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Abstract 

The multi-scale method which is being used is generally used for solving coupled equations, and this 
method is widely used for reservoir simulation. The coupling factors which needs to be solved are the 

pressure equation and the transport equation .Both the equations are going to be solved as a decoupled 

system, while the pressure equation will be solved in a coarser grid and the transport equation will be 
solved in a finer grid. There are several multi-scale methods which can be used for reservoir simulation, 

but the multi-scale mixed finite element (MsMFE) method is the one which grabs all the sub grid 

topographical diverseness into the coarse scale using mathematical basis functions. A global 
formulation can be used to couple the important multi-scale information which will be grabbed by the 

basis functions thereby providing good resemblance to the solution for the subsurface flow.According 

to the literature the most commonly used formulation which is being used for the multi-scale mixed 
finite element method (MsMFE) for incompressible two phase flow mainly deals with common flow 

physics. In this paper, the formulation which is being used takes into considerations the gravity, 

compressibility, spatially dependent capillary and relative permeability effects. Our main aim is to find 
out the efficiency of this formulation and the Multi-scale mixed finite element method (MsMFE) by 

comparing our results with the results obtained from two different reservoirs in India. We have used 

MRST (MATLAB Reservoir Simulation Toolbox) for the simulation of the reservoir. Our results will 
include pressure distribution, Flux distribution and the saturation fields throughout the reservoir. 

Keywords: MRST; MSMFE; Modeling; Simulation; Reservior. 

 

1. Introduction  

During reservoir rock formation, there are many physical processes which occur on multiple 
time and length scales. These processes affect the movement of hydrocarbons in the subsur-

face rock formation. There is a lot of information that can be extracted from these different 
scales, i.e. time and length scales varying from micrometer scale to kilometer scale to be 
integrated to build multi-million cells incorporated high-resolution models. These models de-
scribing the non-homogeneous reservoir properties in proper structure can be built using con-
temporary reservoir characterization and geostatistical modeling techniques. It is preferred to 

use a coarser model with the reduced data to derive discrete flow equations rather than using 
highly detailed geo-cellular models to solve multi-phase flow equations as the later involves a 
very high computational cost. This upscaling process affects the simulation because prominent 
fine scale properties are lost as well as it takes a lot of time to get finished.  

To simulate reservoirs having multiple scales, using the upscaling method is very cumber-

some, so the need for upscaling had to be reduced. Efendiv and Hou proposed multiscale 
method [12] in 2009 which were designed to get definite and adequate results. This method 
offers an effective scheme such that the global flow equations are assimilated with effects 
from irresolute scale and underlying differential operators are also consistent. With this 
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method, there was no need of computing effective coarse-scale properties, and it also prom-
ised the advantage of capturing fine scale petrophysical and geological details directly into the 
coarse scale simulation model. 

There are several multi-scale methods applicable to reservoir simulation, and the literature 
contains some of it namely Dual-grid methods  [6-8,14], (adaptive) local- global methods [10-11], 

finite-element methods [17], mixed finite-element methods [1-5,9] and finite volume multi-scale 
methods [15-18,30].All these methods include the basic idea of integrating fine scale into coarse 
scale equations. Local flow problems are solved to estimate local flow effects of petro-physical 
properties in fine scale and served as a fine scale sub-resolution multiscale basis function. 
Local or global information or a combination of both could be used as boundary conditions to 

localize each basis function. A reduced set of degrees-of-freedom which is affiliated with a 
coarser grid is computed using the global flow problems represented in terms of multi scale 
basis function. Flow equations can be upscaled very accurately using this technique. Alter-
nately, pressure and mass conservative flux field can be constructed using the basis functions 
which is then solved using a transport solver formulated on some intermediate grid. 

Upscaling method and multiscale method are very different from each other despite their 

few similarities. Coarse scale solutions are generated using the upscaling method whereas the 
main intent of the multiscale method is to obtain efficient and proper approximations on the 
fine or intermediate scale [13].  Many upscaling techniques use the non-physical coarse scale 
properties which are avoided by the multiscale method during the natural coupling between 
local and global scales.  

