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Abstract 

In this study, the influence of three operational parameters (agitation rate, gas flowrate and gas hold 
up) and their interactions on the overall volumetric mass transfer coefficient (k La) of carbon dioxide 

(CO2) for microalgae cultivation in stirred tank bioreactors were investigated using Response Surface 
Methodology (RSM). The three variables were modelled with overall mass transfer coefficient as the 

response using historical data design in the Design Expert 6.0.8. The response of the model developed 

was in line with data used for model development from the R2 values of the developed model. The 
study revealed that the historical data RSM design is an efficient statistical technique for providing 

appropriate empirical model for relating the operational parameters and predicting the optimum 

operating conditions affecting the kLa of CO2 which is the major determinant of the amount of the same 
gas consumed by microalgae to achieve maximum growth in bioreactors. 

Keywords: Overall volumetric mass transfer coefficient; Response Surface Methodology (RSM); Historical 

data design; Empirical model; Optimization. 

 

1. Introduction  

Microalgae and macroalgae have numerous unique attributes which makes them useful in 
various applications ranging from biodiesel production to wastewater treatment. Due to their 
abundant oil content, microalgae have been regarded as the primary raw material capable of 
yielding enormous quantities of biodiesel that could meet global demands, while in wastewater 
treatment plants, the contaminants serve as substrates for algae growth in which way the 

water is being purified [1]. In stabilizing our climate, reduction of CO2 emissions from bioreac-
tors have also been made possible using microalgae as substrate for sustenance [2]. In all 
these applications, microalgae are more commonly utilized because of their extraordinary po-
tential for cultivation as energy feedstock and rapid growth rate due to their unicellular nature. 

Traditionally, microalgae are cultivated in open systems and some of the shortcomings of 
these methods are contamination problems, inability to control process variables and deter-

mination of optimum conditions that promotes growth of microalgae. The identified shortcomings 
were addressed in cultivation of algae in closed system [3] where a stirred tank bioreactor was 
used as the closed systems used for cultivation of microalgae [3]. Bioreactors aid in high energy 
dissipation (heat and mass transfer rate) and offers excellent mixing based on parameters 
that can be regulated in the reactor. Some of the parameters that affect the mass transfer in 

microalgae are stirrer’s speed, composition of gas used and gas flow rate [4].  
The efficient transfer of CO2 from gaseous to liquid phase is a pertinent parameter involved 

in the design, operation and scale-up of bioreactors [5]. The importance of this parameter is 
evident in the usefulness of CO2 to microalgae in only the dissolved form, the carbon constituent 
being an essential nutrient for the cultivation of microalgae [6]. Hence the need to design a 
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stirred tank bioreactor which operates at conditions that factor in maximum CO2 transfers 
from the gaseous to liquid phase. 

It is the general practice of industries involved in the production of microalgae from CO2 to 
base their estimations of the CO2 consumption by the living cells on optical density, pH and 
dissolved oxygen (DO). However, a more accurate parameter for measuring the transfer rate 

of CO2 from gaseous to liquid phase is the overall volumetric mass transfer coefficient as 
opposed to biomass quantification, pH monitoring and DO measurements which only provide 
approximate information on CO2 utilization by microalgae [7]. The overall volumetric mass 
transfer coefficient, apart from being important in estimating reactor performance, also gives 
the optimum quantity of CO2 required by microalgae to achieve maximum growth [8] as well 

as the actual amount of the gas transferred. Thus, the measure of the amount of CO2 con-
sumed by microalgae compared to the amount available is better estimated by the overall 
volumetric mass transfer coefficient [4]. 

The overall kLa is defined as the product of mass transfer coefficient and interfacial area. 
The mass transfer coefficient should not be confused with kLa as the former refers to the ratio 
of flux to concentration difference [9]. kLa is determined through experiments or empirical 

correlations to measure the mass transfer of gas into liquid to eliminate the difficulties en-
countered with other phenomena in determining interfacial area [5]. Among the factors affect-
ing kLa of CO2 in a microalgal solution as reported in literature are pH of culture media, su-
perficial gas velocity, surface tension, viscosity, gas hold up, stirrer agitation rate and geo-
metrical parameters of the bioreactor (type, distributor or stirrer design) [5,10-14]. 

