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Abstract 
Estimating pore and fracture pressures is critical in achieving a successful drilling operation both 
onshore and offshore. With proper estimation of pore pressure and fracture pressure, drilling engineers 
can achieve accurate mud weight design, balancing and stabilizing the formation without fracturing it, 
determining casing setting depths, determining casing pressure loads, testing and analyzing the 
integrity of barriers and doing well control assessments. Meanwhile the instability of wellbore can cause 
several problems in drilling operations. So optimizing mud weight design through accurate pore and 
fracture pressures can prevent these potential problems. There are various predictive mathematical 
techniques and models that are used in predicting pore and fracture pressures but usually these 
techniques are limited and cannot predict them comprehensively and accurately. 
This research paper shows a model based on the machine learning techniques for predicting pore and 
fracture pressures that is a regression ensemble (mean) model aggregating six intelligent predictive 
models and algorithms, which are Random Forest, Decision Tree, XGBoost, Extra Trees, Adaboost and 
Gradient Boosting models and algorithms. Which shows a blind test accuracy of prediction of the final 
model of 0.999 for Pore Pressure and 0.998 for Fracture Pressure from only mud logs, surface drilling 
parameters, evaluation of drill cuttings and gas levels at surface that are available easily. The 
aforementioned six algorithms, as well as the ensemble (mean) model, are trained using the 5 fold 
cross-validation (CV) to optimize the algorithm structure, while the statistical accuracy parameters 
(e.g. R2, MSE, MAE, MDAE, MAPE %, MDAPE %) are used as the criterion of selection the best 
algorithm in terms of the prediction accuracy. 
Keywords: Pore pressure; Fracture pressure; Real time prediction; Modelling; Data analysis; Artificial 
intelligence; Machine learning techniques; Nile Delta of Egypt. 

1. Introduction

Accurate and well-timed pore and fracture pressures prediction is a “Driller’s Tool”, as it is
an aid to the drillers of a gas or oil well that lets them enhance the drilling process for time 
and cost, and even optimize the final implemented well design [1]. 

Pore pressure gradient and fracture gradient are  the most crucial variables practically em-
ployed to establish the window of  (mud weight or mud density) in drilling engineering. Prior 
to installing a casing, the mud weight design should be properly chosen based on the wellbore 
stability, fracture gradient and pore pressure gradient, (Figure 1) [2-3]. 

2. Pore pressure gradient concept

Forming pressure is another name for pore pressure. It is sometimes referred to as the
mud weight of well and is comparable to hydraulic potential. Pore pressure can be classified 
as normal, subnormal, or abnormal. Depending on the area and magnitude, the typical values 
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for the normal pore pressure are 9 ppg and 0.465 psi/ft. The subnormal pressure, on the other 
hand, is below 9 ppg while the abnormal pressure is larger than 9 ppg [4]. 

 
Figure 1. Depth (TVD) versus pore pressure gradient, anticipated mud weight, overburden pressure 
gradient, fracture gradient (shale & sand) and casing shoes. 

2.1. Pre-drilling phase pore pressure prediction  

In general, the evaluation of pore pressure is based primarily on the correlation of available 
data from nearby wells (well history) and seismic data, from analyzing the offset well data 
using various predictive techniques and from planning for development wells involves using 
information from previous regional drilling experiences [5]. 

There are some limitations and challenges for such methods as for exploration wells, our 
dependency is only on seismic data. Field data must be collected from previously drilled wells 
in the formation. Raw filed data should be processed into a form where interpretations can be 
made [6]. 

2.2. Drilling phase pore pressure estimation 

In general, there are three ways to estimate and quantify pore pressure during the drilling 
phase. First mud logging techniques, these take into account drilling parameters as well as 
drill cuttings and gas levels at the surface. Logging while drilling (LWD), wireline logging, and 
measurement while drilling (MWD). Direct techniques, RFT (Repeat Formation Tester), DST 
(Drill Stem Test), and production testing [7-8]. 

Terzaghi published the first research on the prediction of pore pressure in 1943, and an 
empirical equation was created to calculate the pore pressure [9]. In 1965, Hottmann and 
Johnson conducted research to estimate pore pressure, taking into account the characteristics 
of shale and the variation in sound velocity noted by sonic logs [10].  

Biot Willis proposed an empirical link (Eq. 1) between effective stress, overburden pressure, 
and pore pressure [11]. 

PP =
𝜎𝜎ov − 𝜎𝜎eff 

𝛽𝛽
 (1) 

Eaton method [12] estimate pore pressure through the following equations (Eq. 2). 

PP = 𝜎𝜎ov − (𝜎𝜎ov − Pn) × �
dco
dcn

�
1.2

 (2) 
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The ratio method is simpler and does not need overburden values and pore pressure can 
be estimated through the following equation (Eq. 3). 

