fluid formulations contain a base liquid and additives which must be dissolved or 

mechanically dispersed into the liquid to form a homogenous fluid. The resulting fluid may 

contain one or more of the following: water-dispersible (soluble) polymers or resins, clays or 

other insoluble but dispersible fine solids and soluble salts. The fluids are mixed or sheared for 

the number of times appropriate to achieve a homogenous mixture and are then set aside 

to “age”. Aging of drilling fluid is the process in which a drilling fluid sample previously 

subjected to a period of shear is allowed to more fully develop its rheological and filtration 

properties. Aging takes place when mud is left inactive for example during tripping. Aging is 

done under conditions which vary from static to dynamic and from ambient to highly elevated 

temperatures. 

Annis [1] investigated the changes in rheological property with time and temperature up 

to 3000F by a concentric-cylinder, rotational viscometer of the Fann type. His experiments 
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covered the effects of temperature and aging on shear rate – shear stress , gel strength and 

viscosity. The study concluded that high temperature causes flocculation of bentonite clays, 

resulting in high yield points, high viscosities at low shear rates, high gel strengths and a 

permanent thickening of the mud.He added that proper treatment of bentonite mud with 

NaOH and lignosulphate reduces the effect of dispersion and flocculation at high temperature. 

Alderman et al [2], carried out experiments with water-base muds to study the rheology 

at temperatures up to 2660F and pressures up to 145000psi. They concluded that high 

shear viscosity decreases with increasing temperature in a similar manner for all drilling 

fluids examined and increases with pressure to an extent which depend on mud density. 

Yield stress is essentially independent of pressure and weakly dependent on temperatures. 

Their study did not simulate the bottom-hole conditions and did not consider the aging effect. 

Mohammed Shahjahan Ali [3], later wrote a thesis from a laboratory investigation on the 

effect of high temperature (4900F) and aging time of 30days on water-base mud properties 

using the HTHP viscometer, baroid roller oven(dynamic aging) and distilled water as the 

continuous phase. 

The result shows a decrease in viscosity, yield point and gel strength with the increase in 

temperature for all values of aging time. He concluded that shear stress for a particular 

temperature increases with increase in shear rate, but shear stress at a given shear rate 

decreases with increase in temperature. Viscosity, yield point and gel strength at a given 

temperature increase with aging time and aging effects are diminishing with the increase in 

aging time. Shear stress at a given shear rate increases with aging time and aging effects 

decrease with the increase in aging time. 

Shokoya et al [4] conducted a study on the rheology and corrosivity of water-base drilling 

fluid under simulated downhole conditions. The rheological property and corrosion behavior 

relationship of mild steel type 1018 in a typical drilling fluid used in deep drilling and hot 

wells was studied. The tests were conducted under conditions that simulate flow, temperature, 

and pressure encountered during drilling operations. Physical properties that were considered are: 

shear stress-shear rate relationship, effective and plastic viscosities, yield strength and gel 

strength. The properties were determined under high temperature and pressure by using a 

flow loop, the Baroid roller oven and the FANN-70 viscometer. The corrosion measurements 

were carried out by weight loss and electrochemical techniques. The effective and plastic 

viscosities of the drilling fluid decrease with increase in temperature and increase in time of 

exposure to downhole conditions. The corrosion rate of 1018 mild steel increase with decrease 

in pH of the fluid. The corrosion rates are lower at the mildly alkaline pH and higher in the 

mildly acidic pH range. The drilling fluid generally attacks the grain boundaries of the steel 

samples. Diffusion was found to be the rate limiting step for the corrosion reactions.  

S.Salimi et al [5] conducted a research on the rheological behavior of polymer-extended 

water-based drilling muds at high temperatures and high pressures simulating their true 

working conditions in a deep oil well. The performance of these polymers as a rheology 

modifier in drilling systems was then investigated using a Fann 50C commercial viscometer. 

By measuring shear stress vs. shear rate (i.e., the flow curve) at pressures up to 500 psi 

and temperatures up to 300°F , it was found that temperature had a detrimental effect on 

the rheological properties of the test fluids while the effect of pressure on these properties 

was realized to be less significant (specially at pressure above 300 psi).  