Our main aim is to find out the efficiency of the formulation used in the method and the 
Multi-scale mixed finite element method (MsMFE) by comparing our results with the results 
obtained from two different reservoirs in India. We are going to use MRST (MATLAB Reservoir 
Simulation Toolbox) for the simulation of the reservoir. Our results will include pressure dis-
tribution, Flux distribution and the saturation fields throughout the reservoir. 

2. Mathematical modeling 

The coupled system of the equation that is the elliptical pressure equation and the parabolic 
transport equation is used for the modeling of two-phase flow in the reservoir. The transport 
equation which is to be used for modeling is derived from two basic equations which describe 
fluid flow in the reservoir [1-2,30-31]. The two basic equations are the continuity equation and 

Darcy’s law. The continuity equation is a mathematical representation of the law of conserva-
tion of mass whereas the Darcy’s law is being used to derive a relation between the pressure 
and the velocity for flow in a reservoir which is a porous material. 
𝛻. 𝜐 = 𝑞   𝜐 = −𝐾ƛ[𝛻𝑝𝑜 − 𝑔(𝑆𝑤)𝛻𝑧+ ℎ(𝑆𝑤)𝛻𝑝𝑐]           (1) 

ɸ𝜕𝑆𝑤/𝜕𝑡 + 𝛻. ƒ𝑤(𝑆𝑤)[𝜐 + 𝐾ƛ𝑜(𝑆𝑤)((𝜌𝑤 − 𝜌𝑜)𝑔𝛻𝑧 + 𝛻𝑝𝑐((𝑆𝑤))] =
𝑞𝑤

𝜌𝑤
        (2) 

The parameters which are being used in the above-mentioned equations are as follows: Sw 

represents the saturation of water in the porous reservoir; So represents the saturation of oil 
in the porous reservoir, Sw+So=1. Hence, we can say that Sw,So < 1. ƒw represents fractional 
flow function of water and ƒo represents fractional flow function of oil where ƒwƒƒƒ=ƛw/ƛ. ƛw 

represents phase mobility of water and ƛo represents phase mobility of oil and ƛ represents 

the total mobility. ƛ = ƛw + ƛo. υw represents the velocity of water whereas υo represents the 

velocity of oil and υ = υw + υo where υ is the total velocity. ɸ represents the porosityand K is 
the permeability tensor. ρw represents the density of water and ρo represents the density of 
oil. g is the acceleration due to gravity. Pw is the pressure of water and po is the pressure 
exerted by oil. pc is the capillary pressure, pc=po-pw .q is the source/sink term in the above 

equation 𝑔(𝑆𝑤) = (𝑓𝑤(𝑆𝑤)𝜌𝑤+ 𝑓𝑜(𝑆𝑤)𝜌𝑜)𝑔 and ℎ(𝑆𝑤) = 𝑓𝑤(𝑆𝑤). 

3. Discretization (finite scale) 

Discretization of the computational domain Ω leads to a set of {C i} of N non overlapping 
and matching polyhedral cells. There will be a sequential solving of flow and transport equa-

tion. First flow equation will be solved to get explicit fluxes at the cell interfaces which is used 
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to evolve the saturations in time step Δt using the transport equation. Following unknowns 
will be used in the paper: vector of outward fluxes from the cell C i is denoted by ui, the 
pressure at the cell center is denoted by pi, and the pressure at the cell faces is denoted by 𝜋𝑖. 
To relate the three quantities, we will use the Darcy’s law through a matrix T i of one-sided 

transmissibilities. 
𝑢𝑖 = 𝑇𝑖[𝑒𝑖𝑝𝑖−𝜋𝑖−𝑔(𝑆𝑖)𝛥𝑧𝑖+ℎ(𝑆𝑖)(𝑒𝑖𝑝𝑐(𝑥𝑖⃗⃗⃗ ,⃗ 𝑆𝑖)− 𝑝𝑐𝑖)],  𝑒𝑖 = (1, …… .1)

T       (3)    

The vector of differences in the z coordinate of the cell center 𝑥𝑖⃗⃗⃗⃗  and and the face centroids 
is denoted by Δzi and the capillary pressure pci at the cell faces is defined as the linear inter-

polation of the capillary pressure in the neighboring cells. On the other hand, one can utilize 
multipoint techniques to characterize transmissibilities on organized and unstructured lattices 
utilizing multi-point fluxes, see e.g., [26-27,29,31].  

