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Abstract 

Equivalent Circulating Density (ECD) is a key parameter in drilling and cementing operations. Previous 
research on ECD prediction has primarily focused on drilling rather than cementing. In practice, the 
miscalculation of ECD is more significant in terms of cost, leading to large losses and time consumption 
compared to drilling. This study aims to address this gap by applying machine learning techniques 
used in drilling to the primary cementing process. Due to the lack of available pressure logging tools 

during casing running and cementing, along with high downhole measurement costs, alternative 
approaches are necessary. Several regression models, including Decision Tree Regressor (DTR), Linear 
Regression (LR), Random Forest Regressor (RFR), Support Vector Regressor (SVR), Gradient Boosting 
Regressor (GBR), K-Neighbor Regressor (KNN), Ridge Regressor (RR), Artificial Neural Network (ANN), 

and an ensemble ML method, were applied to predict ECD before cementing. A dataset of 1,036 
simulation data points was used, with 70% for training, 15% for validation, and 15% for testing. Model 
evaluation through statistical and graphical analyses showed that the DT model achieved the highest 

accuracy (R² = 0.994) for testing, followed by the RF and Ensemble models. 

Keywords: Equivalent circulation density; Machine learning (ML); Primary cementing; Simulation data; Drilling 
operation. 

1. Introduction

Primary cementing plays an essential role in well integrity for saving and extending their

lives by establishing a protective zone between the rock formation and the casing string, iso-

lating the migration of fluids between the formation layers and surface. A successful cement 

job can be challenging due to its complexity during the job and the interaction between the 

casing, the cement slurry, and the formation heterogeneities and properties [1]. 

Equivalent circulating density (ECD) is a crucial parameter to calculate and predict before 

drilling and primary cementing operations. ECD is the typical main objective for determining 

the impact of friction pressure from fluid flow and total hydrostatic pressure from fluid density 

at depth [2-4]. An appropriate selection and optimization of ECD, particularly in narrow window 

exploration and deep horizontal wells, is vital to achieving an adequate isolation zone and 

reducing non-productive time (NPT) [5-7]. In contrast, mismanagement in predicting ECD can 

lead to various issues in both drilling and cementing, such as lost circulation, bad cementation, 

collapse of wellbore, kicks, stuck pipe or casing, and blowouts. These problems make it a 

challenge for drilling engineers to escape while preparing well programs and during operations 

since they pose a significant difficulty in well budgeting by costing millions of dollars each year 
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for the drilling activity in non-productive time (NPT) and material costs [8-12]. ECD is a meas-

ured parameter affected by several factors, including fluid rheology characteristics (density, 

viscosity), annular friction pressure loss (AFPL), well bore geometry (hydraulic diameter), 

pumping rate, and downhole pressure [13-14]. ECD estimation can be conducted using tradi-

tional mathematical models and downhole measurement tools; however, in cementing, only 

mathematical models are typically used. In drilling, both methods are employed. First, for well 

planning, several mathematical correlation models are used with different calculation pro-

cesses, a variety of input parameters, and fluid types. Analytical computer codes are fre-

quently utilized for modeling, performance prediction, and control. Typically, complex differ-

ential equation solutions are solved through the use of complex algorithms [15-16]. Secondly, 

in real time, there are different downhole sensors that measure the ECD with accurate values 
[17-18]. The limitation of mathematical models is that some applications and missing input 

parameters have an impact on ECD prediction. Usually, these systems require a large amount 

of computing power and time to generate accurate projections. In the face of numerous cor-

relations of ECD in previous studies, they are limited by inadequate or insufficient data or are 

only relevant to precise areas [19-21]. The limitation of using downhole sensors is due to their 

sensitivity and failures exposed to downhole conditions [17].  According to precedent limita-

tions, a novel strategy has emerged. This new strategy is necessary for ensuring alignment 

with advancements in relevant technologies, processes, and scientific development. Artificial 

intelligence (AI) systems can identify key information patterns within a multidimensional in-

formation field [22]. Furthermore, many AI systems, like neural networks (NN) and machine 

learning (ML), are durable, noise-immune, and fault-tolerant. Artificial intelligence (AI) is a 

technique that employs powerful computers to analyze complicated algorithms by replicating 

how the human brain thinks [23-24]. In the oil and gas industry, which often deals with huge 

amounts of data, AI techniques offer significant advantages in data modeling, prediction, and 

management. Over the past few years, artificial intelligence techniques have been widely ap-

plied in the oil and gas industry. Table 1 represent literature review related to machine learning 

in petroleum engineering and ECD prediction.  