Osman and Aggour [6] carried out an experiment to determine drilling mud density change 

with pressure and temperature using a newly developed Artificial Neural Networks (ANN) 

model. Available experimental measurements of water-base and oil-base drilling fluids at 

pressures ranging from 0 to 1400 psi and temperatures up to 400 °F were used to develop 

and test the ANN model. With the knowledge of the drilling mud type (water-base, or oil-

base) and its density at standard conditions (0 psi and 70°F) the developed model provides 

predictions of the density at any temperature and pressure (within the ranges studied) with 

an average absolute percent error of 0.367, a root mean squared error of 0.0056 and a 

correlation coefficient of 0.9998. 
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Exner [7]  carried out an investigation on the effects of temperature on the viscosity of 

some Gulf coast drilling muds. The purpose of this investigation was to determine the relative 

changes in the apparent viscosity of muds with changes in temperature and to discover other 

physical effects due to heat. Exner states: “Very little information has been published regarding 

the effects of temperature on the viscosity of drilling mud”. He quoted Maustl who stated 

that "The viscosity of most muds is decreased on heating, but the interesting thing is that 

the degree of flocculation is also increased on heating. There will be a greater tendency to 

seal off formations at high temperatures than at low temperatures." With regard to the 

effect of temperature on viscosity and yield point, Exner states: "The variation of yield point 

and viscosity of mud with temperatureis not very clearly brought out by the data available. 

Both appear to decrease slightly with increasing temperature up to 2000F." The experimental 

results presented in this paper further emphasize this point. Two types of viscosimeters are 

available for measuring the apparent viscosities of drilling muds: the efflux tube type as 

used by Herrick3 and Marsh, and the torsional type such as the McMichael or the Stormer 

viscosimeters.  

Pavel [8] published an article titled “High-Pressure/High-Temperature Operations: Aqueous 

drilling fluid contends with HP/HT wells”. In this article, he presented a new water-based 

drilling fluid developed specifically to contend with the unique challenges of onshore ultra-

deep HP/HT wells in sensitive ecosystems. He stated that HT gelation is an overriding problem 

with water-based muds even in routine applications but is magnified considerably in deep 

HP/HT wells. Gelation is caused when clay or bentonite in the fluid flocculates. Aqueous systems 

require very tight control of the solids content along with selecting thermal-stable products 

for treatment. HT gelation and degradation of product and mud properties increase HP/HT 

fluid loss. With drilling fluid densities approaching 17 lb/gal, barite sag can impact the entire 

operation.  Very high rheology was observed, with some samples appearing almost dry after aging. 

For this work, the final temperatures were 482°F (250°C), 446°F (230°C), and 410°F (210°C). 

Andreas et al [9] investigated the effects of Shear rejuvenation, aging and shear banding 

in yield stress fluids. The purpose of his work was to simulate shear rejuvenation and aging 

effects in shear thinning yield stress fluids in a typical rotational rheometer and to provide a 

common framework to describe the behavior of yield stress materials in general. The breakdown 

and buildup of structure were studied using a theory based on the Herschel–Bulkley flow 

model that is consistent with experimental data. The theory was implemented using a novel 

computational method. Interestingly, the simulations revealed the existence of time-dependent 

shear banding that occurs within the gap when the macroscopically imposed shear rate is 

below a certain critical value. Shear banding was analyzed in detail and results showing the 

effects of major parameters on the phenomenon were presented. 

2. Experimental 

2.1 Materials

The experimental apparatus used in this study consists of a Fann Model 800 HighTemperature, 

High Pressure (HTHP) Viscometer, the Hamilton beach mixer, the hot plate, stirrer and the 

mud balance. 

2.2 Methods 

The materials used for the mud sample of this study are as follows: 

i. Fresh water: 350ml of fresh water was used as the continuous phase for all the 

experiments where the different components are blended with it to form the drilling fluid. 

ii. Wyoming bentonite: This was used as the clay mineral to develop viscosity. 22.5g of 

bentonite was used in 350ml of fresh water. 

iii. Barite: 5g of Barite was added to the bentonite suspension to serve as a weighting material.  

iv. Sodium Chloride (NaCl): 5g of Sodium Chloride was added to the bentonite suspension to 

attain maximum gel strength of the drilling fluid. 
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v. CMC: 5g of CarbonMethylCelulose was added for modification of viscosity. 

vi. Lignosulphate (Thinner): 5ml of Lignosuphate was used as an additive for thinning of 

mud sample. 

The density of the freshly prepared mud was found to be 8.7ppg and its PH was 

measured to be 9.3.  

