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Abstract 

A thermodynamic framework is developed for calculating the cloud point also known as WAT (Wax 
Appearance Temperature) or WDT (Wax Disappearance Temperature) in petroleum mixtures. The method 
involves the use of experimental data to generate a correction’s correlation for the liquid molar volume 
shift parameter during liquid-solid equilibrium. Application of the method to the five ternary systems with 
the 72 equilibrium data points gives an AAD (Absolute Average Deviation) between 0.843 – 0.979. Also, the 
method gives a better performance in re-producing the experimental cloud point for real petroleum 
fluids. Its use is simple, accurate and has wide range of validity. 

Keywords: Cloud point; Molar volume shift parameter; Multi-solid model; Stability analysis; Thermodynamic 
equilibrium. 
 

1. Introduction 

The oil industry has experienced a series of wax-precipitation problems as evidenced in 
wax deposition in producing sands, well bores and in the surface transmission lines. Wax 
deposition is most likely to occur in the well bore, in the surface transmission lines as well 
dehydration difficulties with slightly waxy crude oils. However, wax deposits in the reservoir 
sand may results in serious production losses that are difficult to overcome. The cloud point, 
the temperature at which wax begins to precipitate also known as WAT (Wax Appearance 
Temperature) or WDT (Wax Disappearance Temperature) is essential in determining which 
crudes will form deposits under field conditions as well as for establishing the minimum required 
dehydration temperature for avoiding wax/oil/water rag layer detrimental to water settling.  

It is an important and serious problem that often occurs in oil production operations as 
the production goes on, in which the operating condition falls below the cloud point temperature 
and pressure. The effect of pressure in comparison with the effect of temperature is not so 
much to be taken into consideration. So, only the effect of temperature has been evaluated. 

In this work for the first time, a developed volume correction was applied to multi-solid 
model for the prediction of Wax Disappearance Temperature (WDT), which is also equals to 
the WAT (Wax Appearance Temperature). The predictive UNIQUAC model was used to model 
the non ideality of the solid (wax) phase and the liquid phase in equilibrium. For validating 
the proposed model some experimental data have been used which were for 72 equilibrium 
data points. Also Experimental determined WAT (Wax Appearance Temperature) from separator 
liquid in the literature [1] were used for the validation. 

2. Experimental Data 

In this work five ternary systems, which include C14-C15-C16 (ternary 1), C15-C16-C17 (ternary 2), 
C16-C17-C18 (ternary 3), C18-C19-C20 (ternary 4) and C19-C20-C21 (ternary 5) have been used [2]. 
These systems contain 72 mixtures that the amount of WDT (Wax Disappearance Temperature) 
in Kelvin (K) at atmospheric pressure and composition of mixtures have been reported in 
Table 1-4. 



Table 1 Experimental WDT (K) data for C14-
C15-C16 ternary system 1 

Table 2 Experimental WDT (K) data for C15-
C16-C17 ternary system 2 

 Composition 
(molar %) 

  Composition 
(molar %) 

 

Mixture C14 C15 C16 Exp. WDT (K) Mixture C15 C16 C17 Exp. WDT (K) 

1 5 10 85 286.5 1 5 5 90 299.7 
2 10 15 75 285.2 2 7 8 85 298.3 
3 15 10 75 284.7 3 12 10 78 297.8 
4 12 16 72 285.5 4 20 15 65 297.3 
5 14 10 76 284.1 5 13 16 71 298.4 
6 35 25 40 282.2 6 15 10 75 298.3 
7 25 20 55 282.4 7 20 25 55 295.4 
8 20 10 70 285.1 8 40 45 15 293.1 
9 34 14 52 284.3 9 32 17 49 294.3 
10 23 16 59 284.9 10 21 18 61 295.5 
11 45 30 25 281.5 11 12 56 32 293.7 
12 42 52 6 283.1 12 15 70 15 291.4 
13 50 23 27 282.7 13 45 30 25 292.6 
14 75 13 12 281.5 14 25 40 35 292.8 
     15 85 5 10 289.6 
     16 5 80 15 290.3 

Table 3 Experimental WDT (K) data for C16-
C17-C18 ternary system 3 

Table 4 Experimental WDT (K) data for C18-
C19-C20 ternary system 4 

  Composition 
(% mol.) 

   Composition 
(% mol.) 