PP = Pn × �
dcn
dco

� (3) 

The sonic log method (Eq. 4) has proved to be the most applicable calculation for the 
majority of sedimentary sequence compared with use of a trend curve that has been devel-
oped from one or several specific regions [13]. 

𝑃𝑃𝑃𝑃 = 𝜎𝜎𝑜𝑜𝑜𝑜 − (𝜎𝜎𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑛𝑛) × �
Δ𝑡𝑡𝑛𝑛
Δ𝑡𝑡𝑜𝑜

�
3

 (4) 

The pore pressure can be estimated according to the Resistivity log theory for the depth of 
interest from the following equation (Eq. 5) [14-15]. 

PP = 𝜎𝜎𝑜𝑜𝑜𝑜 − (𝜎𝜎𝑜𝑜𝑜𝑜 − 𝑃𝑃n) �
𝑅𝑅log
𝑅𝑅𝑛𝑛

�
𝑛𝑛

 (5) 

Pore pressure estimation through the direct methods usually includes RFT (Repeat For-
mation Tester), DST (Drill Stem Test) and production testing. The limitation of direct methods 
(RFT and DST) are the DST and RFT data provide definitive values of pore pressure for the 
well, these direct measurements are only possible in permeable formations, obtained after the 
well is drilled and not applicable to largely impermeable shale sections where the majority of 
overpressure is developed. In HPHT wells, the RFT and DST tools should be considered for use 
prior to performing potentially problematic drilling operations, such as coring [7]. 

2.3. Post drilling phase pore pressure prediction 

Depends on empirical models in general that are a field-specific, i.e. these equations pro-
vide accurate predictions for the parameter of interest only for the field. To overcome this 
issue, many studies have been performed to develop predictive models for forecasting diverse 
parameters within the oil and gas industry applying artificial intelligence techniques [16]. 

Wang et al. performed a study for the prediction of the pore pressure in 2010, employing 
three methods: the trend line technique (TLM), the hybrid genetic algorithm without a muta-
tion rate (HGANM) and the original Fillippone formula method (OFFM) [17]. Hu et al. employed 
the Propagation Artificial Neural Network (BPANN) approach to forecast the pore pres-
sure based on data collected from five wells in two separate fields in 2013 with the average 
error recorded for the model being 7.15% [18]. Abidin employed an artificial neural network 
(ANN) technique to forecast the pore pressure in fields with abnormal and normal pressure in 
2014 with performance accuracy is very high, at around 5.0048% [19]. Aliouane et al. used 
the multi-layer perceptron neural network (MLPANN) and fuzzy logic (FL) to estimate the pore 
pressure value in horizontal wells [20]. Haris et al. used the probabilistic neural network (PNN) 
approach to forecast pore pressure in 2017, The precision of the PNN model was 98% higher 
than relations created using seismic data [21]. Kiss et al. used an ANN system to forecast the 
PP parameter in 2018 based on two essential parameters: drilling efficiency (DE) and mechan-
ical specific energy drilling (MSE) [22]. Rashidi and Asadi applied an ANN to a set of drilling 
data,  drilling efficiency (DE) and  mechanical specific energy (MSE), acquired from three wells 
drilled in an Iranian sandstone reservoir in 2018 [23]. Karmakar and Maiti created predictive 
models in 2019, for the pore pressure in well U1343E of the IODP at the Bering Sea slope area 
with a reduction error (RE) of nearly 0.98 [24]. Yu et al. used four inelegant prediction models 
to anticipate the PP in 2020; support vector machine (SVM), gradient boosting (GB), random 
forest method and multilayer perceptron (MLP) [25]. Andrian et al. used adaptive neuro fuzzy 
inference system (ANFIS) methods to estimate the pore pressure parameter with a 70% ac-
curacy. Abdelaal et al. used 3100 drilling data records to create three models to forecast pore 
pressure during the drilling operation with of prediction accuracy (AAPE = 2% and R = 0.98) [26]. 
Radwan et al. predicted the PP parameter at the Mangahewa gas field in New Zealand using 
25,935 data records [27]. 
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3. Fracture pressure gradient concept 

The fracture gradient in gas and oil wells drilling can be calculated by dividing the minimum 
horizontal in situ stress (𝜎𝜎ℎ) by the depth. Below the earth’s crust there are three inde-
pendently  operating, perpendicularly arranged stresses to each one another that are exist; 
Two horizontal stresses 𝜎𝜎𝐻𝐻 and 𝜎𝜎ℎ and a vertical stress 𝜎𝜎𝑉𝑉 are collectively referred to  as the 
normal stresses. Generally, the drilled formations  are subjected to in-situ stresses with  no 
shear stresses in the majority of gas and oil wells applications. Principal stresses are normal 
stresses that are perpendicular to one another and do not have any accompanying shear 
stresses; the maximum, intermediate and minimum principal stress (𝜎𝜎1 ,𝜎𝜎2 , 𝜎𝜎3).  