Procedures 

The experimental procedures for some of the instruments are as follows: 

Procedure for mud balance: 

Calibration  

 The cup was filled with fresh water, the lid was replaced and wiped dry. 

  While the rider is set on 8.3 ppg or 1.0 s.g., lead shot was added or removed from the 

shotwell until instrument was balanced.  

Procedure: 

- The mud balance base (in a carrying case) was placed on a flat level surface.  

- Then the cup was filled to the top with the test fluid.  

- Covering the hole in the lid with a finger and washing all mud from the outside of the cup 

and arm, the entire balance was thoroughly dried. 

- With the balance placed on the knife edge, the rider was moved along the outside of the 

arm until the cup and arm are balanced as indicated by the bubble.  

- Then the mud weight was read at the edge of the rider towards the mud cup.  

2.3 Aging 

After the mud sample has been prepared, it was poured into a container, properly covered 

and allowed to age for a desired period of time after which the test was run on the aged 

sample at varying temperatures. This process is called static aging as opposed to dynamic 

aging where the mud sample is placed in high-pressured aging cells and rolled in an oven 

for a specified period. 

The Baroid roller oven is used for dynamic aging of the mud samples for more accurate 

results but could not be used because of its unavailability as a result of its ill-working condition 

as at the time this research work was done hence the employment of static aging as an 

alternative. 

3. Results and discussions 

3.1 Results of the experiment 

Values of effective viscosity, plastic viscosity, yield point and gel strengths are presented 

respectively as functions of temperature in figures 1 through 4 for the different aging 

periods. Each curve of these figures represents the result for a different aging time.Values 

of shear stress (recorded dial readings) as a function of shear rate (revolutions per minute) 

at a fixed aging time while varying temperature are presented in figures5 through 12 and 

values of shear stress as functions of shear rate for different aging time at fixed temperature are 

also presented in figures13 through 18.  

3.2 Analysis of results 

3.2.1 Effect of temperature 

The effect of temperature on drilling mud can be attributed to the complicated interplay 

of several causes, some of which are more dominant than others. Factors such as reduction 

in the degree of hydration of the counterions, reduction of the viscosity of the suspending 

medium, increased dispersion of associated clay micelles, changes in the electrical double 

layer thickness and increased thermal energy of the clay micelles. Since all these processes 

take place in the drilling fluid simultaneously as temperature is varied, an interpretation of 
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the observed results will only be possible in cases whereby some of the effects are 

predominant and as such be easily identified. 

As shown in figures1 through 3, effective viscosity, plastic viscosity and yield point 

decrease steadily with increase in temperature for all values of aging time with a slight 

increase in viscosity at 80oC. These changes in rheological properties can be explained 

according to the investigation carried out by Annis [1]. He found out that high temperature 

causes flocculation of bentonite clays resulting in high viscosities at low shear rates and high 

gel strengths but proper treatment of bentonite mud with lignosulphate reduces the effect 

of flocculation at high temperature. Also, Exner J.D. [7] quoted an author to have stated: 

"The viscosity of most muds is decreased on heating, but the interesting thing is that the 

degree of flocculation is also increased on heating. The effect of temperature on gel strength 

could not be considered because of laboratory constraints but the aging effect is presented 

as shown in figure 4.4. 

Also, figures5 through 12 show that: 

1. For a particular temperature, shear stress increases with shear rate 

2. For the same shear rate, shear stress decreases with increasing temperature (a slight 

deviation from this trend was observed at 80oC but no specific conclusion can be made 

on this, since tests were not taken at higher temperatures than 80oC) and temperature 

effects are diminishing with increase in temperature.  

This observed result can be explained according to the research conducted by Mohammed 

Sahjan Ali [3]. He discovered that the above stated effects are as a result of severe degradation 

of copolymers (CMC) and bentonite clay due to the application of heat as well as mechanical 

shearing. As the polymer degrades, the clay platelets start to dehydrate, the platelets 

approach each other so closely that the attractive forces dominate, resulting in a state of 

dispersion with edge to face contacts of the platelets. Increase in temperature causes the 

platelets to aggregate, and ultimately leads to a state of aggregation and flocculation resulting in 

low rheological properties.Another reason is that in HTHP viscometer, the mud sample is 

subjected to continuous shear rate. The high shear rate prevents the bentonite platelets 

from building structures like house of cards and thus there is gradual change in rheological 

properties. The results of the effect of temperature on shear stress-shear rate relationship 

are similar to that found by Mohammed Sahjan Ali [3]; who collected data at 77, 122, 212, 

