Article

MOISTURE-HOLDING CAPACITY OF COAL

Yanya Balaeva, Denis Miroshnichenko*, Yury Kaftan

Ukrainian State Research Institute for Carbochemistry (UKHIN), 61023, Kharkiv, 7 Vesnina Str., Ukraine

Received March 15, 2017; Accepted May 2, 2017

Abstract

The moisture-holding capacity of metamorphically distinct coals does not depend on their ash content (in the range 3.7–35.3 %) nor on the chemical composition of the ash, expressed by the basicity index B_b (in the range 1.24–27.18) and the base/acid ratio I_b (in the range 0.198–1.832). Although the oxidation of coal also increases the moisture-holding capacity, this change is less than the error in its determination (0.5 %). The oxidation of practically 30 % of the coal 's organic mass increases the moisture-holding capacity by no more than 0.4 %. Analysis of 63 samples of coal concentrates (from Ukraine, Russia, the United States, Canada, Australia and Poland) currently employed at Ukrainian coke plants indicates that the prediction of the moisture-holding capacity of coal may expediently be based on R_0 and Q_s^{af} determined, respectively, in plant laboratories and in power station laboratories. *Keywords: coal; moisture-holding capacity; oxidation; basicity index; mathematical equations; statistical estimates*.

1. Introduction

The moisture-holding capacity indicates the rank of hard coals and is used in coal classification (*ASTM D 388–15 Standard Classification of coals by Rank*) for collecting the calorific value of the sample to the moist mineral matter-free basis. The full moisture-holding capacity is that of the coal in equilibrium with atmosphere saturated with water vapor. Since there are insuperable experimental difficulties in working with such an atmosphere, the determination is carried out at 96 % relative humidity.

2. Experimental

Accordingly ISO 1018:75 (en) Hard Coal – Determination of moisture-holding capacity, a representative sample of crushed coal is mixed with distilled water for 3 h. The excess water is removed and a subsample is placed in a vacuum desiccator with the pressure set at 4 kPa (30 mm Hg), the humidity set at 96–97 %, and the temperature set at 300°C for up to 72 h (or until equilibrium is attained). For some low-rank coals, equilibrium may take up to 7 days to attain. The coal is weighed and then dried to constant mass at 105°C. The mass loss is consiered the Moisture-holding capacity, Equilibrium moisture or Bed moisture. The result for moisture-holding capacity is given as the mean of duplicate determination, reported to the nearest 0.1 %.

It is expedient to investigate the influence of the content and chemical composition of the ash on the moisture-holding capacity in coal at different metamorphic stages, since there is no indication of the sample's ash content in ISO 1018:75.

Table 1 presents the results of proximate analysis of the coal samples, together with the moisture-holding capacity. Table 2 presents the chemical composition of the ash, basicity index (eq. 1) and base/acid ratio (eq. 2) of enriched (to a density of 1500 kg/m³) and enriched coal samples at different metamorphic stages.

$B_b = \frac{100A^d (Fe_2O_3 + CaO + MgO + Na_2O + K_2O)}{(100 - V^{daf})(SiO_2 + Al_2O_3)},$	(1)
$I - \frac{Fe_2O_3 + CaO + MgO + Na_2O + K_2O}{Fe_2O_3 + CaO + MgO + Na_2O + K_2O}$	(2)
$I_b = \frac{1}{SiO_2 + Al_2O_3}$	(2)

According to point 6 Preparation of sample of ISO 1018:75 it is essential that the coal be in fresh, unchanged state. If the sample cannot be examined immediately, it shall be protected from oxidation by storing under water'.

Table 1. F	Properties	of coal	samples
------------	------------	---------	---------