Writers have made an effort to overcome the shortcomings and limitations of mathematical 

correlations, downhole measurement failure, and high cost by including drilling parameters 

through different AI techniques to predict ECD. Recent studies are summarized below: 

Alkinani, Al-Hameedi [25] designed an ANN model featuring a single hidden layer with 12 

neurons for predicting ECD. This model incorporated surface drilling parameters, including 

weight on bit (WOB) and drill pipe revolution (RPM). Additionally, it considered mud hydraulics 

and properties such as flow rate (Q), total flow area (TFA), mud weight (MW), yield point (YP) 

and plastic viscosity (PV). 

Abdelgawad, Elzenary  [26]proposed a model for predicting equivalent circulating density 

(ECD) by using ANN an ANFIS. The first model with ANN used a hidden layer and 20 neurons, 

while the second model, ANFIS, employed 5 Gaussian membership functions in the inputs and 

a linear type for the outputs. They used rate of penetration (ROP), drill pipe pressure and MW 

as prediction features. 

Rahmati, Tatar [27] utilized a Radial Basis Function (RBF) for robust prediction performance, 

achieving an AAPE of 0.22 and an R² of 0.98, which included input variables such as mud 

density and type, pressure and temperature. 

Kandil, Khaled  [28] focused on enhancing efficiency and reducing human error. The authors 

employed three ML algorithms—ANN with a Levenberg-Marquardt backpropagation algorithm, 

PAR, and KNN—to predict ECD. These models leveraged 14 critical operational parameters 

obtained from downhole sensors. The authors analysed 4663 data points, with 80-85% for 

training and validation. The ANN model demonstrated remarkable accuracy, achieving an R2 

value close to 0.999. 

Ahmadi, Shadizadeh [29] developed a robust model for predicting mud density at using a 

hybrid of particle swarm optimization (PSO) and (ANN). Additionally, two competitive machine 

learning models, FIS and GA-FIS, were tested. Statistical analysis revealed that the PSO-ANN 
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model outperformed other methods, making it a reliable tool for predicting drilling fluid density 

in HPHT conditions using data from previous literature  

Alsaihati, Elkatatny [30] introduced artificial intelligent machines, incorporating support vec-

tor machines (SVM), random forests (RF), and functional networks (FN), for the estimation of 

ECD in real-time in horizontal wells using field data. The RF model demonstrated superior 

performance with high accuracy. They used seven drilling parameters as inputs to predict 

ECD, including pumping rate, ROP, SPP, WOB, RPM, torque, and hook load. 

Gamal, Abdelaal [31] utilised ML techniques, specifically ANNs and ANFISs, to predict ECD 

with high accuracy using drilling data. The ANN model achieved an average absolute percent-

age error (AAPE) of 0.3% and a coefficient of correlation (R) above 0.98, while ANFIS recorded 

an AAPE of 0.7% and an R of 0.96. Additionally, a new equation for real-time ECD determina-

tion was introduced. Focused on six drilling parameters for ECD prediction, such as ROP, flow 

rate (GPM), drill string speed (RPM), standpipe pressure (SPP), WOB, and torque (T). 

Al-Rubaii, Al-Shargabi [32] integrated a combination of mud properties and drilling param-

eters into the ECD prediction model. They used flow rate (GPM), ROP, drill string rotation 

(RPM), standpipe pressure (SPP), mud weight (MW), low shear yield point (LSYP), yield point 

(YP), and plastic viscosity (PV) as inputs. Additionally, they considered azimuth, borehole an-

gles, modified hole geometry factors, and average cuttings concentration in an annulus, 

among other factors. 