The size of the  min stress underground will therefore play a significant role in determining 
the pressure needed  to fracture the formation. Since  all  subsurface stresses are  connected, the 
following regular connections can be observed. The fracture gradient rises with increasing 
overburden. The fracture gradient rises as pore pressure rises. Large pore pressure drops 
decrease the fracture gradient. A number of parameters, including formation type, mineral-
ogy, rock strength, permeability, and the direction of weak planes such as bedding planes 
affect the fracture gradient [28]. 

3.1. Pre-drilling phase fracture pressure prediction  

In general, there are two major methods for determining fracture pressure. The first ap-
proach is the direct method, in which the pressure necessary to fracture the formation and 
cause propagation is measured directly. Many direct approaches rely on the Formation Integ-
rity Test (FIT), the formation Leak-off Test (LOT) or the Extended Leak-off Test (XLOT) [29]. 
The second approach is the indirect method that uses correlations between rock and formation 
properties as well as stress analysis to predict fracture pressure. These correlations are carried 
out using rock and formation properties including (overburden stress and Poisson's ratio), as 
well as density and porosity obtained from well logs [5]. There are some Limitations and Chal-
lenges for such methods as for Exploration wells; our dependency is only on seismic data. In 
addition, field data must be collected from previously drilled wells in the exact formation 
strata. Raw filed data should be processed into a form where interpretations can be made [6]. 

3.2. Drilling phase fracture pressure estimation 

The fracture pressure can be measured by two methods. The first method is the direct 
methods that includes Leak off Test (LOT) & Formation Integrity Test (FIT). The second 
method is the indirect methods, which rely on correlations and models. 

During the drilling stage, Formation Integrity Tests (FIT, LOT, XLOT, etc.) are performed 
to identify the approximate amount of fracture gradient below each casing shoe. The FIT 
pressure is adjusted to an equivalent mud weight (EMW) to establish a maximum limit of the 
primary well control for the next hole section [30].  

The second approach is the indirect method that uses correlations between rock and for-
mation properties as well as stress analysis to predict fracture pressure. These correlations 
are carried out using rock and formation properties including (overburden stress and Poisson's 
ratio), as well as density and porosity obtained from well logs.  

According to the Hubbert and Willis approach [31], it was believed that 33% of the overbur-
den stress would serve as the lower limit of the fracture pressure (Eq. 6) and that the upper 
limit of the fracture pressure would not exceed 50% of the overburden stress (Eq. 7). 

𝐹𝐹𝐺𝐺𝑚𝑚𝑚𝑚𝑛𝑛 =  
1
3

 �
𝜎𝜎ov
𝐷𝐷

 + 2 
𝑃𝑃𝑓𝑓
𝐷𝐷
� (6) 

𝐹𝐹𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 =  
1
2

 �
𝜎𝜎ov
𝐷𝐷

 +  
𝑃𝑃𝑓𝑓
𝐷𝐷
� (7) 

Matthews and Kelly [32] proposed a quantity known as the "matrix stress coefficient-𝐾𝐾𝑚𝑚" (Eq. 
8) which is equivalent to the effective stress coefficient and depends generally on the depth 
and formation pressure. 
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𝐹𝐹𝐺𝐺 =
𝑃𝑃𝑓𝑓
𝐷𝐷

+ 𝐾𝐾𝑚𝑚
𝜎𝜎
𝐷𝐷

 (8) 

Pennebaker modified Matthews and Kelly's matrix stress coefficient (𝐾𝐾𝑚𝑚) correlation by as-
suming that the matrix stress coefficient-𝐾𝐾𝑚𝑚 varies with depth and formation type (Eq. 9) [33]. 

𝐹𝐹𝐺𝐺 =
𝑃𝑃𝑓𝑓
𝐷𝐷

+ 𝐾𝐾𝑃𝑃
𝜎𝜎
𝐷𝐷

 (9) 

Eaton calculated the fracture gradient using Poisson's ratio of the formation and the idea 
of the minimal injection pressure provided by Hubbert and Willis [34]. 

FG = �
𝑣𝑣

1 − 𝑣𝑣
� �

(𝜎𝜎ov − Pf)
D

� +
Pf
D
 (10) 

Anderson et al. (1973) proposed an empirical equation for predicting fracture pressure that 
is a function of formation pressure, overburden stress, Poisson's ratio, depth and the com-
pressibility ratio of the porous to bulk rock matrix. This concept is dependent on Biot's stress-
strain relationships (Eq. 11) [35]. 