302, 392 and 490oF. However, in this research work, data were collected at 86, 104, 122, 

140, 158 and 176oF and no further because of the constraint imposed by the equipment 

limitation (maximum operation temperature of the viscometer is 190.4oF) but similar results 

were observed. The results of the effect of temperature on shear streess-shear rate relationship 

follows the same trend as found by Hiller [10]. He used 4 percent pure sodium montmorillonite 

to which 5 liters of NaOH was added and measured the shear stress- shear rate values for 

78 and 350oF at constant pressure of 8000psi. He observed that shear stress for a particular 

temperature increases with shear rate, but shear stress at a given shear rate decreases with 

the increase in temperature although no specific conclusion was drawn on temperature 

effect as data was collected only at two temperatures. 

3.2.2 Aging effect 

The effect of aging on mud rheology was also studied. The results are presented in 

figures1 through 4 and also in figures 13 through 18. From figures 1 through 3, it was 

observed that viscosity at a given temperature decreases with increase in aging time and 

the aging effect are diminishing as the aging time increases especially for the effective 

viscosity and yield point. This result is in good agreement with that obtained from the study 

conducted on the rheology and corrosivity of water-base drilling fluid under simulated 

downhole conditions by Shokoya et al [4].  The tests were conducted under conditions that 

simulate flow, temperature, and pressure encountered during drilling operations and they 

found out that effective and plastic viscosities of the drilling fluid decrease with increase in 

temperature and increase in time of exposure to downhole conditions (i.e. aging).  
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The explanation for decrease in viscosity may be gotten from an analysis of the 

composition of the drilling fluid formulated for this study. Salt (NaCl) was added to maximize 

gel strength and also for compatibility against salt formations.Moreover, salt from its chemical 

properties is known to have a high water holding capacity which increases with exposure 

time (i.e.aging). This can even be physically observed when a sample of sodium chloride 

salt is exposed to the air; the salt becomes moist-hygroscopy-after some time (especially 

with use) having absorbed moisture from the atmosphere. From the foregoing, it can be 

deduced that there is an increase in moisture content as a result of the absorption of water 

molecules from the surrounding by the salt molecules as aging time increased which therefore 

results in a decrease in viscosity.  

Another factor to consider is the presence of carboxymethyl cellulose (CMC) that was 

added in the drilling fluid formulation. As the drilling fluid ages, the CMC component becomes 

degraded leading to the weakening of its viscosity modification effect moreso as temperature is 

increased. The result observed agrees with that gotten by S. A. Williams [11] who studied 

viscometric and filtration properties at 80°F and at elevated temperature for a saturated 

gypsum mud and a 20,000 ppm sodium chloride mud, treated with sodium carboxymethyl 

cellulose (CMC) and then with another polymer.  In the muds containing CMC, the observed 

plastic viscosity decreases (at 175°F.) and the API filter loss increase (at 200°F). Data was 

presented to illustrate the extent of degradation of CMC in a gypsum mud when heated for 

16 hours (aging) at 350°F under a nitrogen atmosphere. These results show that, from an 

operational point of view, CMC was completely degraded.  

Furthermore, it is found from the chemistry of lignosulfonate that all prepared lignosulfonates 

have between 30% and 70% high dispersion efficiency. The efficiency can be explained in 

two ways:  

1) The high molecular weight of lignosulfonates has a large steric repulsive force, and  

2) Some lignosulfonates contain a higher sulfur content than others (such may be the 

case for the lignosulfonate used in preparing the mud for this study) and therefore 

have a larger electrostatic repulsive force thus making mud become less viscous. 

As shown in figure 4.4, the initial and 10minutes gel strengths increase with aging time 

and aging effects become diminished as aging time increases. This is so because as the particle 

numbers increase, the attractive and large interparticle forces become greater and thus, the 

gel strength is also increased.  

Furthermore, figures 13 through 18 show that shear stresss at a given shear rate 

decreases with the aging time. This is expected as viscosity is directly proportional to shear 

stress. As observed earlier that viscosity decreases with aging time, consequently, shear 

stress also increases with aging time. This again agrees with the results obtained by 

Shokoya et al [4] as explained earlier. 

