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Abstract 
One of the greatest challenges of directional drilling (DD) is the accurate dogleg severity (DLS) 
estimation for selection of drive systems for DD. Several conventional techniques has been employed 
which either over estimates DLS leading to hole problems and inability to follow trajectory which greatly 
contribute to non-productive time thereby resulting to financial losses or are expensive to maintain 
and time consuming. In this work, three different machine learning models (MLMs) were developed to 
optimize DLS, to wit: Decision tree (DT), Random Forest (RF) and Support Vector Machine (SVM). Two 
scenarios were evaluated, viz: a case without optimization and the optimized case. In the unoptimized 
case, R2 was used to rank the accuracy of the MLMs with RF having R2 of 91.4% with error margin of 
14%-22.6%, DT had R2 of 85.7% with error margin of 18%-29.2% while SVM had R2 of 83.3% with 
error of 16%-31.6% for all the tested error metrics. For the optimized case, grid Search optimization 
algorithm was implemented on DT and RF while genetic optimization algorithm was implemented on 
SVM. From the result, the optimized SVM-MLM yields the same DLS as the actual DLS from drilling 
survey data except for a single value that was less than the actual DLS with a difference of 
0.001deg/100ft in comparison to those obtained using DLS conventional estimation techniques.  The 
optimization improved DT’s R2 from 85% to 90% with error margin of 16%-24%, RF from 91.4% to 
98.1% with error margin of 5.8% -10.7% and SVM from 83.3% to 98.4% with error margin of 0.94%-
2.2%. Thus, depending on the best suited priorities the SVM-MLM well path should be selected. The 
result indicates that DD operation should be more economical, easier and safer with the well trajectory 
planned by utilizing the approach proposed in this study. 
Keywords: Dogleg severity; Machine learning; Decision tree; Random forest; Genetic algorithm; Support 
vector machine. 

1. Introduction

The demand for cost-effective drilling operations in directional and horizontal wells in the
oil and gas sector is ever growing [1-2]. One of the important aspects to achieving the afore-
mentioned challenge is determining the optimal well trajectory or directional path to reach the 
desired/target point [2]. The most important optimization objective is to achieve an optimal 
well trajectory in safe and stable drilling conditions [3-4]. However, Determination of optimal 
well trajectory is quite a difficult task because there are many parameters to consider such as 
dogleg severity (DLS), azimuth and inclination angle [5]. In the early stages of directional 
drilling, trajectories were designed manually, which makes it impossible to find an optimal 
solution quickly and efficiently. Mistakes in design may lead to expensive procedures that 
would be required to be carried out to fix emergencies at the drilling stage [6]. Determination 
of optimal well trajectories constitutes one of the problems of field development planning. This 
problem must be solved when a well pad pattern is being selected; all existing engineering 
constraints must be taken into consideration; at the same time, the cumulative length of all 
trajectories must be minimal to reduce capital costs for drilling [7]. Well trajectories are clas-
sified according to the number of wellbore intervals. A number of parameters define every 
well section: length, DLS, inclination angle change. The values of parameters can be changed 
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within the limits of the engineering constraints [6-7]. Hydrocarbon field development planning 
is a complex process with many decision variables being considered [7-8].  This process requires 
long-term predictions and capital investments strongly linked with decisions about different 
components of an integrated process: facilities, production strategies, number of rigs, health, 
safety and environmental constraints, improved and enhanced oil recovery (EOR) strategies [8].  

In the context of a hard economical constrained situation and cost efficiency, one of the 
most important parts in field development is planning and drilling the wells. More specifically, 
well trajectories, number of wells to be drilled along with choices of locations plays a central 
role in the decision making process of optimizing a field development plan [8-9].  Planning a 
new well involves creating a trajectory that passes through several target points in the reser-
voir and yet remains deliverable. The deliverability is assessed based on a large number of 
criteria including well length and DLS [10-11]. In the world of model based reservoir optimiza-
tion, most attention has been given to life cycle production optimization, aiming to find optimal 
operating strategies for fixed well configurations. Relatively few studies focus on the optimi-
zation of directional well path or trajectory and much fewer studies focuses on implementing 
machine learning (ML) techniques for the optimization of the important parameters that de-
termine the trajectory of the well which is mostly DLS [8].  