Employed mathematical models to develop hydraulic programs, which are crucial for hy-

draulic calculations during cementing operations. The programs may utilize different rheolog-

ical models, such as Bingham plastic (BPM), Power-law (PLM), or Herschel–Bulkley (HBM), as 

the foundation for hydraulic calculations. Metwally [33] proposed a model that improves the 

prediction accuracy of ECD using Herschel-Bulkley model for water-based mud (WBM). Im-

portantly, ECD predictions for formulated WBM match well with those of OBM which signifies 

the strength and dependability of the proposed methodology but different data inputs are 

needed for each rheological model, and these are usually acquired by means of extensive 

laboratory testing. The software then uses these data to compute drilling fluid hydraulics and 

related parameters like ECD [34]. A tree-based ensemble method is used by employing 

XGBoost methodology to predict ECD. With R2 and RMSE for the testing/blind data set of 0.989 

and 0.023, respectively, the findings demonstrated a significant prediction capacity [35].  

The previous research has predominantly concentrated on predicting equivalent circulating 

density (ECD) in drilling operations rather than in cementing. In practice, the equivalent cir-

culating density (ECD) parameter is more critical during cementing operations. Consequently, 

it is imperative to prioritize and focus on ECD management throughout the cementing process. 

Whereas, losses incurred during cementing operations are significantly more costly and time-

consuming compared to those encountered during drilling. This is primarily due to the need 

for multiple additional procedures, such as pulling out and replacing the casing, running the 

drill string, sealing the losses with lost circulation materials (LCM) or cement plugs, waiting 

on cement (WOC), and eventually cementing. These steps involve pulling out the drill string, 

running a new casing, and cementing again, all of which contribute to increased operational 

expenses and extended non-productive time. However, the machine learning techniques de-

veloped for drilling applications can be adapted for cementing. The limited availability of pres-

sure logging tools for use during the running and cementing of casing strings, combined with 

the high costs and potential failures associated with downhole measurements in challenging 

hole conditions, calls for alternative approaches. These alternatives should aim to overcome 

these limitations while minimizing effort and cost. In this study, various regression models of 

ML, including Decision Tree Regressor (DTR), Linear Regression (LR), Random Forest Regres-

sor (RFR), K-Neighbor Regressor (KNN), Support Vector Regressor (SVR), Gradient Boosting 

Regressor (GBR), Ridge Regressor (RR), and Artificial neural network (ANN), were employed 

to forecast ECD before cementing, yielding promising results. The performance of these re-

gression models was evaluated and compared with existing methodologies, demonstrating 

their effectiveness in ECD prediction. The software user has an improved ability to apply con-

structive design modifications to affect the real-time operation's result. With the software, the 
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user may monitor and evaluate certain variables to make informed judgments based on iter-

ative simulation situations, whether it is ECD management or displacement efficiency en-

hancement. 

Table 1. Literature review related to machine learning in petroleum engineering and ECD prediction. 

2. Methodology 

2.1. Data collection 

Based on laboratory and field data, data was created for this study to model a primary 

cementing job. This made it possible to create datasets that closely mimic data from the actual 

world. Simulated data can also be used by ML to create accurate models and forecasts. 

The data gathered for this investigation was from a simulation of the primary cementing 

job of a 13 3/8-inch section in Hassi Messaoud field, Algeria. The strategy that was followed 

while conducting this study is depicted in Figure 2 A total of 1036 points were obtained from 

five vertical wells. The cementing parameters that were gathered and used as model inputs 

came from the simulation reports of the cementing program that represent fluid weight (mud, 

spacer, lead slurry, and tail slurry) in g/cm3, flow rate in L/s, fluid volume (V) in m3, pump 

pressure (SPP) in KPa, yield point (Yp) in Pa, and plastic viscosity (PV) in cp. ECD data were 

Topic References Details 

ML in Petroleum Engi-
neering 

[36] 

Machine learning techniques, including ANNs, have 
been applied since the early 1990s to tasks like iden-
tifying seismic reflections, showcasing potential for 
improved efficiency and accuracy. 

ML for Drilling Enginee-
ring 

[37-39] 

ML techniques like ANNs have been used since 1990 
for assessing drill bit wear and predicting ROP. 
Sprunger et al. (2022) highlighted ML's advantages in 
hydraulic fracturing operations. 

Definition & Impor-
tance of ECD 

[40, 41] 

ECD represents the hydrostatic pressure exerted by 
drilling mud under dynamic conditions, crucial for 
maintaining wellbore stability and managing for-

mation and fracture pressures. 

