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Abstract 
In 1996, Koopman and van Vooren conducted a study showing that the geological composition of 
Brunei and adjacent Malaysia is Neogene sediments, particularly shales and sandstones. These 
deposits vary in thickness from a few meters to around ten kilometers and are organized into three 
delta complexes. Notably, these assemblages show an east-to-west decrease in the southeastern 
region of Asia. The primary objective of this paper is to predict spatial variation in grain-size distribution 
among outcrops using permeability measurements. A total of thirty-six samples were collected from 
the Lamunin outcrop in Brunei Darussalam to record baseline data on each sample for further analysis. 
Various instruments were used in the current paper, the main ones being a portable air permeameter 
(Tiny Perm 3) to measure the permeability of the samples and a sieve machine to determine the 
particle size distribution of the samples. 
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1. Introduction

The Miri in Malaysia and Seria Formations in Brunei represent the Champion Delta strata,
which is renowned for its significant petroleum reserves. In contrast, the Belait formation 
primarily consists of sandstone but also includes interbedded shales and coals. This formation 
provides a comprehensive record of the depositional system of the Champion Delta in Brunei, 
spanning from the early to late Miocene period. In 1961, Wilford conducted a study on these 
deposits, with a particular focus on those located along the coast and coastal plains, which 
originated from various sedimentary environments, including a large delta. Additionally, van 
Borren observed in 1996 that the sandstones in the region are of fluvial nature. Lambiase 
study in 2000 revealed that a vast diversity of coastal and marine environments exists within 
the Belait Formation. Similarly, there is evidence to suggest that specific regions of the for-
mation were situated in structurally controlled tidal coastal embayment and along open marine 
shorelines using processes other than those associated with deltas, as indicated by their facies. 
This implication implies that the Champion Delta falls into the category of complex depositional 
systems that formed in shallow marine environments. Consequently, there are minimal dis-
tinctions between it and other formations such as the Belait Formation or the Lambir, Miri, 
and Seria Formations [1-2]. The outcrop in Lamunin, Tutong District, depicted in Figure 1, can 
be identified using this knowledge. By following careful procedures at this site, it is expected 
that an accurate and reliable result can be achieved. There are three approaches to classify 
size categories, including the use of the Wentworth scale to sort particles by size or employing 
phi or psi unit measurements to determine their dimensions. Additionally, the Wentworth scale 
is used to broaden linear grain size classifications. Therefore, fluvial gravel exhibits a logarith-
mic distribution of grain frequency across size categories. Following the Wentworth scale, the 
grain size categories were adjusted to reflect a standard distribution of grain sizes. Thus, 
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boulders, cobbles, gravel, sand, silt, and clay represent the six distinct size categories that 
assist in sediment classification [3-4]. 

 
Figure 1. An outcrop located in Lamunin, Tutong, Brunei. 

The representation of different grain size classes often involves the use of relative frequency 
and cumulative distribution curves. The level of sorting in a sample can be determined by 
observing the shapes present on a relative frequency distribution curve. Well-sorted samples 
typically exhibit a small size range or a Gaussian shape curve, while poorly sorted samples 
show greater curve asymmetry [5], a higher modality of the sample is indicated by a single 
distribution with increased curve asymmetry, often leading to a higher frequency of distinct 
peaks in the grain size range, while grain size distribution parameters are influenced by the 
method of data analysis and typically require statistical evaluation, moreover, to extract oil 
from the reservoir, it is imperative for the petroleum reservoir fluids, which are present in the 
pore spaces, to move through the reservoir rock's significant porosity. When evaluating the 
ability of a production to gather hydrocarbons, permeability plays a crucial role and is consid-
ered one of the key factors [6]. The equipment developed by NER is used to assess the per-
meability of rock formations, whether they are exposed to the surface or at the core level. By 
employing the Tiny-Perm software on the Android device provided by NER, users can conven-
iently wirelessly store measurement data from the permeameter. This data can subsequently 
be seamlessly transferred to a desktop computer for in-depth analysis, which may include 
sample images, location specifics, and other relevant environmental factors. [7-8].  