It is a known fact that temperature and aging have effects on the drilling fluid properties. 

It is also observed from this study that viscosity, yield point, gel strength and shear stress 

at a given shear rate decrease with increase in temperature and aging time. A lot of drilling 

problems can be avoided if the optimum values of these properties are maintained. 

Mud rheology is of utmost importance in drilling as viscosity practically influences penetration 

rate. Cutting slip velocity for instance correlates better with yield point than any other 

parameters. Proper gel strength is needed to keep the cuttings in suspension, and relatively 

low gel strength is better for high penetration rate.This causes less pressure drop in the hole. 

It also worth noting that the addition of lignosulfonate into drilling fluid system can 

reduce the viscosity of the mud and therefore will reduce the amount of energy needed to 

rotate the drill stem and the drill bit. As an example of their effectiveness as a thinner, 

lignosulfonate with sodium hydroxide are the best treatments for salt contamination, which 

come from formation and cementing. 
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3.3 Model development 

A predictive model equation was also developed using regression tool in Excel to analyse 

trends and predict future values for effective and plastic viscosities. From the regression, 

the following model was developed: 

1 µe  = 16.0996738 – 0.1053571Ѳ  – 0.5350361t 

2 µp = 7.339696 – 0.04911 Ѳ – 0.21749t 

where µe, µp are respectively the effective and plastic viscosities, Ѳ stands for temperature and 

t denotes the aging time. 

Figures show that 19 through 22 show the Regression for Effective and Plastic Viscosities and 

their Coefficients of Regression, R2. It can be observed in figures 20 and 22 that there is a 

good correlation between the experimental and the predicted values thus making the 

developed model reliable to a good extent.  

4.Conclusions 

Based on the foregoing laboratory investigation,  the conclusions drawn are as follows: 

1. The effective and plastic viscosities, yield point and gel strengths of water-based drilling 

fluids decrease with increase in temperature and with increase in aging time. 

2. For the same shear rate, shear stress decreases with increasing temperature and 

temperature effects are diminishing with increase in temperature and for a particular 

temperature, shear stress increases with shear rate. 

3. As aging time increases, its effect on effective viscosity, yield point and gel strengths 

become diminished. 

4. For every temperature that was considered, the shear stress at a given shear rate 

decreased with increase in aging time and this effect also reduces as aging tme 

increases. 

5. The developed models can be used to predict future values for Effective and Plastic 

Viscosities since there is a good correlation as shown provided the mud composition is 

not too different from what is used in this study. 
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Figure 1 Effective viscosity as a function of temperature for different aging times. 

 

Figure 2 Plastic viscosity as a function of temperature for different aging times. 

 

Figure 3 Yield point as a funtion of temperature for different aging times. 
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Figure 4 Gel strength as a function of aging 

 

Figure 5 Shear stress as a function shear rate for different temperature at 0 day aging time 

 

Figure 6 Shear stress as a function shear rate for different temperature at 1 day aging time 
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Figure 7 Shear stress as a function shear rate for different temperature at 3 days aging time 

 

Figure 8 Shear stress as a function shear rate for different temperature at 5 days aging time 

 

Figure 9 Shear stress as a function shear rate for different temperature at 7 days aging time 
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Figure 10 Shear stress as a function shear rate for different temperature at 10 days aging 

time 

 

Figure 11 Shear stress as a function shear rate for different temperature at 12 days aging 

time 

 

Figure 12 Shear stress as a function shear rate for different temperature at 15 days aging 

time 
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Figure 13 Shear stress as a funtion of shear rate for different aging time at 30◦C 

 

 

 

Figure 14 Shear stress as a funtion of shear rate for different aging time at 40◦C 

 

 

 

 

Figure 15 Shear stress as a funtion of shear rate for different aging time at 50◦C 
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Figure 16 Shear stress as a funtion of shear rate for different aging time at 60◦C 

 

 
 

Figure 17 Shear stress as a funtion of shear rate for different aging time at 70◦C 

 

 

 

Figure 18 Shear stress as a funtion of shear rate for different aging time at 80◦C 
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Figure 19 Effective viscosity (Experimental and Predicted) as a function of Aging  

 

Figure .20 Experimental effective viscosity-predicted effective viscosity regression 
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Figure 21 Plastic viscosity (experimental and predicted) as a function of aging  

 

Figure 22 Experimental plastic viscosity-predicted plastic viscosity regression 
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