The following discrete linear system for global flow problem can be derived by augmenting eq. 3 
with pressure and flux continuity across cell faces.  

[
𝑩 𝐶 𝐷
𝐶𝑇 0 0
𝐷𝑇 0 0

] [
𝑢
−𝑝
𝜋
] = [

−𝐺(𝑆)∆𝑧+𝐻(𝑆)∆𝑝𝑐
𝑞
0

]             (4) 

Here, Cell wise ordered outward face fluxes is denoted by u, the pressure at the cell center 
and pressure at the cell faces is denoted by p and 𝜋 respectively.  

The first row within the block matrix equation corresponds to eq. 3 for all grid cells and the 
right-hand terms G(S)Δz and H(S)Δpc are the one-sided face contributions similar to gravity 
and capillary effects. The matrix B represents block diagonal with single block T i

-1 defined per 

cell. The matrix C is additionally block diagonal and has one block entry e i per cell that dupli-
cates the cell pressures to one value for every cell face. Hence, within the second row of eq. 4, 
the converse matrix CT sums the face fluxes to outline one mass-conservation equation per 
cell. Finally, every column of D corresponds to a singular face and has one (for boundary 
faces) or two (for interior faces) unit entries resembling the index of the face within the cell 

wise ordering. In the following, the transport equation, eq. 2 is solved on the fine-scale em-
ploying a normal transport problem solver with upstream- weighted mobilities and two-point 
discretization of the second-order capillary term. The temporal discretization could also be 
explicit or implicit. If needed, improved numerical accuracy can be obtained by exploit-
ing higher-order upwind schemes, just like the wave-oriented multi-dimensional schemes 

Lamine and Edwards [20-21]. 

4. Multi-scale mixed finite elements 

The main concept behind using multiscale mixed finite-element method is to build a special 
approximation space consisting of a set of coarse-scale basic functions that meet the local 
flow equation. Therefore, the MsMFE method is formulated on the basis of two hierarchically 

nested grids. Rock and rock fluid properties are displayed on the geo-cellular fine-scale grid, 
while the basic functions and corresponding degrees of freedom are associated with a coarse 
simulation grid used to solve the problem of global flow. The coarse grid blocks are defined as 
a connected set of fine grid cells and can have arbitrary shapes in principle. However, if the 
blocks are somewhat regular, the best numerical resolution is obtained, following the layered 

structures of stratigraphic grids [2] or adapting to high-contrast characteristics [24]. 

4.1. Approximations for multiscale method 

We begin by writing the solution to Eq 4 to formally define the MsMFE method as the sum of 
the basic functions and a residual on a fine scale. 

𝑢 = ѱ𝑢𝑐+ �̃�   ,    𝑝 = ɸ𝑝𝑐 +𝑝,      𝜋 = 𝛱𝜋𝑐 + �̃�            (5) 

Here, the vector of outward fluxes over the coarse-block interfaces is denoted by uc; pc 
denotes the coarse-block pressure vector, and 𝜋 denotes the coarse-block face pressure vec-
tor. Similarly �̃�, 𝑝 ̃and �̃� represent the reminder which have variations on the fine grid. The 
fine scale reconstruction operators for �⃗�, p and 𝜋 is denoted by the matrices Ψ, Φ, and 𝜋. Each 

548



Petroleum and Coal 

                         Pet Coal (2019); 61(3): 546-558 
ISSN 1337-7027 an open access journal 

column in Ψ corresponds to a multi-scale base function for the flux associated with a unique 
coarse-grid face and is represented as a fine-scale flux vector of nf x 1. 