Supplier	Rank	Sample		Proximate a	Moisture-holding- capacity,%		
			\mathcal{A}^{d}	S^{d}_{t}	V^d	V^{daf}	W _{max}
Ernakovskaya	G	Unenriched	25.7	0.38	29.9	40.2	3.6
mine	G	Enriched	6.2	0.34	35.4	37.7	3.8
Uskovskaya mine	G	Unenriched	17.8	0.46	34.4	41.8	4.1
USKUVSKaya IIIIIe	G	Enriched	4.8	0.45	37.3	39.2	4.1
Esaul'skaya mine	G	Unenriched	33.5	0.73	28.4	42.7	3.4
LSaul Skaya mine	G	Enriched	5.8	0.65	36.9	39.1	3.1
Osinnikovskaya	G	Unenriched	35.3	0.49	24.0	37.1	3.4
mine	G	Enriched	6.9	0.58	30.9	33.2	3.1
CCI Lubelia	Zh	Unenriched	10.0	5.33	29.3	32.6	2.6
mine, bed n9	211	Enriched	4.5	3.19	30.0	31.6	2.2
CCI Lubelia	Zh	Unenriched	7.1	0.95	25.7	27.6	1.9
mine, bed n7	۲۱	Enriched	3.7	0.73	25.9	26.9	1.9

Table 2. Chemical composition and basicity of coal samples

Supplier Rank		Sample	Chemical composition of ash, %							Basicity		
			SiO ₂	<i>Al</i> ₂ <i>O</i> ₃	Fe ₂ O ₃	MgO	CaO	Na₂O	K ₂ O	<i>SO</i> ₃	$B_{\rm b}$	$I_{ m b}$
Ernakovskaya	G	Unenriched	56.78	21.47	6.98	2.65	3.16	0.89	1.79	5.19	8.50	0.198
mine	G	Enriched	47.94	29.01	6.73	2.14	3.68	1.68	1.04	2.78	1.97	0.198
Uskovskaya	G	Unenriched	60.37	18.56	7.48	2.39	2.63	0.93	2.40	3.39	6.13	0.201
mine	G	Enriched	36.20	26.40	8.98	2.77	9.81	1.12	1.06	7.37	2.99	0.379
Esaul'skaya	G	Unenriched	55.25	20.30	5.74	2.52	7.01	1.02	1.99	5.19	14.15	0.242
mine	G	Enriched	46.68	25.53	11.97	2.02	4.91	1.66	1.35	2.69	2.89	0.303
Osinnikovskaya	G	Unenriched	61.01	17.40	4.99	2.39	5.08	1.26	1.83	4.54	11.13	0.198
mine	G	Enriched	47.26	20.30	11.47	3.91	6.48	1.05	1.26	6.12	3.70	0.358
CCI Lubelia	Zh	Unenriched	18.48	13.63	48.13	1.51	8.41	0.32	0.45	8.31	27.18	1.832
mine, bed n9	211	Enriched	16.18	16.24	49.88	1.26	6.66	0.48	0.43	8.11	11.91	1.811
CCI Lubelia	76	Unenriched	45.15	26.11	8.23	1.89	8.94	0.46	1.06	7.05	2.83	0.289
mine, bed n7	Zh	Enriched	43.54	27.56	6.98	1.39	7.54	0.65	0.87	9.14	1.24	0.245

The influence of oxidation on the moisture-holding capacity of coal was studied in ^[1]. Zasyad'ko bituminous coal (Donetsk Basin), crushed until it consists entirely of the <3 mm class, was oxidized in a drying chamber at 60°C, with free access of atmospheric oxygen. The 60°C temperature was chosen on the basis of the results in ^[2–4]. In the course of the experiment, the coal was constantly mixed so as to ensure uniform oxidation. At fixed inter-vals, coal samples were taken for measurement of the oxidation index Δt . With 2–3°C variation in Δt , samples were taken for proximate analysis (A^d , V^{daf}) and determination of the moisture-holding capacity W_{max} and the degree of oxidation d_0 . Table 3 presents the variation in W_{max} on oxidation.

Oxidation time,	Proximate analysis, %		Moisture- holding- capacity, %	Coal oxidatio State Stand 7611:	dard DSTU	
	A ^d	S^{d}_{t}	V ^{daf}	<i>W_{max}</i>	∆t,°C	d _{0, %}
0	7.4	1.84	31.2	1.6	3	9.3
271	7.4	1.87	30.3	1.7	5	15.6
608	7.1	1.87	31.5	1.9	7	21.9
680	6.6	1.88	31.6	2.0	10	29.4

Table 3. Variation in coal properties during its oxidation

3. Results and discussion

The error in determining the moisture-holding capacity is 0.5 %, according to ISO 1018:75. Therefore, in the range 3.7–35.3 %, the ash content of the sample has no significant influence on the moisture-holding capacity. Likewise, the chemical composition of the ash has no influence, within the ranges $B_b = 1.24-27.18$ and $I_b = 0.198-1.832$.