DLS is one of the most important parameters which affect the determination of optimal well 
trajectories in directional drilling [12-13]. DLS is determined at the dogleg. It is the measure-
ment of azimuth or inclination change usually expressed in 30 m of CL (course length) or 
degrees/100 ft. DLS describes the wellbore’s curvature and smoothness and as such respon-
sible for the side forces like bending forces that act on DS. Majority of directional wells do not 
follow smooth paths as planned, consequently containing crookedness that cause drilling prob-
lems like stuck pipe [14]. Improvement of this indicator actually means choosing the best 
conditions for the DD in order to reach the target point [12].  Selection of high levels of the 
DLS actually means minimizing well trajectory, but on the other hand, increases fatigue in drill 
string (DS), increases torque and drag, particularly in the rotation mode [12,15]. Therefore the 
aim is to define the index in an optimal range which meets both requirements [15]. As always, 
drilling can be optimized by using existing well data, but because the DLS optimization has so 
many governing factors, it is difficult to create a model that can simulate DLS utilizing previous 
experiences that can be applied to future wells [16]. Any of the optimization algorithms can be 
employed for the optimization of the DLS. The purpose of this algorithm is to minimize the 
trajectory length by optimizing the DLS [1,17].  The minimum parameters will reduce the DLS, 
which in turn reduce the chances for operational problems like high torque and drag [1]. 

2. Literature review  

Wilson, [18]  conducted a study on improved method for computing directional surveys. He 
presented Radius of Curvature method (RCM)) (equation 1) as an improved method used for 
computing directional surveys which he showed, performed better than the tangential method 
which was the previous method used for computing directional surveys. He discovered that 
the interpretation of calculations made with the tangential method created problems in accu-
rately depicting Louisiana Gulf Coast reservoirs. He pointed out computer calculations indi-
cated the tangential method to be in error by about 12ft in vertical depth and about 40ft in 
departure in horizons encountered above the point at which return to vertical was started. He 
cited example where, computations with single-shot data indicated a spread of 40ft in the 
vertical depth of an oil-water contact encountered by several S-type wells now known to have 
penetrated the same reservoir. He applied the RCM in the computation of directional surveys 
and discovered that the RCM eliminated inherent errors in vertical depth, horizontal departure, 
direction coordinates and DLS that occurred when tangential method was applied. He con-
cluded that computations with the RCM reduced the spread of contact depths to only 5ft. The 
utilized radius of curvature equation is stated below:  
𝐷𝐷 = 100�𝐶𝐶2 𝑠𝑠𝑠𝑠𝑠𝑠4 𝜑𝜑 + 𝑏𝑏2                     (1) 
where: D - DLS at the point at which ɸ is determined.  
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The limitation to radius of curvature is that the result yields a trajectory with high DLS, 
and, consequently, high drags and torque on the DS compared to constant curvature method 
(CCM).Guo et al., [6] conducted a study on CCM for planning 3-D Directional Well. He proposed 
a new method for planning 3-D directional well path, which had several advantages over the 
conventional Radius-of-Curvature Method and Constant-Turn-Rate Method (CTRM). The new 
method yields constant curvature well path sections which are compatible with the directional 
performance of deflection tools, it also yields less DLS of well trajectories, and, consequently, 
less drags and torque on the DS. Mathematically, the formulation of the method involves 
integrals that do not have closed form solutions and need to be estimated numerically. To 
avoid the numerical integrations, they presented two alternative approximations to the exact 
solution, namely Piecewise- RCM and Piecewise-CTRM. The proposed CCM assumes constant 
well path curvature is compatible with the directional performance of deflection tools and is 
also consistent with the geometrical relationship between the tool face orientation angle, rate 
of build and DLS. He utilized this formula to calculate DLS 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐼𝐼2−𝐼𝐼1
𝐿𝐿2−𝐿𝐿1
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                  (2) 

From their result, the CCM yielded a better result in comparison to other methods utilized. 
The limitation to CCM is that, it is time consuming because of the numerous computations for 
each section of the well.  

Hosseini et al., [2] utilized Particle Swarm Algorithm to study DLS in directional oil wells. 
They performed optimization of well path and directional drilling parameter with measured 
depth as the objective function, horizontal depth and target TVD as constraints related to well 
path, maximum tensile strength as constraint related to DS mechanical properties and maxi-
mum well angle as constraint related to operational condition. Particle Swarm Optimization 
(PSO) algorithm was implemented, with measured depth as the objective function. 
𝑓𝑓(𝑥𝑥) = 𝑀𝑀𝑀𝑀 = 𝐷𝐷1 + 100𝛼𝛼

𝐷𝐷𝐷𝐷𝐷𝐷
+ 𝐷𝐷3−𝐷𝐷1−𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼

𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
              (3) 

The result showed that the final measured depth was less than the proposed program and 
the fatigue criteria were also satisfied. The limitations or disadvantages of PSO algorithm are 
that it is easy to fall into local optimum in high dimensional space and has a low convergence 
rate in the iterative process.  

Shokir et al., [1] investigated the use of GA for optimal 3-D horizontal and directional wells 
planning. Two constraints were considered in the work: operational constraints and non-neg-
ative constraints. The operational constraints were imposed on the well design due to the 
different types of formation to be drilled, casing setting depths, limitations of variable equip-
ment or technology, and other operation related limitations. The non-negativity constraints 
were imposed on the well design model to ensure that certain components of the model are 
always positive. They discovered from their result that GA reduced the measured depth of the 
well by about 70ft less than the conventional method in the first application. For the second 
application, the GA reduced the measured depth by about 110ft less than the conventional 
technique. The limitation to this method is that it is time consuming and also expensive.  