In a geographic context, the term "spatial correlation" pertains to the statistical association 
between two or more variables. It quantifies the extent to which the values of these variables 
tend to resemble each other or exhibit proximity within a given geographical area. Spatial 
correlations examine the variations or similarities between nearby locations in terms of char-
acteristics [9]. In addition, the comprehension and computation of the spatial relationships and 
patterns are inherent in a specific dataset or phenomenon. Through the analysis of geograph-
ical correlations, researchers can identify clusters, trends, spatial autocorrelation, or spatial 
heterogeneity. These attributes play a crucial role in the development of reliable assessments, 
predictions, and effective policies and to estimate values for sites within a geographic domain, 
the approach known as spatial interpolation employs the known values at sampled or observed 
locations as a foundation. It is a method often employed in domains like geography and other 
spatially related sciences to close data gaps or create continuous surfaces from discrete point 
data [10]. This method's objective is to forecast a target variable's values in areas that were 
not sampled while taking those values into account. The basis for spatial interpolation is the 
idea that adjacent points in space frequently have similar attribute values. To replicate the 
spatial correlation or relationship between the known and unknown sites, this assumption is 
applied [11]. The aim of this paper is to gather geological data and organize them into an Excel 
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spreadsheet for visualization in Python. Various spatial correlations and models are utilized to 
support the significance of considering the spatial variability in grain size distribution when 
evaluating the permeability of geological formations. 

2. Methodology 

2.1. Permeability measurement 

A total of thirty-six rock samples were chosen for permeability measurements using the 
TinyPerm 3, a portable handheld air permeameter. This process is conducted in a laboratory 
setting once the rock samples have completely dried to avoid any issues that might affect the 
accuracy of TinyPerm 3. Measurements are taken from both the vertical and horizontal sur-
faces of each rock sample to guarantee accurate results. To reduce errors, approximately 
three measurements are taken for each surface and then averaged to achieve the most accu-
rate reading for each rock sample. After this, the Android device is turned on, and the TinyPerm 
app is launched by tapping the program icon on the device's display. Each individual sieve in 
the stack is weighed prior to commencing the process, subsequently, the separated sample 
was carefully poured onto the tightly arranged stack of sieves, which range in mesh sizes from 
fifty-three micrometers to six hundred micrometers, including the bottom pan. The stack of 
sieves was securely placed on the sieve shaker machine and firmly clamped to prevent any 
movement that could potentially affect the accuracy of the results obtained upon completion 
of the process. Once the clamp is confirmed to be fixed, the timer was set to 15 minutes 
before activating the sieve shaker machine. Excel was the primary software utilized for com-
piling data into spreadsheets, while Python was used for visualizing data correlations and 
interpolations. Following the permeability measurements and sieving processes, the data col-
lected was organized in Excel spreadsheets and underwent various procedures to ensure ac-
curacy and quality during the analysis in Python notebooks. The permeability measurements 
included both horizontal and vertical values in millidarcy and Darcy units. These measure-
ments were initially stored in Excel spreadsheets along with other relevant information, then 
compiled into a zip file and transferred from an Android device to a desktop computer. Due to 
numerous permeability readings for each rock sample, only three readings from each direction 
were selected, averaged, and recorded in an Excel spreadsheet for all thirty-six rock samples. 
The collected data was utilized to generate various permeability logs, including vertical per-
meability against distance, horizontal permeability against distance, both permeabilities 
against distance, and vertical permeability against horizontal permeability. The distance data 
was obtained by analyzing the number of bed units and their individual thickness, which were 
then combined to determine the distance between each bed unit in meters. To ensure accu-
racy, a scale was established for this distance data. Both sets of data were compiled.  

3. Results and discussions 

Figure 2 illustrates the results obtained from employing Python programming to represent 
the relationship between horizontal and vertical permeabilities. The computed correlation co-
efficient is 0.71, indicating a positive correlation that suggests a linear relationship between 
the two variables. Additionally, the proximity of the value to 1 signifies a strong fit and high 
correlation. A positive correlation implies that both variables are likely to increase simultane-
ously. It can be concluded that the vertical and horizontal permeabilities of each rock sample 
exhibit close similarity in values.  