FP = 𝛼𝛼Pf +
2𝑣𝑣

1 − 𝑣𝑣
(𝜎𝜎𝑜𝑜𝑜𝑜 − 𝛼𝛼Pf) (11) 

Daines superimposed Eaton's equation with a horizontal tectonic stress (𝜎𝜎𝑡𝑡). In terms of 
stress, he defined it as "the min pressure within the wellbore to extend and hold open an 
existing fracture" which can be expressed in the following equation (Eq. 12) [36]. 

FP =
𝑣𝑣

1 − 𝑣𝑣
(𝜎𝜎v −  𝑃𝑃f) + 𝑃𝑃f + 𝜎𝜎t (12) 

The tensile failure pressure in case of vertical well can be determined from Kirsch's borehole 
solution which is applicable for the impermeable case (non-penetrating fluid), as expressed 
in the following equation (Eq. 13) by Haimson and Fairhurst. This pressure was known as the 
formation breakdown pressure [37]. 

FBG = 3σh − σH −  Pf + T0 (13) 
(Eq. 13) can be simplified into the following form (Eq. 14) if we assume that (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇0)  is 

nearly equal to the (𝜎𝜎𝑚𝑚𝑚𝑚𝑛𝑛) and ignoring the temperature effects [38]. 
𝐹𝐹𝑃𝑃max = 2𝜎𝜎h − 𝑃𝑃f (14) 
𝐹𝐹𝑃𝑃min = 𝜎𝜎h =

𝑣𝑣
1 − 𝑣𝑣

(𝜎𝜎V − 𝑃𝑃f) + 𝑃𝑃f (15) 
The most likely fracture pressure is the average of the fracture pressures (or gradients) 

upper and lower bounds as shown in (Eq. 16) [38-39]. 

𝐹𝐹𝑃𝑃avg =
3𝑣𝑣

2(1 − 𝑣𝑣)
(𝜎𝜎V − 𝑃𝑃f ) + 𝑃𝑃f (16) 

where  𝐹𝐹𝑃𝑃avg represents the most likely fracture pressure. 

3.3. Post drilling phase fracture pressure prediction 

Reviewing the results viewed in the majority of the studies in which an empirical model was 
proposed for predicting the parameters included in the gas and oil industry. It was discovered 
that these models give  accurate predictions for the parameter of interest only for the field 
whose data was used in the generation  of the empirical equations (i.e.  such empirical models 
are in general field specific) [40]. So many studies have recently been conducted to develop 
predictive models for forecasting various parameters in the gas and oil industry using artificial 
intelligence and machine learning techniques [16]. 

Sadiq and Nashawi used depth, Poisson's ratio and overburden stress gradient to forecast 
fracture pressure using RBF and ANN algorithms [29]. Malallah and Nashawi estimated the 
fracture gradient using feed-forward artificial neural networks (ANN) with average absolute 
relative error of 6.5% and the average relative error of 3.7% [41]. Keshavarzi et al. predicted 
the fracture gradient using (ANN) the neural network with R = 0.9962 for the training, R = 
0.9928 for the validation and R = 0.9827 for the testing and was obtained by combining a 
feed-forward neural network with back propagation neural network [42]. Abdulmalek et al. use 
support vector machine (SVM) to estimate fracture and pore pressures with high accuracy 
as the determination coefficient (R2) is higher than 0.995 with utilizing various parameters 
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such as well logs and real-time surface drilling parameters [43]. Elkatatny et al. use an artificial 
neural network (ANN) for estimating fracture pressure using over 3900 real field data points 
based solely on real time surface drilling parameters. The artificial neural network model 
(ANN) was compared to the Matthews and Kelly model that is one of the most commonly used 
models in the field for predicting fracture pressure [44]. Ahmed et al. predict the fracture pres-
sure with using five ML and AI tools, named ANN, FN, FL, RBF, and SVM, using only real-
time surface drilling parameters which are widely available. The pros of this method is that 
the fracture pressure can be obtained without having to access the measurement logs [45]. 

4. Problem statement  

Pore and fracture pressures determination is critical in optimizing the mud weight design 
for a successful oil or gas well as it has a direct impact on the stability of wellbore which itself 
can lead to several problems in drilling operation [46]. 

There are various predictive mathematical techniques and models that have been used in 
determining and predicting the fracture and pore pressures but usually these techniques are 
limited and cannot predict them comprehensively and accurately. 

Generally, these models are empirical models that are a field-specific, i.e. these equations 
provide accurate predictions for the parameter of interest only for the field and have a lot of 
limitations and restrictions. In the other hand, the direct tests (which itself can’t be done 
unless the drilling has already started) like FIT, LOT, DST, RFT, etc. are costly, consume a lot 
of time, effort and money, have limitations and restrictions itself and can lead to severe un-
expected problems. 