 

Mixture C16 C17 C18 Exp. WDT (K) Mixture C16 C17 C18 Exp. WDT (K) 

1 5 7 88 302.4 1 10 10 80 309.4 
2 10 12 78 301.7 2 12 9 79 307.8 
3 15 10 75 300.2 3 16 23 61 306.3 
4 12 9 79 301.9 4 20 25 55 304.5 
5 34 23 43 298.6 5 18 45 37 304.1 
6 45 13 42 296.9 6 14 70 16 302.4 
7 50 23 27 296.5 7 10 80 10 303.1 
8 25 50 25 297.4 8 45 23 32 301.8 
9 21 70 9 297.1 9 40 45 15 302.4 
10 15 60 25 298.2 10 60 30 10 303.5 
11 23 17 60 299.1 11 34 35 31 305.5 
12 41 18 41 297.3 12 12 70 18 306.3 
13 80 16 4 295.3      

14 57 32 11 296.5      
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Table 5 Experimental WDT (K) data for C19-C20-C21 ternary system 5 

  Composition (% mol.)   

Mixture C19 C20 C21 
Exp. WDT 

(K) 

1 6 12 82 311.9 
2 10 15 75 311.4 
3 12 12 76 311.6 
4 20 25 55 309.3 
5 25 15 60 310.4 
6 30 40 30 307.7 
7 40 45 15 305.2 
8 21 17 62 309.4 
9 34 12 54 307.5 
10 60 30 10 307.1 
11 23 21 56 308.7 
12 40 40 20 308.3 
13 45 41 14 304.9 
14 70 15 15 302.2 
15 20 70 10 305.8 
16 10 80 10 306.7 

2.1 The Multi-Solid model based on modified volume correction approach  

The solid saturation, S, can be expressed as  
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Also, from the material balance 

)()1( LTSLST VVfVfV −+−=                  (4) 
                                        

From experimental value knowledge of VT, and solving equ [3]  and [4]  simultaneously, gives 
the values of VL and fS and this enable the values of VS to be determined, and then VS = VT - VL.

 Generally the temperature difference between the WAT and the gel point will not exceed 

30oC. It is known that the increase of (density of liquid (oil)/ density of solid (wax) at this 

temperature range will not exceed 2% [3], so the (density of liquid (oil)/ density of solid 

(wax) can be treated as a constant. Then the weight fraction of solid (wax) and Liquid (oil) 
can be determined. These were used directly in the matching procedure of the experimental 
results to the predicted results. 

Both the phase behaviour properties (fS, xi and yi) and the volumetric properties (VL and VS) 
were used in the matching procedure for characterization of the pseudo-component parameter 
for better volumetric prediction [4]. During wax precipitation defining the shift parameter as 

)( ,, CiLEiLi VVq −= . 
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The  proposed corrective shift parameters qi = (ViL,E-ViL,C) for  pure n-alkanes , and n-
alkyl-cyclohexanes  acknowledged to be responsible [5,19] for the wax precipitation in petroleum 
fluid at a temperature below the Wax Appearance Temperature (WAT) of these well defined 
components  when plotted against the  Pseudo-molecular weight of the Liquid components, M. 
The pseudo molecular weight is defined as: 

∑
=

=
c

i
ii xMM

1

                      [5] and, 
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                        [6] 

Then the molar volume shift parameter q, at different temperature was observed to follow 
a power function in M as,  

bMaq /1−=                        [7] 

Where a, and b are positive correlation coefficients. The molar volume shift-parameter 
correlation, Equ. 7 was fit to the plot of q against M and the correlation correlations, a, and 
b, were determined with regression analysis. The coefficients are given in Table 6. 

Table 6 Correlation coefficient of different hydrocarbon 

Correlation Coefficient Component Type 
a b 

n-alkanes 2.158 0.12182 
n-alkyl-cyclohexanes 2.804 0.18874 

For precipitating components, the thermodynamic equilibrium can be written as 
At equilibrium (i.e. at WAT or WDT) 
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Applying the molar volume shift parameter, q 

The new activity coefficient, i
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Neglecting Poynting correction term, that is, last term on the right side of equ. (1), we 
obtain the expression for the pure solid component fugacity: 
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The fusion and transitional properties used are as presented by “O. Adeyanju and L. 
Oyekunle, unpublished observations”. 