Figure 3 illustrates the visualization outcome in Python. The correlation between the mean 
grain size and clay content. The computed correlation coefficient is -0.83, indicating a negative 
and linear relationship between the two variables and the proximity of the value to zero, 
suggesting a stronger linear relationship. However, a negative correlation implies that as one 
variable increases, the other variable decreases which means, as the clay content increases, 
the mean grain size decreases across all thirty-six rock samples [12].  
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Figure 2. The correlation between horizontal and 
vertical permeabilities using a correction coeffi-
cient of 0.71. 

Figure 3. A strong negative correlation of -0.83 
between the mean grain size and clay content. 

Figure 4 depicts the visualization result obtained from Python, illustrating the correlation 
between mean grain size and horizontal permeability. The correlation coefficient is calculated 
to be 0.59, indicating a positive relationship between the two variables. This suggests that as 
the mean grain size increases, horizontal permeability also increases in a similar fashion. 
Moreover, the proximity of the correlation coefficient to zero implies a weaker linear relation-
ship. Conversely, a positive correlation signifies that both variables rise proportionally. Addi-
tionally, the data suggests that an increase in mean grain size corresponds to a corresponding 
increase in horizontal permeability. The subsequent correlation is examined by the relationship 
between the average grain size and vertical permeability.  

Figure 5 presents the correlation coefficient computed to be 0.54, indicating a positive value 
that suggests a positive and linear association between the two variables. Specifically, a value 
closer to zero signifies a weaker linear relationship. Consequently, this positive correlation 
confirms that both variables rise simultaneously, thus as the mean grain size of each rock 
sample increases, the vertical permeability also increases.  

  
Figure 4. The correlation coefficient between the 
mean grain size and horizontal permeability is 0.59. 

Figure 5. A correlation of 0.54 between the mean 
grain size and vertical permeability. 

Figure 6 illustrates the correlation between horizontal permeability and clay content, as 
observed through Python visualization. The correlation coefficient is determined to be -0.55, 
indicating a negative relationship between the two variables. This negative value suggests a 
linear relationship, although a weaker one due to its proximity to zero. Moreover, a negative 
correlation implies that as one variable increases, the other variable decreases significantly 
and the clay content increases as the horizontal permeability value decreases across all thirty-
six rock samples. 
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Figure 7 presents a correlation between vertical permeability and clay content, as observed 
in Python. This correlation exhibits a similar outcome to the previous correlation. The esti-
mated correlation coefficient is -0.51, indicating a negative linear relationship between the 
two variables. In simpler terms, this suggests that the closer the value is to zero, the weaker 
the linear relationship compared to the previous correlation. Additionally, a negative correla-
tion implies that as one variable increases, the other variable decreases, as the vertical per-
meability value decreases, the clay content tends to increase. 

 
 

Figure 6. The correlation between horizontal per-
meability and clay content is represented by a co-
efficient of -0.55. 

Figure 7. The correlation between the vertical 
permeability and clay content is at a coefficient 
of -0.51. 

Figure 8 illustrates the correlation between permeability ratio and clay content in Python. 
The correlation coefficient is calculated to be -0.22, indicating a negative linear relationship 
between the two variables. The proximity of this value to zero suggests a weaker linear rela-
tionship. A negative correlation implies that as one variable increases, the other decreases, 
and vice versa, as the permeability ratio rises in rock samples, the clay content decreases. 

Figure 9 displays the results obtained from interpolating vertical permeability values using 
both linear and cubic methods in Python. Upon examining the graphs corresponding to each 
method, an elusive distinction in the vertical permeability axis is evident. In the linear method, 
the range spans from 0 to 3200 millidarcy, whereas in the cubic method, it extends from -600 
to 4800 millidarcy. The analysis reveals that, in the linear method, vertical permeability values 
fall between 0 and 400 millidarcy, with no negative values present as seen in the cubic method. 
Additionally, it is apparent from the cubic method that the vertical permeability values of all 
thirty-six rock samples do not exceed 3600 millidarcy and both interpolation methods offer 
unique advantages and disadvantages in accurately interpreting vertical permeability values. 