For incompressible flow, the pressure is rarely explicitly used, with the exception of deter-
mining well rates by using appropriate good models. Therefore, we define the pressure within 
each coarse block to be constant and replace Φ with a simple extension operator I, which 

maps the block cells with a constant value from each coarse block. Similarly, an extension 
operator J replaces ∏, which maps a constant value from each coarse face to the individual 
cell faces of the coarse face. A reconstruction operator R= diag(ѱ , I, J) is thus defined which 

makes it possible to map the degrees of freedom xc=[uc,-pc, 𝜋𝑐] on the coarse scale to the 
corresponding fine scale quantities x= [u,-p, 𝜋]. 

In case of coarse system In order to create a global system on the coarse grid, we need a 
compression operator to bring the Eq 4 which is a fine scale system to the space covered by 
our multi-scale functions. RT is a natural choice here since the transposed operators I and J 
correspond to the sum of all fine cells of a coarse block and all fine cell faces, which are part 
of the faces of the coarse blocks. Multiply eq. 4 from the left with RT, substitute x=Rxc and 

rearrange the terms to get  

  [

ѱ𝑇𝐵ѱ ѱ𝑇𝐶𝐼 ѱ𝑇𝐷𝐽

𝐼𝑇𝐶𝑇ѱ 0 0

𝐽𝑇𝐷𝑇ѱ 0 0

][

𝑢𝑐
−𝑝𝑐
𝜋𝑐

]= [
ѱ𝑇(𝐻(𝑆)∆𝑝𝑐−𝐺(𝑆)∆𝑧)− ѱ

𝑇(𝐵�̃� −𝐶𝑝 +𝐷�̃�)
𝐼𝑇𝑞− 𝐼𝑇𝐶𝑇 �̃�

−𝐽𝑇𝐷𝑇�̃�

]   (6) 

 
The terms of the fine- scale reminder can be eliminated as follows: If we interpret the 

coarse- scale pressure as the w- weighted average of the real pressure, pc
i = ∫Bi  wpd𝑥 ⃗⃗⃗ ⃗(where 

w is the source term used to define basis function) then 𝑝 disappears. The following coarse-

scale system is obtained after neglecting the terms  �̃� and π ̃. 

4.2. Methods to find Multiscale basis function 

  [

ѱ𝑇𝐵ѱ ѱ𝑇𝐶𝐼 ѱ𝑇𝐷𝐽

𝐼𝑇𝐶𝑇ѱ 0 0

𝐽𝑇𝐷𝑇ѱ 0 0

][

𝑢𝑐
−𝑝𝑐
𝜋𝑐

]= [
ѱ𝑇(𝐻(𝑆)∆𝑝𝑐−𝐺(𝑆)∆𝑧)

𝐼𝑇𝑞
0

]         (7)  

There are two different ways of calculating basic functions: In the single-block method, 

fine-scale fluxes must be specified over the coarse interface associated with the basis function. 
The method is not very accurate unless some kind of global flow information is included in the 
interface flux. Therefore, we will use a two-block method which does not impose any condition 
on the interface between two coarse blocks. The resulting method is not convergent, but usu-
ally gives reasonable precision on finite grids. In order to define the method, we consider two 

blocks of Bi and Bj, which share the common coarse face Γij=∂Bi∩∂Bj and let Bij be a sub-set 
of Ω containing Bi and Bj. The two- block multiscale base function is defined after neglecting 
the influence of gravity and capillary forces as: 

ѱ𝑖𝑗 =  −𝐾∇ɸ𝑖𝑗,     ∇. ѱ𝑖𝑗 = 𝑤𝑖𝑗(𝑥)⃗⃗⃗ ⃗⃗ =

{
 
 