Role of Drilling Mud & 
ECD 

[13, 16, 26, 
42] 

Discusses the impact of mud density on drilling con-
ditions, emphasizing ECD optimization to prevent is-
sues like poor drilling rates and increased costs. 

Downhole ECD Mea-
surements 

[17, 18] 

Erge et al. and Rommetveit et al. highlighted the re-

liability and precision of downhole ECD measurements 
but noted high costs and operational constraints. 

Limitations of Mathe-
matical Models for ECD 

[10, 15, 43-46] 

Traditional models often overlook crucial factors, 
leading to inaccurate ECD predictions. ANNs offer a 
more advanced approach by considering a broader 

range of input variables. 

ANNs for ECD Predic-
tion 

[47-49] 

Baranthol et al. conducted oil field measurements and 
validated their findings. Ahmed et al. created an AI 
models to estimate mud density and forecast the im-

pact of drill-string rotation on ECD. 

Advanced AI Tech-
niques for ECD 

[50-52] 

Elzenary et al. used ANFIS and ANN to develop ECD 

predictive models. Ahmadi employed PSO-ANFIS and 
LLSVM algorithms for accurate ECD predictions. 

High Accuracy ECD Mo-
dels 

[25, 27] 

Rahmati and Tatar used a radial basis function model 
for ECD prediction, achieving high accuracy. Alkinani 
et al. used an ANN model with various drilling param-
eters for ECD prediction. 

ML Models in Drilling [30, 53] 
Alsaihati et al. developed models using SVM, RF, and 
FN with high accuracy. Gamal et al. used ANNs and 
ANFIS to predict ECD with high R2 values. 
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collected from the same reports and used for the model output estimation. These parameters 

were selected based on their influence on equivalent circulating density (ECD). 

2.2. Statistical analysis of parameters 

The dataset consists of 1036 samples with seven parameters related to cementing opera-

tions. The extended statistical summary of the dataset reveals key insights into the distribution 

and variability of each parameter. Table 2 show the input and output statistical parameters. 

The variation in fluid density is from 1.25 to approximately 1.9 g/cm3, since the variability lies 

low and finally flow rate varies between nearly about only 8.3 to 88.33 L/s indicating a broader 

distribution fluid volume range from 01 to 296 m3, and stand pipe pressure (SPP) shows some 

very wide range values like 827 to 8673 KPa which indicates outliers. Plastic viscosity (PV) 

distributed with a heavy-tail, ranges between 11-78 cP. More stable, 4.79 to 11.01 Pa of yield 

point (YP). The target set, equivalent circulating density (ECD) ranges reasonably within the 

scale of 1.25 to 1.65 g/cm3. 

Table 1. Statistical analysis parameters. 

2.3. Heatmap correlation 

The correlation heatmap shows the relationships between various parameters in the dataset 

as shown in Figure 1.  

 

Figure. 1. Heatmap correlations of input and output pa-
rameters. 

Fluid density has a strong positive 

correlation with PV (0.68) and a moder-

ate negative correlation with flow rate 

(-0.40). Fluid volume has a strong pos-

itive correlation with YP (0.70) and a 

moderate positive correlation with SPP 

(0.31). SPP has a strong positive corre-

lation with ECD (0.75). PV has a mod-

erately negative correlation with fluid 

volume (-0.69) and YP (-0.59). ECD 

shows a strong positive correlation with 

both SPP (0.75) and fluid volume 

(0.64). These correlations indicate 

which parameters are most closely re-

lated, with strong positive values sug-

gesting a direct relationship and nega-

tive values indicating an inverse rela-

tionship. 

 

Statistical 
parameters 

Flow rate 
(L/s) 

Fluid 
volume 
(m3) 

SPP (KPa) 
Fluid 

density 
(g/cm3) 

PV (cP) YP (Pa) 
ECD 

(g/cm3) 

mean 56.89 137.19 2282.23 1.41 36.56 9.11 1.35 

std 20.66 87.04 1709.14 0.24 31.07 2.09 0.08 

min 8,30 1.00 827.37 1.25 11.00 4.79 1.25 

25% 50.47 62.21 1709.14 1.25 11.00 6.70 1.30 

50% 56.78 124.21 2282.23 1.30 14.00 9.10 1.33 

75% 63.09 215.03 1709.14 1.35 76.00 11.01 1.37 

max 88.33 296.00 8673.60 1.90 78.00 11.01 1.65 

Kurtosis -0.50 1.50 -0.30 2.10 3.50 -1.00 1.20 

Skewness 0.90 0.60 0.70 1.10 1.40 -0.30 1.00 
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Figure 2. Flow chart processing for predicting ECD with ML models. 