Predictive UNIQUAC activity coefficient model 
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In this equation, the jiλ  is the interaction energy [14,15]. Similar to UNIFAC model, iθ  and  iΦ
 

are calculated by (17) and (18). The correlations for the r and q values with the n-alkane 
chain length are: 
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00996.00148.0 += nii Cr                     [19] 

0211.00185.0 nii Cq =                      [20] 

The interaction energy, iiλ is estimated from the heat of sublimation of pure orthorhombic 

crystal, 

( )RTH
Z subiii −Δ−=
2λ                     [21] 

With Z being the coordination number. For orthorhombic crystals, the value of 6 is 
considered for Z. the interaction energy between two non identical molecules is given by: 

jjjiij λλλ ==                         [22] 

where j is the n-alkane with the shorter chain of the pair ij. 
Heat of sublimation can be calculated by: 

tr
i

f
i

vap
i

sub
i HHHH Δ+Δ+ΔΔ                    [23] 

Where vapourization enthalpy is assessed using the PERT2 correlation by Morgan and 
Kobayashi [6]. The critical properties needed in Morgan and Kobayashi correlations can be 
calculated by the following correlations: 

tr tot fH H HΔ = Δ − Δ                       [24] 

3.7791 12.654tot nH CΔ = −                      [25] 
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By using stability analysis calculations, and material balance for precipitating components [7-14], 
the mole fraction and composition of solid phase can be determined. The algorithm and 
material balance equations have been reported in the literatures [16,17,18]. 

3. Results and discussion  

The plots of Experimental WDT (Wax Disappearance Temperature) also known as cloud 
point against the calculated cloud point for the five ternary system are shown in figs. 1-5. 
The figures show that the developed technique gives a better prediction of the experimental 
data judging from the closeness of the experimental and calculated cloud point for each mixture. 
These were confirmed by low values of Average Absolute Deviation (AAD) calculated for the 
five ternary systems.   

 
Fig. 1 Comparison of the experimental data and 
calculated results for ternary 1 (C14‐C15‐C16) 

Fig. 2 Comparison of the experimental data and 
calculated results for ternary 2 (C15‐C16‐C17) 

 

  
Fig.3 Comparison of the experimental data and 
calculated results for ternary 3 (C16‐C17‐C18) 

Fig. 4 Comparison of the experimental data and 
calculated results for ternary 4 (C18‐C19‐C20) 

 

 
Fig. 5 Comparison of the experimental data and calculated results for ternary 5 (C19‐C20‐C21) 
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The Average Absolute Deviations defined as, 
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For each of the ternary system have been reported in Table 8, the results show that using 
the proposed corrective shift parameter with the multi-solid model to model the equilibrium 
point gives better results in comparison with the normal multi-solid model without the corrections. 

Table 8 Average Absolute Deviations (AAD) values  

Ternary system 1 2 3 4 5 

No. of data points 14 16 14 12 16 

AAD of solid model with proposed correction 0.843 0.888 0.979 0.925 0.938 

AAD of solid model without proposed correction 1.34 1.58 1.89 2.03 1.26 

An application of the proposed method to real petroleum fluids coded Oil 1, 2, 5 and 8 
from the literature also gives better results than the normal method without the corrective 
method. This is shown in Table 9, 

Table 9 Experimental and calculated cloud point temperatures 

Oil no. Un-corrected WAT, (K) Corrected WAT, (K) Experimental WAT, (K) 

1 306.2 304.67 304.15 

2 310.1 311.87 312.15 

5 316.9 315.02 313.15 

8 308.3 309.46 311.15 

A corrective shift parameter had been proposed for the determination of cloud point (WAT 
or WDT) for components in petroleum fluid. The method is based on the experimental supported 
theory and tested with experimental data. Application of this method to some real petroleum 
mixtures confirmed the superiority of this method to the normal method. 

4. Conclusion 

New thermodynamic correction method for the Prediction of Cloud point in petroleum systems 
has been proposed. The method when validated with five petroleum systems showed that 
the method predicts the Cloud Point to a higher degree of accuracy than the existing thermodynamic 
model judging by the lower value of Average Absolute Deviation from the experimental results. 
The application of the new proposed model is simple and need only few parameters which 
are dependent on the petroleum system. Also, the method gives a better performance in re-
producing the experimental cloud point for real petroleum fluids. 

Nomenclature 

a, b shift parameter correlation coefficient T temperature 
C number of component Tc   critical Temperature 
Cn carbon number S solid mole fraction 
Cp specific heat capacity V molar Volume 
D density Vc  critical volume 
F fugacity VS solid volume fraction 
H enthalpy VT mixture molar volume 
I counter of component VL liquid volume fraction  
M molecular weight ViL,C calculated liquid molar volume  
Mi pseudo molecular weight of Liquid 

components/pseudo components 
ViL,E experimentally determined liquid 

molar volume   
N total number of components and 

pseudo components lV
*

 
modified liquid molar volume 

P pressure X liquid mole fraction 
Pc critical pressure Z coordination number 
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Q dimensionless molar volume parameter Zf feed composition 
R gas universal constant   

Greek letters 

Δ variation ϕ  volume fraction 
γ  activity coefficient Φ  Segment fraction 
δ  solubility parameter φ  fugacity coefficient 
−

δ  average solubility parameter   
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