A plethora of mechanistic models and correlations for determining kLa have been developed 
[9,15-16] and efforts have recently been made for theoretical prediction of the same. However, 
bulk of these researches have been developed for bubble columns and airlifts with only a 
handful dealing with kLa determination in stirred tanks bioreactors [11,13,17-19]. The other mod-
els developed in this field are that of Royce and Thomhill [20] & Doucha et al. [16] where mass 

transfer coefficients of CO2 and Oxygen (O2) in fermentation broth were developed while that 
of Babcock et al. [15] which estimated the overall mass transfer coefficient of CO2 ((𝐾𝐿𝑎)𝐶𝑂2

) in 

three different media: tap water, sea water and algal culture in a horizontal tubular reactor. 
A major bottleneck to this approach is that the overall mass transfer coefficient of O2 
((𝐾𝐿𝑎)𝑂2

) should be determined experimentally first before (𝐾𝐿𝑎)𝐶𝑂2
 can be evaluated which 

means that (𝐾𝐿𝑎)𝐶𝑂2
are mostly approximated values. 

Response Surface Methodology (RSM) is a widely used tool for predicting the relationship 
between response and process variables because it is effective in optimizing the response 
function and predicting future responses after it has developed an empirical regression model 
statistically from appropriate experimental data [21-22]. It provides information on the effect 

of factor interactions on the behaviour of a response [23]. From the several design types avail-
able in RSM: Box–Behnken, central-composite, one-factor, optimal and historical-data, the 
historical data is the most preferred choice for this study as it can accommodate all available 
data into a blank design layout from an already conducted experiment [24]. Promising results 
were recorded when historical data design tool box in the Design Expert software was used 

for modelling of interactions between or among variables when design of experiment approach 
was not used to design before the start of experiment. Some of the work that was reported 
here are Salam et al., [25], Salam et al., [26] & Aremu et al., [27] where historical design in the 
Design Expert software was used for model development and captured the interactions among 
variables. 

It has been established by the preliminary study conducted by Kazim [28] that agitation 
rate, gas flowrate and gas hold up, are significant factors influencing kLa which is used to 
estimate the amount of CO2 transferred from gaseous to liquid phase. This paper is aimed at 
developing an empirical model which would explain the effect of the interactions of the afore-
mentioned parameters on the kLa of CO2 for microalgae cultivation in stirred tank bioreactors, 

thereby eliminating the need for experimental determination of secondary parameters or de-
rivatives. The optimum conditions will also be evaluated from the optimization of the response. 
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2. Methodology  

The steps used in the description of data used, the experimental design used for the re-

gression analysis, analysis of variance, model validation and numerical optimization of the 
variables used in the model development are described in this section below:  

2.1. Experimental design and model regression 

The historical data design in the Design Expert software version 6.0.8 (Stat-Ease Inc., Min-
neapolis, USA) was used for this study. Historical data experimental design, with categorical 
factor of 0, was employed in modelling and optimizing the kLa of CO2 for microalgae cultivation 

in stirred tank bioreactors. The experimental result of Kazim [28] was used for the study. This 
publication has three operational parameters agitation rate, gas flowrate and gas hold up 
respectively. The parameters were operated within two ranges (minimum (-1) and maximum 
(+1)). The minimum and maximum levels of these three variables were: 150 and 400 rpm for 
agitation rate; 1100 and 3500 mL/min for gas flowrate and 0.027 and 0.070 for gas hold up 

respectively. A total of 16 experimental runs at different variations of the three parameters 
identified from Kazim [28] were used for modelling and optimizing purpose.  

The general empirical model equation used for the modelling can be represented with the 
aid of the second-order quadratic model as shown in Equation 1. The empirical model can be 
used to study and analyse the interaction between or among [29-31]. 

𝑌 = 𝑏𝑜 + ∑ 𝑏𝑖 𝑋𝑖  + ∑ 𝑏𝑖𝑖  𝑋𝑖
2 + ∑ 𝑏𝑖𝑗 𝑋𝑖𝑋𝑗 + 𝑒𝑖             (1) 

where Y is the predicted response; n is the number of factors; X i and Xj are the coded varia-
bles; bo is the constant coefficient; bi, bii, and bij are the primary parameter, quadratic, and 
interaction coefficients, respectively; i and j are the index numbers for factors; and e i is the 
residual error. The operational parameters, their designated symbols, response and range of 
conditions are summarized in Table 1. 