Brechan et al., [19] carried out an in-depth study on planning horizontal and extended reach 
wells. They developed a model to determine DLS from course length and dogleg angle as 
shown in equation 4. Nkengele [14] posited that the technique for DLS determination developed 
by Brechan, et al., [19] known as the Brechan et al. method is the most reliable, functional, 
easy to implement and highly accurate in comparison with other models for DLS calculation.    
𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜑𝜑 𝑥𝑥30

𝐶𝐶𝐶𝐶
                         (4)  

where: 𝜑𝜑 - dogleg angle; CL - course length or dogleg’s length (m). 
𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐−1[𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼𝑛𝑛+1 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼𝑛𝑛+1 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽𝑛𝑛+1 − 𝛽𝛽𝑛𝑛)] and 𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑛𝑛+1 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐴𝐴𝑛𝑛 
where: DMEA –Hole depth (MD), n = 1, 2, 3, …. (survey measurement points). 
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3. Materials and methods   

3.1. Materials  

The materials used for this work are python and dataset: (i) Python is an object-oriented 
and high-level programming language in scientific computing, because of its data-oriented 
feature packages that can speed up and simplify data processing, thus saving time. Python 
supports modules and packages, which encourages program modularity and code reuse. (ii) 
Dataset used in this work shown in Table 1, was obtained from drilling survey report available 
at the volve data repository. The drilling survey report contains the following features:  Meas-
ured depth (MD), Inclination, Azimuth, True Vertical depth (TVD), N/S and E/W coordinates, 
Vertical Section and DLS.  

3.2. Method  

The method used in this study include: data preprocessing, outliers, exploratory data analysis 
and thereafter model development or simply modeling 

3.2.1. Data preprocessing  

Missing values and outliers impact the accuracy of the MLM. Data preprocessing was per-
formed to handle the missing values and outliers in the dataset. This is because; the outliers 
could be taking place as a result of measurement errors.  

3.2.2. Outliers  

The outliers were identified by making boxplots of all the parameters in the dataset as 
depicted in Figures 1 and 2, and thereafter, they were removed them from the data so that 
they will not affect the model's decision. Figures 1 and 2, reveals the outliers that were present 
in DLS and inclination respectively. 

  
Fig. 1. Boxplot showing the outliers of DLS present in the data. 

  
Fig. 2. Boxplot showing outliers of inclination present in the data.  
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3.2.3. Exploratory data analysis (EDA)  

The accuracy of the MLM depends on the correlations between the various features used in 
training the model with the target feature as depicted in Figure 3. Determination of the relative 
important features for DLS optimization from the various input features in the data is therefore 
crucial. EDA was then implemented on the data to discover relationships/correlations that 
exist between the various input features and the target feature. Depicted in Figure 4 is the 
Scatter plot of DLS against true TVD. The pairplot in Figure 5 shows the relationship that exists 
between all the features in the dataset. 

 
Fig. 3. Heatmap showing correlations between the dataset features. 

 
Fig. 4. Relationship between TVD and DLS. 

3.2.4. Modeling  

Three different machine learning models (MLMs) were developed for this study. The models 
are: Support Vector Machine (SVM), Decision tree (DT) and Random Forest algorithm (RFA). 
Grid search optimization method was applied to DT and Random Forest (RF) for tuning the 
hyper parameters of these models in order to obtain the optimal input parameters of these 
models. Genetic Algorithm (GA) was applied on SVM for tuning the SVM’s hyper parameters. 
Theses optimization techniques were used to update the input features of the model.  
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Fig. 5. Pairplot showing relationship between features of the dataset. 

3.2.5. SVM and genetic algorithm  

Different predictions for DLS were first obtained using different input features of the SVM. 
These input features were encoded in a binary form called chromosomes. After obtaining the 
predictions, the GA was implemented for the optimization of DLS using the binary encoded 
chromosomes. The GA performed a heuristic search on the input parameters of the models to 
obtain the optimal input parameters for all the models. The optimized input parameters of the 
different models were then applied to train the different model using the same dataset.   