On the basis of Table 3, we may conclude that increase in oxidation of the coal is associated with increase in its moisture-holding capacity. In Figs. 11 and 12, we plot the moisture-holding capacity against Δt and d_0 .

Analysis of Table 3 and Figs. 1 and 2 indicates that, although oxidation of the coal increases the moisture-holding capacity, the increase is smaller than the error in determining the oxidation (0.5 %). The oxidation of practically 30 % of the coal 's organic mass increases the moisture-holding capacity by no more than 0.4 %. However, despite the results, we believe it is necessary to uphold the requirement in ISO 1018:75 the moisture-holding capacity must be determined for a freshly prepared coal sample.

In the present work, we have developed formulas for predicting the moisture-holding capacity W_{max} of coal from Ukraine, Russia, the United States, Canada, Australia and Poland based on data for the sample in ^[5].

We have calculated pair correlation coefficients between the coal properties and the moistureholding capacity of the coal. The significance of the correlations is verified by comparing the absolute magnitude of the product $|r|\sqrt{n-1}$ with its critical value *H* for specified reliability *P* of the conclusion ^[6]. With P = 0.999, the critical value *H* for 63 samples is 3.183. Table 4. present the correlation coefficients for each pair of variables. Comparison of the actual values with the tabular values indicates that, with P = 0.999, W_{max} is correlated with W^a , V^{daf} , R_0 , C^{daf} , cA, f_a , C_{ar} , and δ . In Figs. 3–12, we plot the moisture-holding capacity as a function of the other properties of the coal. Analysis indicates that these relationships are primarily quadratic.

Coefficients	W ^a	V ^{daf}	Ro	Vt	ΣFC	C^{daf}	O_d^{daf}	$Q_s^{\it daf}$	сА
r	0,930	0,649	-0,729	0,020	-0,056	-0,731	0,770	-0,844	-0,647
$ r \sqrt{n-1}$	7,322	5,110	5,740	0,157	0,441	5,756	6,063	6,086	5,094
Coefficients	fa	Car	δ						
r	-0,667	-0,686	-0,645						
$ r \sqrt{n-1}$	5,252	5,402	5,079						

Table 4. Pair correlation coefficients |r| and $|r|\sqrt{n-1}$ for the moisture-holding capacity and other variables

Table 5 presents Eqs. (3) – (12) and statistical estimates of their validity. Analysis shows that satisfactory prediction of the moisture-holding capacity (with the permissible discrepancy $\sigma \le 0.5 \,\%$) is possible by means of W^a , R_0 , O_d^{daf} and Q_s^{daf} : specifically, $\sigma = 0.33$, 0.49, 0.42, and 0.36 %, respectively. It is expedient to predict W_{max} on the basis of Eq. (5), since the analytical moisture content in the fuel depends on the temperature and the relative air humidity within the laboratory ^[7], while the oxygen content in the coal 's organic mass is not determined at coke plants. For power-plant laboratories where the heat of combustion is determined, the moisture-holding capacity may be determined with high precision from on the basis of Eq. (8).

	Formulae	Statis	tical charac	teristics
Eq.	Formulae	r	D,%	σ, %
3	$W_{max} = 0.4251 \cdot (W^a)^2 + 0.5694 \cdot W^a + 1.2954$	0.94	88.5	0.33
4	$W_{max} = 0.0113 \cdot (V^{daf})^2 - 0.5779 \cdot V^{daf} + 9.2706$	0.80	63.4	0.60
5	$W_{max} = 7.1136 \cdot (R_0)^2 \cdot 18.643 \cdot R_0 + 13.987$	0.86	74.1	0.49
6	$W_{max} = 0.0844 \cdot (C^{daf})^2 - 15.004 \cdot C^{daf} + 668.97$	0.85	73.1	0.55
7	$W_{max} = 0.1122 \cdot (O_d^{daf})^2 \cdot 0.7123 \cdot O_d^{daf} + 3.1635$	0.87	76.2	0.42
8	$W_{max} = 0.1116 \cdot (Q_s^{daf})^2 - 9.1173 \cdot Q_s^{daf} + 185.73$	0.90	80.6	0.36
9	$W_{max} = 195.5 \cdot (cA)^2 - 323.2 \cdot cA - 135.4$	0.70	48.6	0.58
10	$W_{max} = 241.9 \cdot (f_{a})^{2} - 356.9 \cdot f_{a} + 133.6$	0.72	52.3	0.68
11	$W_{max} = 0.013 \cdot (C_{ar})^2 - 0.797 \cdot C_{ar} + 13.39$	0.77	59.5	0.73
12	$W_{max} = 0.363 \cdot (\delta)^2 - 7.319 \cdot \delta + 38.38$	0.67	45.3	0.60