2.4. Data modelling 

With the use of the simulation, researchers will be able to examine how a system behaves 

by building a model that consists of a structure and the rules that regulate it to generate 

different outputs. For AI systems to be trained, simulated data is frequently the only choice 

available, particularly in situations where obtaining real data would be difficult, costly, or take 

a long time. The process of creating ECD models begins with the collection of data to produce 

model input parameters of high quality implemented in python. Next, the ML model is trained, 

the model parameters are optimized using the trained algorithm, and the model results are 

tested for accuracy. If the accuracy is low, a re-training process is conducted to obtain the 

ideal model parameters for high accuracy performance for the ECD prediction. The dataset is 

divided into three sections: 70% for training, 15% for testing, and 15% for validation, with 

ECD selected as the target variable. 

3. Regression models 

Several regression models are employed to predict ECD from the dataset, have been sum-

marized in Table 3 definition, use, and objective for each technique. The performance of each 

model is assessed using metrics such as R², MSE, and RMSE error were calculated by Equa-

tions 1,2 and 3. 

          (1)  

 

           (2) 

 

            (3) 
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Table 3. Regression models used in the study. 

 

Technique Definition Use Objective 

Linear regression  
(LR) 

Assumes a linear relation-

ship between input varia-
bles and a single output 
variable. 

Predictive modeling and 

forecasting in various do-
mains like economics, 
engineering. 

Minimize the sum of squared dif-

ferences between observed and 
predicted values to achieve the 
best-fit linear line. 

Ridge regression  
(RR) 

Type of linear regression 

with a regularization term 
(L2 penalty) to prevent 
overfitting. 

Cases with multicolline-
arity, providing more re-
liable predictions by pe-
nalizing large coeffi-
cients. 

Balance the fit of the model with 

complexity, minimizing both the 
sum of squared errors and the 
magnitude of coefficients. 

K-Neighbors  
regressor (KNR) 

Predicts the output for a 

data point by averaging 
the outputs of its K near-
est neighbors. 

Regression problems 

with complex relation-
ships between input and 
output. 

Make predictions based on the 

similarity of new data points to 
known data points, capturing lo-
cal patterns in the data. 

Decision Tree  
Regressor (DTR) 

Builds a tree structure 

model to make predic-
tions by splitting data into 
subsets based on feature 

values. 

Regression and classifi-

cation tasks with non-lin-
ear relationships be-
tween input features and 

output. 

Create a model that predicts the 
output by learning simple deci-
sion rules inferred from data fea-
tures. 

Random Forest  
Regressor (RFR) 

Ensemble method using 
multiple decision trees to 
make predictions by aver-
aging their outputs. 

Domains requiring im-
proved predictive accu-
racy and control overfit-
ting. 

Enhance model accuracy and ro-
bustness by combining predic-
tions of multiple trees trained on 
different subsets of data. 

Gradient 
Boosting  
Regressor (GBR) 

Sequentially builds an en-
semble of trees where 
each corrects the errors 

of the previous one. 

Machine learning compe-
titions and applications 
due to high predictive ac-

curacy. 

Minimize prediction error by iter-
atively adding models that cor-
rect residuals of previous models 

using gradient descent. 

Support Vector 
Regression (SVR) 

Finds a hyperplane in 
high-dimensional space 
that best fits the data, 
minimizing error within a 

threshold. 

Non-linear relationships 
and high-dimensional 
spaces. 

Maximize the margin around the 
hyperplane while keeping pre-
diction error within a defined tol-

erance level. 

Artificial Neural 
Networks (ANN) 

A computational model 
inspired by the human 
brain, consisting of inter-
connected units (neu-
rons) that process infor-
mation. 

Complex nonlinear rela-
tionships, pattern recog-
nition, and time series 
prediction. 