GA optimized the SVM using these steps: (i) Initial Population: The GA first generated an 
initial population of possible solutions called chromosomes. These solutions were different 
predictions of DLS at any depth using the SVM. Value chromosome encoding was selected 
using real numbers to encode the problem variables on GA chromosomes. Then, each variable 
(gene) had a value to build an initial population. Each chromosome represented a solution to 
the problem. The population size was 20 chromosomes. (ii) Evaluation Function: After building 
the initial population, each chromosome (solution) in the population was evaluated according 
to fitness values of the objective function. Assessment of the accuracy of the possible solutions 
was carried out using an objective function which depicted the accuracy of the MLM. (iii) Se-
lection: The best performing chromosomes were selected by the GA which formed the parents 
The selection method utilized in the GA was Tournament selection, to select two parents (chro-
mosomes) from the population to produce two children from them by reproduction operators. 
Tournament selection ensured that only the best performing chromosomes were selected as 
parents. (iv) Crossover: The crossover type used in the model was one-point crossover. In 
this type, one point was selected randomly, and cutting the two parent chromosomes at this 
point then exchange alternate pairs of sections between the first part of one parent and the 
last part of the other parent. After this crossover, two children chromosomes (new solutions) 
were produced. The selected probability of crossover was 100%. The population of offsprings 
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generated had better solutions than the parents. (v) Mutation: After crossover and producing 
two children chromosomes, one gene was selected from each child chromosome to mutate its 
value. This mutation technique occurred by changing the value of the variable (gene) by add-
ing a random value to its old value. The Mutation induced diversity within the offspring to 
further improve its solution. (vi) New Population: After producing the offspring, two chromo-
somes of the two parents and the two children chromosomes were inserted into the popula-
tion. This was done by determining the best two chromosomes (the two chromosomes that 
had the best fitness value) from the two parents and the two children chromosomes, and were 
inserted into the population to improve the population (group of solutions).The process was 
repeated for several generations until an optimal solution was achieved. Depicted in Figure 6 
is the flowchart of the GA.  

 
Fig. 6. GA flowchart 

3.2.6. Decision tree (DT) and grid search   

DTs are general class of MLMs that are used for both classification and regression. The 
trained models resemble a tree, complete with branches and nodes. At the top of the tree is 
the root node. This node is split to form two branches. Observations that satisfy the criterion 
printed at the top of the box is moved to one branch while the rest to the other. For regression, 
the partitions are picked to reduce the variance of sample labels. For the tree displayed below, 
node splits were chosen to lead to an overall reduction of the Gini metric. The nodes that do 
not branch off are called terminal nodes or leaves. The process of constructing a decision tree 
for regression is that splits are chosen to produce nodes with an overall reduction in variance 
of the training labels. Depicted in Figure 7 is the structure of the DT model. The max depth in 
a decision tree is one of the most important hyper parameter of DT algorithm which deter-
mines the performance of the model. Grid search was implemented to search through maxi-
mum depth range of 1 – 20, in order to determine the best maximum depth parameter of the 
DT that gives the best result for the model as shown in Figure 7. There was a sharp drop in 
error when initially increasing the maximum depth feature of the DT. In general, as the max-
imum tree depth increases, performance increases. After maximum tree depth of 13, there 
was no significant reduction in the error metric. Increasing the max depth further, could lead 
to overfitting of the model. So a maximum depth of 13 was chosen for the DT. 
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Fig. 7. Grid search for best maximum tree depth parameter for DT. 

3.2.7. Random forest (RF) and grid search   

The performance of a single DT is limited. Thus, instead of relying on one tree, a better 
approach used was to aggregate the predictions of multiple trees. On average, aggregation 
performs better than a single predictor. RF was implemented for this purpose. In order for RF 
to be effective, the model utilized a diverse collection of trees. There were variations in the 
chosen thresholds for splitting the number of nodes and branches. The number of trees in RF 
is one of the most important hyper parameter of RF which determines the performance of the 
model. To optimize the performance of the RF model, grid search was implemented to search 
over 50 trees and to determine the number of trees that gives the best result for the RF as 
shown in Figure 8. The metric employed to keep record of the RF performance when a specific 
number of trees were utilized was MSE. There was a sharp drop in error when initially growing 
the forest. In general, as the number of trees increases, performance also increases. The 
initial drop in error was due to large increase of diverse trees when the forest is small. In other 
words, the additional trees were very different from the previous trees simply because the 
forest was small. The increase in tree diversity drives predictive power. As the forest grew 
beyond 10 trees, newer trees were not significantly different from the previous pool of trees. 
As a result of this, there was no much reduction in the error metric as the forest grew beyond 
10 trees. Depicted in Figure 9 is the snapshot of Python code used to develop the RF model. 
Python codes were also utilized for DT and SVM models development 

 
Fig. 8. Grid search for best number of trees parameter for RF. 

 
Fig. 9. Snapshot of Python code utilized for RF model development. 
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Table 1. Dataset used for this study. 