 
 𝑤𝑖(𝑥),⃗⃗⃗⃗⃗⃗        𝑖𝑓 �⃗� ∈ 𝐵𝑖 ,

−𝑤𝑗(𝑥),⃗⃗⃗⃗⃗⃗        𝑖𝑓 �⃗�     ∈ 𝐵𝑗 ,

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,   
           

        (8) 

If we consider capillary forces, then the following basis function must be added to the al-
ready formed set, 

        ѱ𝑐
𝑖𝑗
= −𝐾(∇ɸ𝑐

𝑖𝑗
−ℎ(𝑆)∇𝑝𝑐(𝑆)),               ∇.ѱ

𝑐
𝑖𝑗
=0          (9) 

5. Codes and results 

Creating a grid. Here we have created a 200-200-50 rectangular reservoir in 10-10-10 
Cartesian grid (Figure 1). 

[nx, ny, nz] = deal( 10,  10, 10); 
[Dx, Dy, Dz] = deal(200, 200, 50); 

G = cartGrid([nx, ny, nz], [Dx, Dy, Dz]); 
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G = computeGeometry(G); 
 
plotGrid(G), view(3), axis tight 

 

Figure 1. 200-200-50 rectangular reservoir in 10-10-10 Cartesian grid 

We assume a ‘Horizontal’ well which is drilled into 6 grids of reservoir. The theoretical 
representation of the reservoir is mentioned. (Figure 2) 

nperf = 6; 
I = repmat(2, [nperf, 1]); 
J = (1 : nperf).' + 1; 
K = repmat(5, [nperf, 1]); 

  
cellInx = sub2ind(G.cartDims, I, J, K); 
W = addWell([], G, rock, cellInx, 'Name', 'P1', 'Dir', 'y' ); 
gravity reset on, g = norm(gravity); 
[z_0, z_max] = deal(0, max(G.cells.centroids(:,3))); 
equil  = ode23(@(z,p) g .* rho(p), [z_0, z_max], p_r); 
p_init = reshape(deval(equil, G.cells.centroids(:,3)), [], 1);  clear equil 
clf 
show = true([G.cells.num, 1]); 
cellInx = sub2ind(G.cartDims, ... 
   [I-1; I-1; I; I;   I(1:2) - 1], ... 
   [J  ; J;   J; J;   nperf  + [2 ; 2]], ... 
   [K-1; K;   K; K-1; K(1:2) - [0 ; 1]]); 

  
show(cellInx) = false; 

  
plotCellData(G, convertTo(p_init, barsa), show, 'EdgeColor', 'k') 
plotWell(G, W, 'height', 10) 
view(-125, 20), camproj perspective 
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Figure 2. Theoretical representation of model of Reservoir having ‘Horizontal Well’  

Constructing in a Cartesian grid with assuming 200 mD permeability and 1 viscosity and 
1000 density (Figure 3).  

 

Figure 3. Cartesian grid with assuming 200 mD permeability and 1 viscosity and 1000 density  

Plotting the pressure distribution at our reservoir (Figure 4). Assuming 200 bar or 2900 psi 
at top of reservoir. 

[nx, ny, nz] = deal( 10,  10, 10); 
[Dx, Dy, Dz] = deal(200, 200, 50); 
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gravity reset on 
G = cartGrid([nx, ny, nz], [Dx, Dy, Dz]); 
G          = computeGeometry(G); 
rock.perm  = repmat(0.2*darcy(), [G.cells.num, 1]); 
fluid = initSimpleFluid('mu' , [   1,  10]*centi*poise     , ... 

                            'rho', [1014, 859]*kilogram/meter^3, ... 