Table 5. Formulae and corresponding statistical characteristics

Fig.3. Relation between W_{max} and W^a

Fig.4. Relation between W_{max} and V^{daf}

Fig.5. Relation between W_{max} and R_0

Fig.7. Relation between W_{max} and O_d^{daf}

Fig.8. Relation between W_{max} and Q_s^{daf}

Fig.9. Relation between W_{max} and cA

Fig.10. Relation between W_{max} and f_a

Fig.11. Relation between W_{max} and C_{ar}

Fig.12. Relation between W_{max} and δ

4. Conclusions

The moisture-holding capacity of metamorphically distinct coals does not depend on their ash content (in the range 3.7-35.3 %) nor on the chemical composition of the ash, expressed by the basicity index B_b (in the range 1.24-27.18) and the base/acid ratio I_b 4 (in the range 0.198-1.832).

Although the oxidation of coal increases the moisture-holding capacity, this change is less than the error in its determination (0.5 %). The oxidation of practically 30 % of the coal 's organic mass increases the moisture-holding capacity by no more than 0.4 %.

Analysis of 63 samples of coal concentrates from Ukraine, Russia, the United States, Canada, Australia and Poland) currently employed at Ukrainian coke plants indicates that the prediction of the moisture-holding capacity of coal may expediently be based on R_0 and the gross calorific value Q_s^{daf} determined, respectively, in plant laboratories and in power-station laboratories.

Symbols

W _{max}	moisture-holding capacity, %;
Q_s^{daf}	gross calorific value in the dry, ash-free state, MJ/kg;
R_0	mean vitrinite reflection coefficient, %;
A^d	ash content of coal, %;
V ^{daf}	volatile matter, %;
W ^a	moisture in the analysis sample, %;
ΣFC	sum of fusinized components, %;
B_b	basicity index;
I_b	base/acid ratio;
∆t	oxidation index, °C;
d_0	degree of oxidation, %;
D	determination coefficient, %;
r	correlation coefficient;
~	mann square doviation M1/kg

σ mean square deviation, MJ/kg.

 Fe_2O_3 , CaO, MgO, Na_2O , K_2O , Al_2O_3 , and SiO_2 are the mass contents of the corresponding oxides in the ash, %.

References

- [1] Miroshnichenko DV, Kaftan YuS, Desna NA and Sytnik AV. Oxidation of bituminous coal. 1. Expansion pressure, *Coke Chem.*, 2015; vol. 58(10): 376–381.
- [2] Miroshnichenko DV, Drozdnik ID, Kaftan YuS and Desna NA. Oxidation of Pokrovskoe coal in laboratory and natural conditions. 1. Kinetics of oxidation and technological properties, *Coke Chem.*, 2015; 58(3): 79–87.
- [3] Miroshnichenko DV, Desna NA and Kaftan YuS. Oxidation of coal in industrial conditions. 4. Coal temperature in heap storage, *Coke Chem.*, 2015; 58(2): 43–48.
- [4] Desna NA, Miroshnichenko DV. Oxidized coal in coking: a review, *Coke Chem.*, 2011; 54(5): 139–146.

- [5] Balaeva YaS, Miroshnichenko DV and Kaftan YuS. Predicting the classification characteristics of coal. Part 1. The gross calorific value in the wet ash-free state, *Coke Chem.*, 2015; 58(9): 321–328.
- [6] Rumshinskii AZ. Mathematical Analysis of Experimental Results: A. Handbook, Moscow: Nauka, 1971.
- [7] Avgushevich IV, Bronovets TM, Golovin GS. Standard Methods for Testing Coals. Coal Classification, Moscow: NTK Trek, 2008.

To whom correspondence should be addressed: Tel.: + 38 0 57 700-35-48, +38 0 50 84-28-358 E-mail address: <u>dvmir79@gmail.com</u>