Measured 
depth (MD) 

(ft) 

Inclination 
(degrees) 

Azimuth 
(de-

grees) 
TVD (ft) N-S 

(ft) E-W (ft) Closure 
(ft) 

Vertical 
section (ft) 

DLS 
(deg/100) 

0 0 359.98 0 0 0 0 0 - 
241 0.69 358.29 241 1.5 0 1.5 1.5 0.286 
337 1.04 359.49 337 2.9 0.1 2.9 2.9 0.365 
545 0.17 93.92 545 4.8 0.2 4.8 4.8 0.513 
731 0.07 271.76 731 4.8 0.4 4.8 4.8 0.129 
822 0.12 37.38 822 4.8 0.4 4.8 4.8 0.187 
914 0.15 342.6 914 5 0.4 5 5 0.138 
1005 0.47 187.27 1005 4.8 0.3 4.8 4.8 0.67 
1101 0.19 350.91 1101 4.5 0.3 4.5 4.5 0.682 
1195 0.07 294.81 1195 4.7 0.2 4.7 4.7 0.172 
1291 0.19 82.64 1291 4.8 0.3 4.8 4.8 0.263 
1386 0.12 297.71 1386 4.8 0.3 4.8 4.8 0.312 
1480 0.24 141.52 1480 4.7 0.4 4.7 4.7 0.376 
1576 0.17 48.65 1576 4.6 0.6 4.7 4.6 0.314 
1670 0.1 216.87 1670 4.7 0.7 4.7 4.7 0.286 
1765 0.14 231.05 1765 4.5 0.5 4.6 4.5 0.052 
1861 0.18 123.07 1861 4.4 0.6 4.4 4.4 0.271 
1955 0.1 292.13 1955 4.3 0.6 4.4 4.3 0.297 
2050 0.26 216.12 2050 4.2 0.4 4.2 4.2 0.268 
2145 0.15 323.76 2145 4.1 0.2 4.1 4.1 0.355 
2240 0.12 115.81 2240 4.2 0.2 4.2 4.2 0.276 
2335 0.18 98.85 2335 4.1 0.5 4.1 4.1 0.078 
2431 0.11 21.4 2431 4.2 0.6 4.2 4.2 0.197 
2526 0.08 179.69 2526 4.2 0.7 4.2 4.2 0.197 
2620 0.1 52.94 2620 4.2 0.7 4.2 4.2 0.171 
2715 0.12 192.1 2715 4.1 0.8 4.2 4.1 0.217 
2810 0.13 85.79 2810 4 0.9 4.1 4 0.211 
2905 0.14 127.62 2905 4 1.1 4.1 4 0.102 
2981 0.09 327.33 2981 4 1.1 4.1 4 0.298 
3101 0.15 39.36 3101 4.2 1.2 4.3 4.2 0.124 
3196 0.18 42.83 3196 4.4 1.3 4.6 4.4 0.033 
3289 0.08 311.16 3289 4.5 1.4 4.7 4.5 0.214 
3384 0.76 228.36 3384 4.1 0.9 4.2 4.1 0.794 
3480 2.55 231.96 3479.9 2.4 -1.3 2.7 2.4 1.867 
3575 3.93 223.19 3574.8 -1.3 -5.2 5.3 -1.3 1.539 
3642 3.93 218.32 3641.6 -4.7 -8.2 9.4 -4.7 0.498 
3737 1.1 218.9 3736.5 -8 -10.8 13.4 -8 2.979 
3832 1.11 93.69 3831.5 -8.8 -10.4 13.6 -8.8 2.065 
3927 1.83 89.39 3926.5 -8.8 -8 11.9 -8.8 0.766 
4022 3.01 85.27 4021.4 -8.6 -4 9.5 -8.6 1.255 
4117 1.92 159.41 4116.3 -9.9 -0.9 9.9 -9.9 3.259 
4181 1.19 199.7 4180.3 -11.5 -0.8 11.5 -11.5 1.987 
4213 0.99 220.09 4212.3 -12 -1.1 12.1 -12 1.354 
4308 0.86 209.26 4307.3 -13.3 -1.9 13.4 -13.3 0.229 
4403 0.4 258.72 4402.3 -14 -2.6 14.2 -14 0.708 
4498 0.66 264.54 4497.3 -14.1 -3.5 14.5 -14.1 0.279 
4593 1.33 319.25 4592.2 -13.3 -4.8 14.1 -13.3 1.148 
4688 1.75 318.56 4687.2 -11.4 -6.4 13.1 -11.4 0.443 
4783 1.48 0.52 4782.2 -9.1 -7.4 11.7 -9.1 1.246 
4879 1.68 339.26 4878.1 -6.5 -7.9 10.2 -6.5 0.641 
4974 1.65 322.94 4973.1 -4.1 -9.2 10.1 -4.1 0.498 
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Measured 
depth (MD) 

(ft) 

Inclination 
(degrees) 

Azimuth 
(de-

grees) 
TVD (ft) N-S 

(ft) E-W (ft) Closure 
(ft) 

Vertical 
section (ft) 

DLS 
(deg/100) 