So with the progress of technology of both hard and software, and by using artificial intel-
ligence and machine learning techniques which reduce the computational time, build more 
reliable models, and able to interpret the data effectively. This helps a lot in forecasting the 
fracture and pore pressures based on field data for the developed wells. 

This study aims to analyze the different methods that are used for predicting fracture and 
pore pressures. Introduce a new model using machine learning techniques for predicting real 
time pore and fracture pressures based on field data containing (mud logs & surface drilling 
parameters) that are available easily for “BE Filed” in The Nile Delta, Egypt.  

5. Methodology 

In this study, the methodology is going to be in the following order: collecting field data, 
cleaning and quality assuring the data. Developing a machine learning model by implementing 
a regression ensemble (mean) model aggregating six intelligent predictive models and algo-
rithms  named as  (RF, DT, Adaboost, Xgboost, Extra trees, and Gradient boosting) for the 
Prediction and Analysis of pore and fracture pressures. 

The six algorithms, as well as the ensemble (mean) model, are trained using the 5 fold 
cross-validation (CV) to optimize the algorithm structure, while the statistical accuracy pa-
rameters (e.g. R2, MSE, MAE, MDAE, MAPE %, MDAPE %) are used as the criterion of selection 
the best algorithm in terms of the prediction accuracy. Figure 2 shows the flow chart of steps 
that would be followed until the models are built. 

 
Figure 2. Machine learning process train till developing the model. 

5.1. Data set and facilities 

The case is based on dataset for “BE Filed” in The Nile Delta, Egypt. For fracture & pore 
pressures prediction. The dataset includes one file. In particular, file Study on BE Field 
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Data.csv is used for this case. There are 2518 number of sample points. The target columns 
are “FP kg/cm2 & PP kg/cm2”. There are 21 feature columns which are: 'Depth', 'SGR', 'CGR', 
'PEF', 'RHOB', 'NPHI’. Assistant Tools was used in this study include Open sources python 
libraries & SML [47]. Table 1 and Table 2 show detailed statistics and data visualization 

Table 1. Detailed statistics and data visualization of features data. 

Statistical Depth SGR CGR PEF RHOB NPHI DTC Vs UCS Porosity 

Count 2518 331 331 331 331 331 331 331 331 331 

Mean 2506.5 51.363 35.349 4.897 2.435 33.153 150.89 2444.48 1965.33 24.211 

Std 727.028 13.838 14.488 4.065 0.146 11.778 12.55 0 0 12.454 

Min 1248 14.73 -5.5 2.395 1.666 9.568 0 2444.48 1965.33 10.766 

20% 1751.4 39.784 27.866 3.645 2.36 23.971 149 2444.48 1965.33 17.417 

40% 2254.8 52.7 36.684 3.882 2.458 28.669 150.75 2444.48 1965.33 20.176 

50% 2506.5 56.094 39.263 3.965 2.485 32.804 151.5 2444.4 1965.3 21.235 

60% 2758.2 58.509 41.344 4.02 2.499 35.434 152.12 2444.4 1965.3 22.412 

80% 3261.6 62.971 46.118 4.2 2.533 40.01 156.06 2444.4 1965.3 25.282 

max 3765 71.805 56.752 26.09 2.588 83.687 170.09 2444.4 1965.3 78.149 

Table 2. Detailed statistics and data visualization of features data 

Statistical INC Azimuth WOB RPM TQ ROP m/hr PP kg/cm2 FP kg/cm2 

count 2518 2518 2518 2518 2518 2518 2518 2518 

mean 4.974 227.391 19.62 118.16 6331.748 17.975 277.877 420.086 

std 6.265 87.287 7.469 29.877 2211.405 9.941 69.104 124.916 

min 0.1 2.4 0 0 0 1.356 128.47 198.645 

20% 0.3 99.7 12.858 117.81 4776.249 10.384 198.692 290.003 

40% 0.7 264.16 17 125.42 6196.683 14.44 280.21 378.04 

50% 1 268 18.972 127.27 6643.324 16.212 293.76 419.946 

60% 3.08 269.4 21.726 128.94 7040.368 18.331 303.842 462.634 

80% 12 280.47 27.294 132.51 8052.346 23.747 344.128 550.408 

Max 18.2 327.5 41.632 156.65 13136.45 91.044 382.91 649.583 

5.2. Features correlation 

The matrix correlation (Figure 3) shows the Spearman correlation among features; Spear-
man coefficient is to measure the rank correlation. Both very large positive coefficient and 
very small negative coefficient indicate strong correlation between the features. Coefficient 
close to zero indicates weak ranking correlation. A positive value close to 1 means the two 
features have nearly the same ranking orders. 