Table 1. The variables and their range of values 

Operating Parameters Symbols Ranges Low Coded High Coded 

Agitation Rate (rpm) A 150 – 400 -1 +1 
Gas Flowrate (mL/min) B 1100 - 3500 -1 +1 

Gas Hold Up (-) C 0.027 – 0.070 -1 +1 

Response Symbol Analysis Minimum Maximum 

Volumetric Mass Transfer 
Coefficient (h-1) 

Y1 Polynomial (Quad-
ratic) 

3.00 14.16 

The validity of the developed model will be express by the coefficient of determination 

(R2) and coefficient of adjusted determination (Adj-R2) while the statistical significance will 
be verified with the F-test and the adequate precision ratio. 

2.2. Optimization of operational variables and response  

Numerical optimization tool in the Design Expert software will be used to determine the 
values of each of the three variables used for model development required for maximization 
of volumetric mass transfer of CO2 into microalgae. The following steps were taken prior to 
the optimization in order to identify the criteria of the numerical optimization: the goal factors 
for agitation rate, gas flowrate and gas hold up were set to ‘‘is in range’’ while that of the 

response, kLa was set to “maximum”. The upper limit of the response was the maximum 
response obtained from the interactions of the parameters considered.  

3. Results and discussion 

The results obtained from the modelling of volumetric mass transfer of CO2 into microalgae 
were presented where model fitting, analysis of variance and model validation were consid-
ered. Other areas presented in this work are interactions of the variables with each other and 

their surface interactions. 
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3.1. One factor and interaction behaviour of the variables 

The individual effects of each of the operational parameters, i.e. agitation rate, gas flowrate 
and gas hold up on the (𝐾𝐿𝑎)𝐶𝑂2

in stirred tank bioreactors are presented in Figure 1 (i-iv). 

Figure 1 (i) depicted the effect of agitation rate on the (𝐾𝐿𝑎)𝐶𝑂2
 at constant gas flowrate and 

gas hold up. A direct relationship between kLa and agitation rate was observed with a slight 

increase in kLa from 7.1205 to 9.5943 h-1 as agitation rate increased from 150 to 400 rpm. 
Figure 1 (ii) illustrated the effect of gas flowrate on the (𝐾𝐿𝑎)𝐶𝑂2

at constant agitation rate and 

gas hold up. 
The response decreased remarkably from 14.1958 to 2.5189 h-1 as the gas flowrate in-

creased from 1100 to 3500 mL/min thereby indicating an inverse relationship between kLa 
and gas flowrate. Figure 1 (iii) showed the effect of gas hold up on (𝐾𝐿𝑎)𝐶𝑂2

 at constant agita-

tion rate and gas flowrate. There was a significant increase in the kLa values from -26.1252 
to about 9 h-1 following increase in gas hold up from 0.03 to 0.53. However, the response 
decreased to -6.6213 h-1 with decrease in gas hold up to 0.07. Thus, agitation rate has a direct 
effect while gas flow rate has an indirect effect on the (𝐾𝐿𝑎)𝐶𝑂2

 values in stirred tank bioreac-

tors. Gas hold up however, has both direct and indirect relationship on the same response.  

  

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
Figure 1. One factor plots of the three variables 

3.2. D Response surface plots of the model 

Three dimensional (3D) plots were analysed in this work to investigate the interactive ef-
fects of the three variables used in this study on the (𝐾𝐿𝑎)𝐶𝑂2

 in the stirred tank bioreactors. 
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In these plots, the interactive effects of two operating parameters were considered while the 
other parameter was kept constant. They are shown in Figure 2 (i – iii).  