5069 0.45 52.1 5068.1 -2.8 -9.7 10.1 -2.8 1.794 
5164 0.21 25.93 5163.1 -2.4 -9.3 9.7 -2.4 0.292 
5259 0.57 255.65 5258.1 -2.4 -9.7 10 -2.4 0.762 
5354 1.12 247.76 5353.1 -2.8 -11 11.4 -2.8 0.59 
5499 1.46 260.8 5498 -3.7 -14.2 14.7 -3.7 0.308 
5545 2.01 268.39 5544 -3.8 -15.6 16 -3.8 1.293 
5640 1.97 247.92 5639 -4.5 -18.7 19.3 -4.5 0.745 
5736 1.56 198.04 5734.9 -6.3 -20.7 21.6 -6.3 1.598 
5832 1.57 189.05 5830.9 -8.9 -21.3 23.1 -8.9 0.256 
5927 1.77 197.93 5925.8 -11.5 -21.9 24.8 -11.5 0.344 
6022 1.47 189.12 6020.8 -14.1 -22.6 26.7 -14.1 0.41 
6117 1.1 155.48 6115.8 -16.2 -22.4 27.6 -16.2 0.867 
6307 1.06 132.51 6305.7 -19 -20.4 27.9 -19 0.227 
6402 1.07 123.66 6400.7 -20.1 -19 27.6 -20.1 0.173 
6497 0.71 100.21 6495.7 -20.7 -17.6 27.2 -20.7 0.532 
6592 0.88 33.24 6590.7 -20.2 -16.7 26.2 -20.2 0.935 
6635 0.77 56.73 6633.7 -19.8 -16.2 25.6 -19.8 0.82 
6675 1.18 44.22 6673.7 -19.3 -15.7 24.9 -19.3 1.149 
6770 1.25 25.97 6768.7 -17.7 -14.6 22.9 -17.7 0.412 
6865 1.46 26.18 6863.7 -15.7 -13.6 20.8 -15.7 0.221 
6960 1.09 38.77 6958.6 -13.9 -12.5 18.7 -13.9 0.486 
7056 1.57 205.96 7054.6 -14.3 -12.5 19 -14.3 2.754 
7151 1.92 193.85 7149.6 -17.1 -13.5 21.7 -17.1 0.533 
7246 1.38 197.6 7244.5 -19.7 -14.2 24.3 -19.7 0.579 
7341 0.83 203.94 7339.5 -21.4 -14.8 26 -21.4 0.592 
7436 0.89 200.92 7434.5 -22.7 -15.4 27.4 -22.7 0.079 
7531 0.95 208.89 7529.5 -24.1 -16 28.9 -24.1 0.149 
7639 0.74 209.63 7637.5 -25.5 -16.8 30.5 -25.5 0.195 
7830 1.62 212.6 7828.4 -28.9 -18.8 34.5 -28.9 0.462 
7925 1.87 235.65 7923.4 -30.9 -20.9 37.2 -30.9 0.778 
8020 1.85 235.65 8018.4 -32.6 -23.4 40.1 -32.6 0.021 
8116 1.52 279.59 8114.3 -33.3 -25.9 42.2 -33.3 1.351 
8211 1.76 291.62 8209.3 -32.5 -28.5 43.3 -32.5 0.44 
8306 1.49 275.63 8304.2 -31.9 -31.1 44.5 -31.9 0.553 
8402 0.87 250.94 8400.2 -32 -33 46 -32 0.821 
8428 1.39 249.84 8426.2 -32.1 -33.5 46.4 -32.1 2.002 
8558 2.78 264.46 8556.1 -33 -38.1 50.4 -33 1.136 
8653 2.31 307.21 8651 -32.1 -42 52.8 -32.1 2.006 
8743 0.99 21.37 8741 -30.2 -43.1 52.7 -30.2 2.501 
8843 0.92 283.71 8841 -29.2 -43.6 52.5 -29.2 1.438 
8938 2.76 282.65 8935.9 -28.6 -46.6 54.6 -28.6 1.937 
9033 1.05 250.44 9030.9 -28.3 -49.6 57.1 -28.3 2.056 
9127 2.4 258.85 9124.8 -29 -52.4 59.9 -29 1.457 
9222 1.31 284.52 9219.8 -29.1 -55.4 62.6 -29.1 1.416 
9317 3.73 270.04 9314.7 -28.9 -59.5 66.1 -28.9 2.614 
9412 3.96 250.99 9409.5 -29.9 -65.7 72.2 -29.9 1.36 
9444 3.91 235.47 9441.4 -30.9 -67.6 74.4 -30.9 3.322 

9497.5 3.91 235.47 9494.7 -33 -70.6 78 -33 0 
9500 3.91 235.47 9497.3 -33.1 -70.8 78.1 -33.1 0 
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3.2.8. Models validation 

The MLM was validated using data set extracted from Table 1. The same extracted data set 
was also used to validate Equations 2, 4 and 5 which are CCM, Brechan et al. [19] method and 
CTRM. CCM, Brechan method and CTRM are conventionally utilized models for DLS estimation.  
The comparison of these models is presented in the result section. 
CTRM: 

𝐷𝐷𝐷𝐷𝐷𝐷 = �� 𝐼𝐼2−𝐼𝐼1
𝐿𝐿2−𝐿𝐿1

�
2

+ �𝐴𝐴2−𝐴𝐴1
𝐿𝐿2−𝐿𝐿1

�
2
𝑠𝑠𝑠𝑠𝑠𝑠2(𝐼𝐼)̅             (5) 