                            'n'  , [   2,   2]);bc         = pside([], G, 

'TOP', 100.*barsa); 
S   = computeMimeticIP(G, rock); 
sol = incompMimetic(initResSol(G , 0.0), G, S, fluid, 'bc', bc); 
newplot; 
subplot(8, 1, [1 3]) 

   plotCellData(G, convertTo(sol.pressure(1:G.cells.num), barsa), ... 
               'EdgeColor', 'k'); 
   set(gca, 'ZDir', 'reverse'), title('Pressure Distribution') 
   view(45,5), cx = caxis; colorbar 

 

 

Figure 4. Fine scale pressure distribution 

For the multiscale system, plotting the coarse scale solution (Figure 5). 
Multiscale only captures coarse-scale gravity effects. To get fine scale result, we are adding 

finescale equation which we did earlier to solution of multiscale effect, which gives us following 
result – 

p  = partitionUI(G, [Nx, Ny, Nz]); 
p  = processPartition  (G, p); 
CG = generateCoarseGrid(G, p); 

  

CS = generateCoarseSystem(G, rock, S, CG, ones([G.cells.num, 1]),'bc', bc); 
xrMs = solveIncompFlowMS (initResSol(G, 0.0), G, CG, p, ... 
                          S, CS, fluid, 'bc', bc); 
subplot(8, 1, [1 3]) 
   plotCellData(G, convertTo(xrMs.pressure(1:G.cells.num), barsa), ... 
               'EdgeColor', 'k'); 
   set(gca, 'ZDir', 'reverse'); title('Coarse scale Pressure Distribution') 
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   view(45,5); caxis(cx); colorbar 

  
subplot(3, 2, [5 6]); 
   plot(1:nz, convertTo(sol .pressure(1:nx*ny:nx*ny*nz), barsa()), '-o',... 
        1:nz, convertTo(xrMs.pressure(1:nx*ny:nx*ny*nz), barsa()), '-*'); 
   legend('fine','coarse','Location','NorthWest'); 

 

Figure 5. Coarse scale pressure distribution 

Now if we compare both, we get the following result. We get the following pressure distri-
bution per grid (Figure 6) 

 
subplot(8, 1, [1 3]); 
   plot(1:nz, convertTo(sol .pressure(1:nx*ny:nx*ny*nz), barsa()), '-o',... 
        1:nz, convertTo(xrMs.pressure(1:nx*ny:nx*ny*nz), barsa()), '-*'); 
   legend('fine','coarse','Location','NorthWest'); 

 

Figure 6. Pressure distribution grid 
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Now we are checking Permeability distribution over reservoir (Figure 7). We use boundary 
condition of flux of 1 on the LHS and Dirichlet boundary conditions p = 0 on RHS of grid. 

 
verbose = true; 
[nx, ny, nz] = deal( 10,  10, 10); 

[Dx, Dy, Dz] = deal(200, 200, 50); 
G = cartGrid([nx, ny, nz], [Dx, Dy, Dz]); 
G = computeGeometry(G); 
K         = logNormLayers([nx, ny, nz], 1); K = 10 * K / mean(K(:)); 
rock.perm = bsxfun(@times, [10, 1, 0.1], convertFrom(K, milli*darcy())); 
fluid = initSimpleFluid('mu' , [   1,  10]*centi*poise     , ... 
                            'rho', [1014, 859]*kilogram/meter^3, ... 

                            'n'  , [   2,   2]); 
gravity off 
bc = fluxside([], G, 'LEFT',  100*meter()^3/day()); 
bc = pside   (bc, G, 'RIGHT', 0); 
newplot 
plotCellData(G,log10(convertTo(rock.perm(:,1),milli*darcy))); shading fac-

eted; 
title('Permeability Distribution'); 
view(3), camproj perspective, axis tight off 
cs = [50 100:100:1000]; 
h=colorbar; 

 

 

Figure 7. Permeability distribution 

Then we find flux intensity distribution (Figure 8) 

p  = partitionUI(G, [Nx, Ny, Nz]); 
p  = processPartition(G, p); 
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CG = generateCoarseGrid(G, p, 'Verbose', verbose);display(CG); 

disp(CG.cells); disp(CG.faces); 
S  = computeMimeticIP(G, rock, 'Verbose', verbose); 
display(S); 
CS = generateCoarseSystem(G, rock, S, CG, ones([G.cells.num, 1]), ... 
                         'Verbose', verbose, 'bc', bc); 

                      
newplot; 
subplot(1,2,1), 
cellNo  = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .'; 
C       = sparse(1:numel(cellNo), cellNo, 1); 
D       = sparse(1:numel(cellNo), double(G.cells.faces(:,1)), 1, ... 
                 numel(cellNo), G.faces.num); 