The synergistic effect of agitation rate and gas flowrate on (𝐾𝐿𝑎)𝐶𝑂2
 in the stirred tank bio-

reactors at constant gas hold up is depicted by Figure 2(i). At high gas flowrate of 3500 
ml/min, an increase in the agitation rate of the stirred tank bioreactor from 150 to 400 rpm 
yielded an appreciable reduction in the (𝐾𝐿𝑎)𝐶𝑂2

 in the bioreactor from 4.31 to 0.73 h-1. How-

ever, when the gas flowrate was 1100 mL/min, the (𝐾𝐿𝑎)𝐶𝑂2
 increased substantially from 9.93 

to 18.46 h-1 with the same increase in agitation rate. The increment of kLa was more pro-
nounced at high agitation rate following reduction in the gas flow rate than it was at low 
agitation rate. 

 

 

 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
Figure 2. 3D plots of the interactions between 

the variables 

Figure 2 (ii) show the interactive effect of agitation rate and gas hold up on the (𝐾𝐿𝑎)𝐶𝑂2
 in 

stirred tank bioreactors when the gas flowrate was constant. An increase in the (𝐾𝐿𝑎)𝐶𝑂2
 from 

-19.72 to 6.48 h-1 was obtained at high gas hold up of 0.07 with increase in agitation rate of 
the stirred tank bioreactor from 150 to 400 rpm. Meanwhile, kLa reduced from -15.50 to -
36.75 h-1 at considerably low gas hold up of 0.03 with equivalent increase in agitation rate. 

The kLa of CO2 was found to reduce at low agitation rate with increase in gas hold up in 
contrast to high agitation rate of the bioreactor where there was a large increase in kLa. 

The effect of interaction between gas flowrate and gas hold up on the (𝐾𝐿𝑎)𝐶𝑂2
 in the stirred 

tank bioreactor was illustrated in Figure 2 (iii). This interaction effect was considered at a 
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constant agitation rate of the bioreactor. When the gas flowrate was increased from 1100 to 
3500 mL/min at a gas hold up of 0.07, the (𝐾𝐿𝑎)𝐶𝑂2

 in the stirred tank bioreactor increased 

from -16.15 to 2.91 h-1. At gas hold up of 0.03, however, the same increase in the gas flowrate 
generated a relatively large decline in the kLa from -4.92 to -47.33 h-1. In similar fashion to 
the observation in Figure 2 (ii), (𝐾𝐿𝑎)𝐶𝑂2

 was found to reduce at low agitation rate with increase 

in gas hold up while at high agitation rate of the bioreactor, kLa values substantially increased.  
These plots indicated that gas hold up is the most significant operational parameter influ-

encing the (𝐾𝐿𝑎)𝐶𝑂2
 in the stirred tank bioreactors as it was observed in the results reported 

by Kazim (2012). This is clearly expressed by Figure 2 (ii) and (iii) where kLa decreased sig-
nificantly at low gas hold up and increased remarkably at high gas hold up irrespective of the 

other parameters involved. 

3.3. Model fitting 

The developed empirical model for the prediction of (𝐾𝐿𝑎)𝐶𝑂2
 and contribution of each of the 

model parameters were analysed in Table 2. The prediction of the  (𝐾𝐿𝑎)𝐶𝑂2
 using historical 

design was generated using Equation 2 and shown in Table 2. 

Table 2. Comparison of the experimental data used and model prediction. 

Std Run 

Experimental variables Response 

Agitation rate 

(rpm) 

Gas flow rate 

(mL/min) 

Gas hold 

Up 

Actual kLa 

(h-1) 
Predicted kLa (h-1) 

12 1 150 1100 0.027 3.00 2.68 
16 2 200 1100 0.03 4.44 4.29 

5 3 300 1100 0.035 7.20 7.33 

6 4 400 1100 0.039 10.80 10.87 
1 5 150 2000 0.037 3.36 3.93 

14 6 200 2000 0.04 4.92 5.23 

2 7 300 2000 0.047 9.48 9.52 
4 8 400 2000 0.052 14.16 14.05 

11 9 150 2900 0.044 3.72 3.47 

8 10 200 2900 0.049 6.12 5.83 
10 11 300 2900 0.058 9.48 9.31 

7 12 400 2900 0.064 13.68 13.43 

9 13 150 3500 0.049 4.32 4.60 
13 14 200 3500 0.053 6.60 6.28 

15 15 300 3500 0.062 9.48 9.67 

3 16 400 3500 0.07 12.72 12.98 

The polynomial regression analysis for the prediction of the (𝐾𝐿𝑎)𝐶𝑂2
 shown in Equation 2 