4. Results and discussions   

4.1. Modeling without optimization  

Some performance metrics were applied to track the performance of the models. The mod-
els without the optimal input structures were first tested. Cross-validation was applied to avoid 
overfitting the model. Figure 10 depicts: accuracy of the different models before optimization 
while Table 2 depicts error metrics of the different models before optimization. From Figure 
10, DT had R2 of 85%, RF had R2 of 91.4% while SVM had R2 of 83.3%. From Table 2, DT had 
MAE of 0.1912, MSE of 0.1852 and RMSE of 0.2919, RF had MAE of 0.1408, MSE of 0.1512 
and RMSE of 0.2263 while SVM had MAE of 0.1686, MSE of 0.1996 and RMSE of 0.3156.  

     
Fig. 10. Accuracy of the different models before optimization. 

From Table 2, it is evident that RF had the least error of all the tested error metrics. From 
Figure 10 and Table 2, it is also evident that RF had the best performance among the three 
un-optimized MLMs and therefore gave a better DLS estimation. Depicted in Figure 11 is the 
un-optimized RF-MLM trajectory (model trajectory) and data trajectory of the horizontal sec-
tion of the directional well. Since RF performed better than DT and SVM, the estimations from 
RF were used to plot the trajectory of the well’s horizontal section. The data trajectory (plot 
of Table 1) is shown in red colour while the model trajectory is shown in blue colour. From 
Figure 11, the data trajectory increased with decreasing measured depth until -12.5, it de-
creased sharply with decreasing depth until -20.7, and it started increasing again with de-
creasing depth until -0.9 and decreased again from -0.9 to -10.8, thereafter increased from -
10.8 to 1.1 and sharply reduced to 0. The model trajectory had a sharp increase with decreas-
ing measured depth from -56 to 0, and thereafter decreased with depth to about -4. From 
Figure 11, it is obvious that there is much difference between the two trajectories. From Figure 
11, the data path/trajectory to achieve maximum angle occurred at 9412 ft depth while that 
of model path/trajectory occurred at 9322 ft depth. The difference of 90 ft between the two 
cases indicates the average drilling speed achieved when rotary drilling assemblies are uti-
lized. From Figure 11, the model trajectory satisfies the fatigue condition of the DS. Consid-
ering the two cases, depending on priorities considered the RF-MLM well path should be se-
lected. Thus the model trajectory reasonably satisfied DS’s fatigue condition.  

 

1148



Petroleum and Coal 

                         Pet Coal (2023); 65(4): 1138-1152 
ISSN 1337-7027 an open access journal 

Table 2. Error metrics of the different models before optimization.  

 DT RF SVM 
Mean Absolute Error (MAE) 0.1912 0.1408 0.1686 
Mean Square Error (MSE) 0.1852 0.1512 0.1996 
Root Mean Square Error (RMSE) 0.2919 0.2263 0.3156 

 
Fig. 11. Trajectory for the unoptimized model. 

4.2. Optimized modeling 

After testing the performance of these MLMs, optimization techniques were applied on these 
models to improve their performances. Grid Search was implemented on DT and RF, while GA 
was used to determine the optimal input structures of the SVM. The same performance metrics 
were applied to track the performances of these models with determined optimal input pa-
rameter. The results of the optimization obtained from these models are as depicted in Figure 
12, Table 3 and Figure 13. Figure 12 depicts the accuracy of the different models after opti-
mization while Table 3 depicts error metrics of the different models after optimization. From 
Figure 12, with the implementation of grid search algorithm on DT, R2 of 90% was achieved, 
also with the implementation of grid search algorithm on RF, R2 of 98.1% was achieved while 
implementation of GA on SVM improved the R2 to 98.4%. In comparison with the unoptimized 
model result of Figure 10, R2 of DT increased from 85% to 90%, that of RF increased from 
91.4% to 98.1% while that of SVM increased from 83.3% to 98.4%. From table 3, DT had 
MAE of 0.1640, MSE of 0.0574 and RMSE of 0.2395, RF had MAE of 0.0579, MSE of 0.0113 
and RMSE of 0.1065 while SVM had MAE of 0.0216, MSE of 0.0094 and RMSE of 0.0097. From 
Table 3, it is evident that SVM had the least error of all the tested error metrics. From Figure 
12 and Table 3, it is also evident that implementation of optimization techniques like grid 
search and GA, improved the performances of the MLMs with SVM having the best perfor-
mance of the three MLMs and therefore optimized DLS better than the other two. Figure 13 
depicts the optimized SVM-MLM trajectory (model trajectory) and data trajectory of the hori-
zontal section of the directional well. Since SVM performed better than DT and RF, the esti-
mations from the SVM were used to plot the trajectory of the well’s horizontal section. From 
Figure 13, it is obvious that there is again much difference between the two trajectories. From 
Figure 13, the data path/trajectory to achieve maximum angle occurred at 9412 ft depth while 
that of model /trajectory occurred at 9276 ft depth. The difference of 136 ft between the two 
cases indicates the average drilling speed achieved when rotary drilling assemblies are uti-
lized. From Figure 13, the model trajectory satisfies the fatigue condition of the DS much 
better than that of Figure 11. Thus, implementation of GA on SVM greatly improved the pre-
viously unoptimized modeled trajectory. Considering the two cases, depending on the best 
suited priorities the SVM-MLM well path should be selected. This is an indication that the model 
trajectory satisfied the DS’s fatigue condition. From Figure 13, consideration of the optimiza-
tion process indicates that irrespective of the hole size, ML optimization algorithm can be 
implemented in DLS optimization in any hole size.  
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Fig. 12. Accuracy of the different models after optimization. 