  

   spy([S.BI                  , C        , D        ; ... 
        C', zeros(size(C,2), size(C,2) + size(D,2)); ... 
        D', zeros(size(D,2), size(C,2) + size(D,2))]); 

  

   xRef = incompMimetic    (initResSol(G, 0.0),  G, S, fluid, ... 
                        'bc', bc, 'MatrixOutput',true); 
xMs  = solveIncompFlowMS(initResSol(G, 0.0), G, CG, p, S, CS, fluid, ... 
                        'bc', bc, 'MatrixOutput', true, 'Solver', 'hybrid'); 
 clf 
plot_var  = @(x) plotCellData(G, x); 
plot_pres = @(x) plot_var(convertTo(x.pressure(1:G.cells.num), barsa())); 
plot_flux = @(x) plot_var(accumarray(cellNo, ... 
   abs(convertTo(faceFlux2cellFlux(G, x.flux), meter^3/day)))); 
subplot('Position',[0.02 0.02 0.46 0.42]), 
   plot_flux(xRef); title('Flux intensity Distribution') 
   view(3), camproj perspective, axis tight equal, camlight headlight 
   cax2 = caxis; colorbar 

 

Figure 8. Flux intensity distribution 

Now after trying our Simulation on ‘Cartesian grid’, we simulated our reservoir on ‘Corner-
point grid’ aswell, for experimental purposes (Figure 9). 

555



Petroleum and Coal 

                         Pet Coal (2019); 61(3): 546-558 
ISSN 1337-7027 an open access journal 

We have used same values for all properties like we did on Cartesian grid. For boundary 
condition: we used Dirchlet condition for 1 bar pressure on LHS and 0 bar at RHS. 
 

nx = 10; ny = 10; nz = 10; 
Nx = 200; Ny = 200; Nz = 50; 

verbose = true; 
grdecl  = simpleGrdecl([nx, ny, nz], 0.15); 
G       = processGRDECL(grdecl); clear grdecl; 
G       = computeGeometry(G); 
[rock.perm, L] = logNormLayers([nx, ny, nz], [100, 400, 50, 500]); 
fluid = initSimpleFluid('mu' , [   1,  10]*centi*poise     , ... 
                            'rho', [1014, 859]*kilogram/meter^3, ... 

                            'n'  , [   2,   2]); 
rock.perm      = convertFrom(rock.perm, milli*darcy); 
westFaces = find(G.faces.centroids(:,1) == 0); 
bc        = addBC([], westFaces, 'pressure',        ... 

                  repmat(1*barsa(), [numel(westFaces), 1])); 

  

xMax      = max(G.faces.centroids(:,1)); 
eastFaces = find(G.faces.centroids(:,1) == xMax); 
bc        = addBC(bc, eastFaces, 'pressure',        ... 
                  repmat(0, [numel(eastFaces), 1])); 
clf 
   plotCellData(G, log10(rock.perm(:))); shading faceted 
   title('Reservoir using Corner-point grid') 

   view(3), camproj perspective, axis tight off, camlight headlight 

    

   set(h, 'YTick', c, 'YTickLabel', num2str(10.^c')); 

 

Figure 9. Reservoir using Corner-point grid 
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After this, we have also plotted our reservoir using Multiscale Finite Volume method with 
experimental data (Figure 10). 

 

Figure 10. Reservoir using Multiscale Finite Volume 

6. Conclusion 

In this paper, we have modified multi scale mixed finite element method (MsFEM) for in-

compressible flow including two phases. We have also implemented the same for simulation 
of two-phase flow in a porous reservoir and we have compared our results with the results 
obtained from highly reputed companies from India. 
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