Learn intricate patterns in the 
data through multiple layers of 
neurons, optimizing the network 
to minimize prediction error. 

Multi-Layer Per-

ceptron (MLP) 

A type of ANN with one or 
more hidden layers be-
tween input and output 
layers, using backpropa-
gation for training. 

Deep learning tasks re-
quiring feature learning 
and complex pattern 
recognition. 

Learn complex relationships by 
adjusting neuron weights 
through backpropagation, mini-
mizing prediction error across 
multiple hidden layers. 

XGBoost 

An optimized version of 
gradient boosting that 
uses parallel processing 
and regularization to im-

prove speed and accuracy. 

Widely used in Kaggle 
competitions and real-
world machine learning 
applications. 

Reduce prediction errors and 
training time through parallel-
ized tree boosting and regulari-
zation. 

Ensemble model 

Combines predictions 
from multiple base mod-
els (e.g., MLP, GBR, DTR, 
XGBoost) and trains a 

meta-model (e.g., Ridge) 
to improve accuracy. 

Applications requiring 
high accuracy by lever-
aging multiple models. 

Improve predictive accuracy by 
combining outputs of different 
models, allowing the meta-
model to learn from their individ-

ual strengths and weaknesses. 

565



Petroleum and Coal 

                          Pet Coal (2025); 67(2): 559-573 
ISSN 1337-7027 an open access journal 

3.1. Building ML models 

A straightforward and easily comprehensible technique, linear regression maximizes the fit 

by reducing the squared variations between the observed and predicted values. This is rein-

forced by Ridge regression, which includes a regularization term to avoid overfitting, particu-

larly in datasets with intricate features. Recursively dividing the data according to the values 

of the input features is how Decision Trees, a non-linear method, forecast results. Artificial 

Neural Networks (ANNs) are very good at identifying intricate non-linear patterns in the data 

because of their linked layers of neurons. Even though they are quite successful, K-Nearest 

Neighbors (KNN), Random Forest, and Gradient Boosting are more difficult to understand be-

cause they rely on more complex mathematical frameworks that emphasize data point simi-

larity or repeated error correction. 

An ensemble model was used, especially employing a stacking strategy, to further improve 

forecast accuracy. In order to improve the final forecast, this entails merging predictions from 

many base models, including MLP, Gradient Boosting, Decision Trees, and XGBoost, with a 

meta-model (Ridge regression). By combining the advantages of many models, this approach 

produces more reliable and accurate ECD forecasts 

3.2. Building linear model 

The function provides a mathematical equation describing the model for linear models, 

particularly Ridge regression and linear regression. In order to perform this, the fitted model's 

coefficients and intercept have to be extracted, and a usable equation string needs to be 

developed. 

3.3. Building ANN and ensemble models 

The first step in the approach utilized in this work to develop the model via ANN is data 

preparation, where the dataset is split into sets for training, testing and validation. To handle 

missing values and standardize features, a preprocessing pipeline is created and applied uni-

formly to all datasets. The first model architecture makes use of an Artificial Neural Network 

(ANN) with the scikit-learn MLPRegressor. Using GridSearchCV, a thorough hyperparameter 

tuning procedure is carried out to maximize the model's performance. Through the use of a 

5-fold cross-validation approach, 2,160 model fits are produced for each of the 432 possible 

parameter combinations. The methodology applies ensemble learning techniques to improve 

prediction power beyond baseline model tuning. The modeling technique incorporates the Gra-

dient Boosting and Ridge Regression algorithms. As the last phase of the model design, a 

StackingRegressor is constructed, building upon these ensemble approaches. To provide a 

more reliable and accurate prediction model, this stacked ensemble integrates many basic 

models, such as Multi-Layer Perceptron (MLP), Gradient Boosting, Decision Tree, and XGBoost. 

4. Results and discussion  

4.1. Model training and validation 

The dataset was divided into three categories: 70% for training, 15% for validation, and 

15% for testing. Each model's performance was evaluated using R-squared (R2), mean square 

error (MSE), and mean absolute percentage error (MAPE) metrics.  

Table 4 compares various machine learning models on a dataset, evaluating their perfor-

mance using metrics. Linear regression shows moderate performance, while K-Nearest Neigh-

bors (KNN) shows high accuracy. 