Table 3. Error metrics of the different models after optimization. 

 DT RF SVM 
MAE 0.1640 0.0579 0.0216 
MSE 0.0574 0.0113 0.0094 
RMSE 0.2395 0.1065 0.0097 

 
Fig. 13. Optimized model trajectory. 

4.3. Models validation 

After optimization of the three MLMs, SVM optimized by GA had the best performance as 
shown in Table 4. The optimized SVM-MLM was used to compare against conventional tech-
niques for calculating DLS. The three mathematical correlations used for this comparison are: 
CCM, Brechan method [19]  and CTRM. A separate validation dataset was utilized for the vali-
dation of the models and comparison thereafter made. Depicted in Table 4 are the calculated 
DLS of CCM, Brechan method [19], CTRM and SVM-MLM. From Table 4, CCM, Brechan et al. [19]  
method, CTRM and the optimized SVM gave different estimates of DLS with all the DLS calcu-
lated using optimized SVM-MLM being almost the same as the actual DLS, unlike the DLS 
calculated from CCM and CTR which are less in some cases and in other cases higher than the 
actual DLS. Brechan method also performed reasonably well and better than CCM and CTR [19]. It 
was expected that the SVM-MLM should yield DLS completely the same as the actual DLS with 
zero difference, except for a single value that was less than the actual DLS. This occurrence 
could be attributed to improper data recording by LWD/MWD tools at a particular depth or the 
defect could be due to issues related to sorting and processing of survey and RTDD. The 
estimated DLS from SVM-MLM is in agreement with error metrics obtained for SVM as depicted 
in Table 3. From Table 4, it is evident that the optimized SVM-MLM performed better than the 
three other mathematical correlations, followed by Brechan method [19]. The implementation 
of GA on SVM yielded DLS almost the same as the actual DLS, which in turn will reduce the 
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chances of operational problems like high torque and drag. This is in agreement with work of [1]. 
Shokir et al. [1] pointed out that reduced DLS means reduced chances of operational problems 
like high torque and drag. 

Table 4. Calculated DLS from validation  

DLS calculated 
using CCM 
(deg/100ft) 

DLS calculated 
using Brechan 
method [19] 
(deg/100ft) 

DLS calculated 
using CTR 

(deg/100ft) 

DLS calculated 
using SVM-MLM  

(deg/100ft) 

Actual DLS from 
drilling survey 

data (deg/100ft) 

0.011 0.365 0.365 0.365 0.365 
0.108 0.130 0.207 0.129 0.129 
0.172 0.172 0.186 0.172 0.172 
0.266 0.263 0.517 0.263 0.263 
0.288 0.376 0.537 0.376 0.376 
0.372 0.220 0.221 0.221 0.221 
0.027 0.080 0.079 0.078 0.079 
0.077 0.149 0.149 0.149 0.149 

5. Conclusion       

In this study ML was utilized to compute DLS. The work is therefore is quite significant 
because the estimated DLS is in agreement with the actual DLS from survey data. From this 
study, the following conclusions are drawn:  
• The proposed approach is highly compatible with deflection tools’ directional performance;  
• The implementation of GA on SVM yielded excellent DLS value that is comparable with 

actual DLS; 
• The SVM-MLM R2 value of 98.4% is also in agreement with computed DLS;  
• Processing of survey and RTDD data could cause unrealistic outputs production. 

Nomenclature 

A1 Azimuth 1 algorithm CL  Course length  RFA  Random Forest  
A2   Azimuth 2 data DLS  Dogleg severity RTDD  Real Time Drilling  
I1   Inclination 1   DMEA  Hole depth (MD) DS  Drill String 
I2  Inclination 2 machine DS  Drill String   SVM  Support Vector Machine 
L1  Length 1   MD  Measured Depth DT Decision tree 
L2   Length 2   GA  Genetic Algorithm     
𝛽𝛽  Azimuth   PSO  Particle swam optimization   
𝛼𝛼 inclination MLM  Machine learning model   
𝜑𝜑 Dogleg angle DMEA  Hole depth (MD)     
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