Pairwise correlation (Figure 4) shows the pair plot map presents the pairwise relationships 
in this dataset. It created a grid of Axes such that each feature in dataset shared the same y-
axis across a single row and the same x-axis across a single column. Only the feature columns 
most correlated with the target columns are selected. 
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Figure 3. Matrix correlation chart among different features for the developed model. 

5.3. Model development 

The first step to start your machine-learning model. Select the data features file, a target 
column that will be used with your model to make predictions; one for PP and the other for FP 
and your problem type (It will be regression). 

Figure 4. Pairwise correlation chart among different features for the developed model. 

5.4. Data preprocessing 

Data preprocessing is a technique and a necessary step to process the input data to help 
machine-learning algorithms easier to uncover the information hidden in the data. 
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Four preprocessing steps took places. Train/Test Split, Impute Missing, Categorical En-
coder, and Treat Outliers. (Table 3) summarizes the statistical data of string feature columns 
after preprocessing step. First, train/test split is performed using stratified 5-fold CV method. 
Second, categorical features (lithology, resistivity and fluid type) are encoded using one hot 
encoding. Third, the missing values of features UCS, PEF, DTC, Porosity eff., RHOB, Vs., SGR, 
NPHI and CGR are imputed based on using mean mode method. Finally, the outliers has been 
removed using the probability threshold method. 

5.5. Model training 

Training a machine learning model is to uncover the relationship between features and 
target and to have the model learn the true underlying pattern in the data while stay robust 
again inevitable noise. The data is split into training data (2014 samples) and test data (504 
samples) stratified based on feature ‘’FP & PP kg/cm2’’. The training data is further split into 
true training data and validation data points using k-fold with k=5. In this study, the 6 models 
are trained, separated with preprocessed data and then ensembled into a final model using 
conducts hyperparameter tuning trying to find the best model that has low bias and low variance. 

Table 3. Detailed statistics of string features data after preprocessing. 

Statistical Lithology 
_shale 

Lithology 
_shaly sand 

Lithology 
_sandy shale 

Lithology 
_anhydrite Res_low Res_ interme-

diate 
Fluid type -

water 

Count 2014 2014 2014 2014 2014 2014 2014 

Mean 0.015 0.049 0.922 0 0.955 0.028 0.983 

std 0.121 0.215 0.269 0.022 0.207 0.164 0.129 

min 0 0 0 0 0 0 0 

20% 0 0 1 0 1 0 1 

40% 0 0 1 0 1 0 1 

50% 0 0 1 0 1 0 1 

60% 0 0 1 0 1 0 1 

80% 0 0 1 0 1 0 1 

max 1 1 1 1 1 1 1 

5.6. Random forest 

Random forests is an ensemble learning method for classification and regression that op-
erates by constructing a multitude of decision trees attraining time and outputting the class 
that is the mode of the classes (classification) or mean prediction (regression) of the individual 
trees [48]. 

5.7. Decision tree 

DT is a decision support tool that uses a tree-like model of decisions and their possible 
consequences, including chance event outcomes, resource costs, and utility. It is one way to 
display an algorithm that only contains conditional control statements [49]. 

5.8. XGBoost 

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradi-
ent boosting framework. XXX total number of hyperparameter tuning iterations were per-
formed. Each hyperparameter configuration are sampled from the following user specified 
range [50]. 
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5.9. Extra trees 

Extra Tree is a meta-estimator that fits a number of randomized decision trees (a.k.a. 
extra-trees) on various subsamples of the dataset and uses averaging to improve the predic-
tive accuracy and control over-fitting [51]. 

5.10. AdaBoost 

AdaBoost algorithm is a meta-estimator that begins by fitting a classifier on the original 
dataset and then fits additional copies of the classifier on the same dataset but where the 
weights of incorrectly classified instances are adjusted such that subsequent classifiers focus 
more on difficult cases [52]. 

5.11. Gradient boosting 

Gradient Boostng produces a prediction model in the form of an ensemble of weak predic-
tion models, typically decision trees. It builds the model in a stage-wise fashion like other 
boostng methods do, and it generalizes them by allowing optimization of an arbitrary differ-
entiable loss function [53]. 

5.12. Ensemble (mean) model 

Model ensemble is a process of combining different machine models into a final model. 
There are different ways of combining the models. An ensemble model usually has more stable 
performance, low bias and less variance when predicting on new data points that it has not 
yet seen before [54]. In this case, we use EA method to combine the based models: random-
forest, decisiontree, xgboost, extratrees, adaboost, gradient boosting. 

6. Results and discussion

6.1.Model evaluation

Model evaluation is one of the most critical component of a machine learning study. By 
evaluating the trained machine-learning model on training, validation and test dataset, we 
can obtain an unbiased impression on how dependable and generalizable our trained machine-
learning model could be. 