The decision tree shows near-perfect performance, with an R2 of 0.993. Random Forest 

achieves high accuracy, with a validation R2 of 0.990 and a low MSE. Gradient boosting per-

forms well, with R2 values close to 0.98 and a low MSE. Support Vector Regression (SVR) 

shows poorer performance, with lower R2 values and higher MSE values. Ridge regression is 

similar to linear Regression, with R2 values around 0.81-0.87 and MSE values around 0.0011. 

Artificial Neural Networks (ANN) show strong performance, with a validation R2 of 0.897 and 

a low MSE. In summary, decision trees and random forest models show the highest accuracy, 
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but decision trees show signs of overfitting. ANN also performs well with lower MAPE values, 

indicating robust predictive capability. Calculated and predicted plots for models (training, 

validation, and testing) of LR, RFR and DTR are illustrated in In Figure 4 and Figure 5.  

Table 4. Summary of model's performance for training. 

Model Dataset MSE R2 MAPE 

Linear regression Training 0.001130 0.810069 0.021927 

Linear regression Validation 0.000989 0.871384 0.019876 

Linear regression Test 0.001147 0.823291 0.021742 

K-Nearest neighbors Training 0.000103 0.982627 0.003625 

K-Nearest neighbors Validation 0.000156 0.979689 0.005162 

K-Nearest neighbors Test 0.000141 0.978195 0.004492 

Decision tree Training 0.000001 0.999909 0.000082 

Decision tree Validation 0.000126 0.983577 0.003052 

Decision tree Test 0.000039 0.993962 0.002186 

Random forest Training 0.000018 0.996982 0.001402 

Random forest Validation 0.000076 0.990055 0.003256 

Random forest Test 0.000049 0.992459 0.002977 

Gradient boosting Training 0.000076 0.98718 0.004323 

Gradient boosting Validation 0.000110 0.985709 0.005474 

Gradient boosting Test 0.000099 0.984669 0.004959 

Support vector r Training 0.003437 0.422468 0.037043 

Support vector r Validation 0.003376 0.561007 0.036823 

Support vector r Test 0.003411 0.47427 0.036368 

Ridge regression Training 0.001131 0.810054 0.021953 

Ridge regression Validation 0.000991 0.871079 0.019935 

Ridge regression Test 0.001149 0.822933 0.021798 

ANN (MLP) Training 0.000783 0.874319 0.021927 

ANN (MLP) Validation 0.000743 0.897772 0.019876 

ANN (MLP) Test 0.000824 0.854801 0.021742 

Ensemble model Training 0.000058 0.991196 0.004466 

Ensemble model Validation 0.000101 0.980891 0.005270 

Ensemble model Test 0.000083 0.984474 0.004976 

 

 

Figure 3. Calculated and predicted plots using Support Vector Regressor model (training, validation and 
testing). 
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Figure 4. Calculated and predicted plots using linear regression model (training, validation and testing). 

 

Figure 5. Calculated and predicted plots using Decision Tree model (training, validation and testing). 

4.2. Model performance 

Table 5 presents a comprehensive comparison of regression methods on a dataset using 

metrics.  

Table 5. Model performance metrics.  

Regression method MSE R2 MAPE 

Linear regression 0.001147 0.823291 0.021742 

K-nearest neighbors 0.000141 0.978195 0.004492 

Decision tree 0.000038 0.994159 0.002233 

Random forest 0.000055 0.991578 0.003031 

Gradient boosting 0.000099 0.984696 0.004961 

Support vector regression 0.003411 0.474270 0.036368 

Ridge regression 0.001149 0.822933 0.021798 

Artificial neural network (MLP) 0.000824 0.854801 0.017628 

Ensemble model 0.000836 0.984474 0.004976 

Linear regression shows moderate performance, with an MSE of 0.0011, an R2 of 0.823, 

and a MAPE of 0.0217. K-Nearest Neighbors (KNN) shows excellent performance, achieving a 

low MSE of 0.00014, a high R2 of 0.978, and a low MAPE of 0.00449. Decision tree regression 

has the highest accuracy, with an MSE of 0.000038, an R2 of 0.994, and a MAPE of 0.00223. 