  
Figure 8. The correlation coefficient between the 
permeability ratio and clay content at  -0.22. 

Figure 9. Utilizing linear and cubic techniques for 
vertical permeability interpolation. 
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Figure 10 displays three distinct representations of vertical permeability in the experimental 
scatter plot: black dots, spherical mode variogram represented by a black line, and histogram 
represented by black boxes. The histogram clearly indicates that the number of available pairs 
fluctuates less significantly as the lag distance increases. Conversely, the semi-variance in-
creases from below zero to two Mathesons as the distance progresses from the spherical semi-
variogram. In the experimental scatter plot, it is evident that the semi-variance of vertical 
permeability values surpasses four Mathesons as the lag values increase. These visualizations 
lead to the conclusion that there is minimal correlation between the vertical permeability of 
the sample points.  

Figure 11 displays the ordinary kriging estimation and the kriging error estimation. In the 
ordinary kriging estimation, the vertical permeability values range between 0 and 2000 milli-
darcy. Notably, there are more values falling within the 250 to 500 millidarcy range, with only 
one value in the 750 to 1000 millidarcy range. Conversely, the estimated kriging error for 
vertical permeability ranges from 0.90 to 2.25, with the majority falling between 0.90 and 
1.20, while the estimated kriging error may seem small, it can still have a significant impact 
on the kriging values of vertical permeability. 

 
 

Figure 10. Various representations of vertical per-
meability. 

Figure 11. Conventional kriging and estimation of 
kriging errors for vertical permeability. 

The comparison of horizontal permeability values interpolation using linear and cubic meth-
ods is illustrated in Figure 12. Analysis of the graphs for each method reveals a slight variation 
in the horizontal permeability axis, ranging from 0 to 7000 millidarcy in the linear method and 
up to 8000 millidarcy in the cubic method. The position of black points, it is evident that both 
methods exhibit horizontal permeability values between 0 and 1000 millidarcy. Furthermore, 
the cubic method indicates that none of the thirty-six rock samples have horizontal permea-
bility values exceeding 7000 millidarcy. In addition, the cubic method proves to be more pre-
cise in determining the horizontal permeability values of all rock samples compared to the 
linear method.  

The three distinct representations of horizontal permeability in the experimental scatter 
plot are as follows: black dots, black line in spherical mode variogram, and black boxes in the 
histogram, as displayed in Figure 13. The histogram reveals that the number of pairs available 
fluctuates less significantly as the lag value increases to 200. On the other hand, the semi-
variance ranges from zero to ten matherons as the distance increases in the spherical semi-
variogram. Furthermore, it is evident that the semi-variance of horizontal permeability values 
increases beyond twenty matherons as the lag values increase in the experimental scatter 
plot. Therefore, there is a weaker correlation between sample points in horizontal permeability 
values compared to vertical permeability, as fewer points are separated by greater distances. 
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Figure 12. Utilizing linear and cubic techniques for 
Horizontal permeability interpolation. 

Figure 13. Various representations of Horizontal 
permeability. 

4. Conclusion 

The objective of predicting the spatial variability in grain size distribution of an outcrop 
based on permeability measurements has been successfully accomplished through a compre-
hensive analysis of the results obtained. It is evident that there is a significant spatial varia-
bility in both distribution and permeability across all thirty-six rock samples. This was achieved 
by implementing the procedures, including collecting samples from the outcrop, conducting 
permeability measurements, and performing sieve processes using a sieve shaker machine. 
It can be inferred that the semi-variance experiences a substantial increase in horizontal per-
meability as the distance between sample points increases. Conversely, there is only a slight 
increase in vertical permeability, and it means grain size sample points with increasing dis-
tance. To clarify further, there is a stronger correlation observed between the mean grain size 
of sample points and vertical permeability compared to horizontal permeability. In conclusion, 
these findings demonstrate that there are only two distinct types of grain size distributions 
present in the rock samples: very coarse sand and coarse sand. These distributions do not 
differ significantly from each other.  
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