Table 4 and Table 5 represent the statistical results and model evaluation obtained from 
the six developed models plus the ensemble one for training and testing of the total dataset 
presented for pore and fracture pressures respectively. 

Table 4. Pore pressure statistical results & model evaluation. 

Method Dataset Explained 
variance Neg_AE Neg_MAPE Neg_MSE Neg_MDAE Neg_MDAPE R2 

Randomforest Train 0.9999 -0.5629 -0.2009 -0.6077 -0.3986 -0.1487 0.9999 
Randomforest Test 0.9993 -1.3628 -0.4912 -3.3825 -1.0213 -0.385 0.9993 
Decisiontree Train 0.9994 -1.2322 -0.4317 -2.987 -0.79 -0.319 0.9994 
Decisiontree Test 0.9989 -1.7116 -0.6147 -5.2421 -1.3104 -0.5085 0.9989 
Xgboost Train 1 -0.329 -0.125 -0.198 -0.2369 -0.0892 1 
Xgboost Test 0.9993 -1.3768 -0.4938 -3.5041 -0.9988 -0.4059 0.9993 
Extratrees Train 0.9999 -0.3796 -0.1381 -0.277 -0.2612 -0.099 0.9999 
Extratrees Test 0.9993 -1.3123 -0.4756 -3.058 -1.0306 -0.3901 0.9993 
Adaboost Train 0.9973 -2.8927 -1.0699 -13.139 -2.4525 -0.9126 0.9973 
Adaboost Test 0.9969 -2.9926 -1.0926 -14.564 -2.4618 -0.9588 0.9969 
gradientboosting Train 1 -0.2559 -0.093 -0.1404 -0.163 -0.0632 1 
gradientboosting Test 0.9992 -1.4361 -0.5258 -3.6713 -1.0847 -0.4124 0.9992 
ensemble_mean Valida-

tion 0.9998 -0.7955 -0.2871 -1.042 -0.6353 -0.2423 0.9998 

ensemble_mean Test 0.9995 -1.4962 -0.537 -3.7598 -1.1706 -0.4495 0.9995 
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Table 5. Fracture pressure statistical results & model evaluation. 

Method Dataset Explained 
variance Neg_AE Neg_MAPE Neg_MSE Neg_MDA

E 
Neg_MDAP

E R2 

Randomforest Train 0.9998 -0.8396 -0.1893 -3.6062 -0.3657 -0.098 0.9998 
Randomforest Test 0.9975 -2.5217 -0.5413 -38.7657 -1.0887 -0.2874 0.9975 
Decisiontree Train 0.9984 -2.4175 -0.535 -25.4809 -1.1928 -0.3115 0.9984 
Decisiontree Test 0.9968 -3.2327 -0.7013 -49.7875 -1.5 -0.3716 0.9968 
Xgboost Train 0.9997 -1.3075 -0.3102 -4.5737 -0.827 -0.2104 0.9997 
Xgboost Test 0.9975 -2.6515 -0.5662 -38.3338 -1.1206 -0.3048 0.9975 
Extratrees Train 0.9997 -0.8758 -0.1897 -3.9892 -0.3633 -0.0943 0.9997 
Extratrees Test 0.9975 -2.4615 -0.5234 -38.8934 -1.0295 -0.2727 0.9975 
Adaboost Train 0.9952 -6.5356 -1.5266 -76.3138 -5.0212 -1.2538 0.9951 
Adaboost Test 0.9944 -6.7914 -1.5678 -87.2614 -5.3953 -1.3017 0.9943 
gradientboosting Train 1 -0.3212 -0.0798 -0.2459 -0.2048 -0.0505 1 
gradientboosting Test 0.9975 -2.4793 -0.5285 -38.6702 -1.003 -0.2627 0.9975 
ensemble_mean Valida-

tion 0.9995 -1.6926 -0.3839 -7.8143 -1.031 -0.2607 0.9995 

ensemble_mean Test 0.9985 -2.8514 -0.6186 -38.498 -1.3476 -0.3386 0.9985 

Figure 5 and Figure 6 show the regression plot of the true FP & PP and predicted FP & PP 
for training dataset Ensemble model, respectively. 

Figure 7 and Figure 8 show the regression plot of the true FP & PP and predicted FP & PP 
for testing dataset Ensemble model, respectively. 

For better comparison, the two figures are placed in one plot; Lines 0, +20% and -20% 
error are provided for reference see Figure 9 & Figure 10, respectively. 

  
Figure 5. Regression plot of the true FP and pre-
dicted FP for train dataset for Ensemble model. 

Figure 6. Regression plot of the true PP and pre-
dicted PP for train dataset for Ensemble model. 