was developed through manual reduction of larger insignificant terms. The actual terms in the 
Equation 2 are three-individual model terms, one-quadratic term and three-two-parameter 
interaction terms respectively.  
𝑘𝐿𝑎 = −18.44626 −  0.15784 ∗ 𝐴𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 −  0.028207 ∗ 𝐺𝑎𝑠 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 +  3058.95308 ∗
𝐺𝑎𝑠 𝐻𝑜𝑙𝑑 𝑈𝑝 –  53500.56326 ∗ 𝐺𝑎𝑠 𝐻𝑜𝑙𝑑 𝑈𝑝2  −  0.0000201743 ∗ 𝐴𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒  ∗ 𝐺𝑎𝑠 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 +
 4.41517 ∗ 𝐴𝑔𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒  ∗ 𝐺𝑎𝑠 𝐻𝑜𝑙𝑑 𝑈𝑝 +   0.59566∗ 𝐺𝑎𝑠 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 ∗
𝐺𝑎𝑠 𝐻𝑜𝑙𝑑 𝑈𝑝                                                                                                                          (2) 

The empirical model includes all the factors in consideration, thereby eliminating the need 
for experimental determination of theoretical parameters required by mechanistic models.  

3.4. Analysis of variance (ANOVA) and statistical significance of the model 

For the optimization of (𝐾𝐿𝑎)𝐶𝑂2
in the stirred tank bioreactor, analysis of variance (ANOVA) 

values were obtained for the quadratic regression model in Equation 2. The ANOVA results 

derived from the historical data utilized for this study are listed in Table 3. The p (or prob) 
values depicted the significance of each of the coefficients as well the interaction effectiveness 
between each independent variable. The p-value < 0.0001 and the model F-value of 215.54 
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(a large value occurring due to noise) for the second-order equation, suggested that the re-
gression model is statistically significant. The significance of the regression coefficients is also 
depicted in Table 3. P-values < 0.05 indicated that the model terms are significant at 95% 
confidence level. 

Table 3. ANOVA for response surface reduced quadratic model 

Source 
Sum of 

squares 

Degree of 

freedom 

Mean 

square 
F-Value Prob > F Remark 

Model 211.19 7 30.17 215.54 < 0.0001 significant 

A 0.045 1 0.045 0.32 0.5851  
B 0.38 1 0.38 2.73 0.1370  

C 0.42 1 0.42 2.98 0.1224  

C2 2.57 1 2.57 18.39 0.0027  
AB 0.53 1 0.53 3.80 0.0872  

AC 2.41 1 2.41 17.19 0.0032  

BC 1.88 1 1.88 13.43 0.0064  
Residual 1.12 8 0.14    

Cor Total 212.31 15     

From the ANOVA, it can be observed that three (3) of the four (4) model terms (C2, AC and 

BC) are significant (not considering those required to support hierarchy: A, B, C). As earlier 
stated, model reduction by manual exclusion of few insignificant terms, was done to improve 
the predictive performance of the model [24,32]. The significant model terms have synergistic 
effect on the regression model while insignificant terms have antagonistic effect. Therefore, 
model factors C2, AC and BC positively contribute to the model while A, B, C and AB have 

negative impact on the developed model. The most influential model parameter was C2 be-
cause it had the lowest p-value.  

3.5. Model validation 

Since adequate precision measures the signal to noise ratio and a ratio value greater than 
4 is desirable, the quadratic model of (𝐾𝐿𝑎)𝐶𝑂2

 for microalgae cultivation with adequate preci-

sion ratio of 42.96 show an indication of an adequate signal. The quadratic regression model 
fitting was analysed by the coefficient of determination, R2 which gave a high value of 0.9947 
for the (𝐾𝐿𝑎)𝐶𝑂2

 from the ANOVA results. A reasonable agreement of the R2 with the Adj-R2, is 

of great importance. The value of Adj-R2 obtained was 0.9901. Therefore, the proximity of the 

R2 and Adj-R2 value close to 1.0 show a very high correlation between the experimental and 
the predicted values of the volumetric mass transfer coefficient of CO2. From the foregoing, it 
is vivid that the quadratic regression model presents a clear explanation of the relationship 
between the independent factors and response. 