According to the above shown results, the Ensemble (Mean) model can be considered the 
best accurate model compared to the other developed model. In addition, this regression plot 
of the ensemble model has the highest correlation between the predicted and true values. 

Figure 11 and Figure 12 show feature contribution to the end value (PP & FP). Figure 13 & 
Figure 14 show a comparison between predicted and true FP & PP using ensemble (mean) 
model for the dataset Features with top contribution are selected in this plot. In other words, 
the feature, which has the largest value of each class, contributes the most impact on deter-
mining final corresponding class. 
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Figure 7. Regression plot of the true FP and pre-
dicted FP for test dataset for Ensemble model. 

Figure 8. Regression plot of the true PP and pre-
dicted PP for test dataset for Ensemble model. 

 
 

  
Figure 9. Regression plot of the true FP and pre-
dicted FP for train/test dataset for Ensemble 
model. 

Figure 10. Regression plot of the true PP and pre-
dicted PP for train/test dataset for Ensemble 
model. 

 

 
Figure 13. Features contribution to the fracture pressure prediction 
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Figure 14. Features contribution to the pore pressure prediction. 

 

  

Figure 11. FP predicted vs. FP true for the developed 
model. 

Figure 12. PP predicted vs. PP true for the developed 
model. 
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7. Conclusions 

This work shows a model based on the machine learning techniques for predicting pore and 
fracture pressures that is a regression ensemble (mean) model which shows a blind test ac-
curacy of 0.999 for pore Pressure and 0.998 for fracture Pressure from only mud logs and 
surface drilling parameters that are easily available. 

The ensemble model is very accurate, comprehensive, low bias, has more stable perfor-
mance and the highest test accuracy when predicting on new data points that it has not yet 
seen before. 

There is no need to depend on the empirical models ,that are in general a field-specific, or 
any additional tests any more like (FIT, LOT, DST, RFT) that are costly, consume a lot of time 
and effort, have limitations and restrictions themselves and can lead to severe unexpected 
problems. 

Nomenclature 

ppg Pound per gallon 
psi Pound per square inch 
𝜎𝜎ℎ The minimum horizontal in-situ stress 
𝜎𝜎𝐻𝐻 The maximum horizontal in-situ stress 
𝜎𝜎𝑉𝑉 The vertical stress 
𝜎𝜎1 The maximum principal stress 
𝜎𝜎2 The intermediate principal stress 
𝜎𝜎3 The minimum principal stress 
TVD True vertical depth 
D Depth 
Min Minimum 
Max Maximum 
PP Pore pressure 
𝑃𝑃𝑓𝑓 Formation pressure 
𝑃𝑃𝑛𝑛 Normal pore pressure 
FP Fracture pressure 
FG Fracture gradient 
𝜌𝜌𝑓𝑓 Fluid density 
𝜎𝜎𝑜𝑜𝑜𝑜 Overburden stress 
𝜎𝜎 Matrix stress  
𝛽𝛽 Biot coefficient 
𝑑𝑑𝑐𝑐 D exponent 
𝑑𝑑𝑐𝑐𝑜𝑜 Observed D exponent 
𝑑𝑑𝑐𝑐𝑛𝑛 Normal trendline D exponent 
RFT Repeat Formation Tester 
DST Drill Stem Test 
𝛥𝛥𝑡𝑡𝑛𝑛 Normal 𝛥𝛥𝑡𝑡 value at the depth of interest 
𝛥𝛥𝑡𝑡𝑜𝑜 Observed 𝛥𝛥𝑡𝑡 value at the depth of interest 
𝑅𝑅𝑛𝑛 Normal 𝑅𝑅𝑒𝑒𝑒𝑒 value at the depth of interest 
𝑅𝑅𝑙𝑙𝑜𝑜𝑙𝑙 Observed 𝑅𝑅𝑒𝑒𝑒𝑒 value at the depth of interest 
FIT Formation integrity test 
LOT Leak-off test 
XLOT Extended leak-off test 
𝐾𝐾𝑚𝑚 Matrix stress coefficient 
𝑣𝑣 Poisson’s ratio 
𝑣𝑣𝑒𝑒 Shear wave velocity 
𝑣𝑣𝑝𝑝 Compressional wave velocity 
𝛼𝛼 Compressibility ratio of the porous to the bulk rock matrix 
FBG Formation breakdown gradient 
𝑇𝑇0 Rock tensile strength 
𝐹𝐹𝑃𝑃𝑚𝑚𝑜𝑜𝑙𝑙 Average fracture pressure 
MAE Mean absolute error 
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MAPE Mean absolute percentage error 
MSE Mean squared error 
MDAE Median absolute error 
MDAPE Median absolute percentage error 
R2 Correlation coefficient 
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