The adequacy of the quadratic regression model was ascertained between the experimental 
data and the model response with the diagnostic plot shown in Figure 3. 

It can be observed that the quadratic regression model fits realistically, thereby adequately 

expressing the experimental range studied. The actual value of volumetric mass transfer co-
efficient represents the measured result for each experimental run, while the predicted value 
is evaluated from the independent variables in the regression model.  The normal plot of 
residuals of the developed model is shown in Figure 4. It is obvious that the residuals reflect 
a normal distribution since virtually all the points follow a straight line curve. It is also revealed 
that no further improvement can be done to the model by making changes to the response 

because the data points are scattered and do not exhibit an S-shaped curve [24]. 
The graphs and tables thereby suggest that the model in Equation 2 can be regarded as 

the best possible model of the historical data RSM design of the kLa of CO2 for microalgae 
cultivation in stirred tank bioreactors. Therefore, they shall be utilized in deriving the optimum 
values of the operational parameters. 
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Figure 3. Cross plot between the experimental 
and predicted Values 

Figure 4. Normal plot of residuals for the model  

3.6. Verification of optimization results 

Figure 5 illustrate the predicted optimum conditions and the response studied in this work. 
The predicted optimum operating parameters influencing the (𝐾𝐿𝑎)𝐶𝑂2 for microalgae cultiva-

tion in stirred tank bioreactors was estimated to be agitation rate (391.33 rpm), gas flowrate 
(1100.32 ml/min) and gas hold up (0.05) as shown in Figure 5. 

 

Figure 5: Optimum Conditions and Response 

At these optimum conditions, the corresponding predicted optimum kLa was found to be 

18.4588 h-1. Experimentally, agitation rate (400 rpm), gas flowrate (1100 mL/min) and gas 
hold up (0.05) were optimum values of the operating parameters whose combining effect gave 
maximum (𝐾𝐿𝑎)𝐶𝑂2

 in stirred tank bioreactors as 18.4588 h-1. The experimental and predicted 

optimum conditions are in good agreement at desirability of 1.000. Thus, it is evident that the 
historical data RSM design is an efficient statistical technique for predicting the optimum op-
erating variables for the maximization of the (𝐾𝐿𝑎)𝐶𝑂2

 in stirred tank bioreactors by incorporat-

ing all factors under consideration. 
  

Agitation Rate = 391.33

150.00 400.00

Gas Flowrate = 1100.32

1100.00 3500.00

Gas Hold Up = 0.05

0.03 0.07

Volumetric MassTransfer Coefficient = 18.4588

18.4588

3 14.16

Desirability = 1.000
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4. Conclusion 

This study revealed the effectiveness of RSM to successfully develop a suitable empirical 
model for the prediction of (𝐾𝐿𝑎)𝐶𝑂2

 for microalgae cultivation. The empirical quadratic regres-

sion model has an advantage over the previously developed mechanistic models because it 

directly applies the factors under consideration with the aim of studying their interactive ef-
fects in contrast to the latter which requires experimental determination of secondary factors 
which only gives estimations of kLa and hence CO2 consumption by microalgae. The proximity 
of R2 (0.9947) and Adj-R2 (0.9901) to 1.0 proved that there was reasonable agreement be-
tween the experimental and predicted response. The 3D response surface plots employed in 

explaining the effects of interaction of the operating parameters considered in this study re-
vealed that gas hold up is the most significant factor influencing the (𝐾𝐿𝑎)𝐶𝑂2

 in the bioreactors. 

Numerical optimization showed that the predicted optimum operating parameters observed at 
agitation rate (391.33 rpm), gas flowrate (1100.32 mL/min) and gas hold up (0.05) in order 
to achieve maximum kLa of 18.4588 h-1 were close to the experimental optimum conditions 
400 rpm agitation rate, 1100 ml/min gas flowrate, 0.05 gas hold up and 18.4588 h-1 kLa. The 
decrease in agitation rate in the predicted optimum conditions is helpful in minimizing power 

consumption. It can thus be concluded that historical data RSM is a reliable statistical tech-
nique for predicting and optimizing the kLa of CO2 for microalgae cultivation in stirred tank 
bioreactors. 
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