Random forest also performs well, with an MSE of 0.00005, an R2 of 0.991, and a MAPE of 

0.0030. Gradient boosting shows high predictive accuracy and a good fit, although not as high 
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as a decision tree or random forest. Support vector regression (SVR) has the poorest perfor-

mance, with an MSE of 0.003411, a low R2 of 0.474, and a high MAPE of 0.036. Ridge regres-

sion presents similar performance to linear regression, but regularization does not significantly 

enhance predictive accuracy. An artificial neural network (ANN) shows strong performance, 

providing a good balance of error and fit and demonstrating its capability to handle complex 

relationships in the data. 

4.3. Ensemble model results 

The model performance improved over time using our machine learning approach. On the 

validation set, the first Artificial Neural Network (ANN) model with MLPRegressor had a R² 

score of 0.85. This increased to 0.88 after using GridSearchCV to adjust the hyperparameters. 

With the addition of ensemble learning strategies like Ridge Regression and Gradient Boosting, 

performance was further improved to an R2 score of 0.94. Using a StackingRegressor—which 

incorporated MLP, Gradient Boosting, Decision Tree, and XGBoost as basic models—and 

achieving an R2 score of 0.97 was a major advancement. An R2 score of 0.984 was obtained 

in the last optimization stage utilizing the most advanced hyperparameter optimization frame-

work Optuna as shown in Figure 6 and Figure 7.We assessed performance using a variety of 

measures during this process, throughout this process, we evaluated performance using mul-

tiple metrics including MSE, R², and MAPE, with each modeling step demonstrated substantial 

gains in each of these criteria.  

 
Figure 6. Calculated and predicted plots using Artificial neural network model (training, validation and 
testing). 

 
Figure 7. Calculated and predicted plots using Ensemble model (training, validation and testing). 

 

Figure 1. Calculated and predicted plots using Artificial neural network model (training, validation and testing). 
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5. Conclusion 

The ECD was forecasted using machine learning algorithms based on fluid weights (mud, 

spacer, slurry), flow rate, fluid volume, SPP, YP, and PV. The models were developed using a 

dataset of 1,036 simulated data points, with 70% of the data used for training and the re-

mainder for validation and testing.  

This study utilized a range of machine learning models, including DTR, RR, LR, KNN, GBR, 

RFR, SVR, ANN, and an Ensemble approach, demonstrating that these techniques can accu-

rately predict ECD. The Decision Tree model achieved the highest accuracy with an R² value 

of 0.994 for the testing dataset, with Random Forest, K-Nearest Neighbors, and the ensemble 

model also showing strong performance. The ensemble approach combining MLP, Gradient 

Boosting, Decision Tree, and XGBoost provided validation accuracies of 94–97% (R²), show-

casing robust prediction capabilities. The study's findings highlighted good agreement between 

predicted and calculated ECD values, confirming the models’ reliability. This work demon-

strated the utility of simulated data for building accurate predictive models in the absence of 

real-time downhole data during cementing operations. The study was conducted under con-

trolled conditions focusing on a vertical well profile and a 13 3/8-inch casing section, ensuring 

a detailed preliminary evaluation of the models. The models developed can serve as an initial 

point for further research and may aid in real-time ECD management, offering users an en-

hanced ability to monitor and make informed decisions for operational improvements. Future 

research is recommended to expand the applicability of these models by incorporating real-

time downhole data, addressing abnormal conditions, and considering various well profiles to 

improve generalizability. 

List of symbols 

NPT Non-productive time  
AI  Artificial intelligence 
ML  Machine learning 

DTR Decision tree regressor  
RR Ridge regressor  
LR Linear regression  
KNN K-nearest neighbors 

GBR Gradient boosting regressor  
SVR Support vector regressor  
RF Random forest 

ANN  Artificial neural network 
MLP Multilayer perceptron regressor 
ANFIS  Adaptive network-based fuzzy interference system 
PSO Particle swarm optimization 
SVM Support vector machine 
LLSVM Least square support vector machine 
GA Genetic algorithm 

FIS Fuzzy inference system 
FN Functional networks 
RBF  Radial basis function 
PAR Passive aggressive regressor 
R2  Coefficient of determination 
MSE Mean squared error 

RMSE  Root mean squared error 
AAPE  Average absolute percentage error 
MAPE Mean absolute percentage error 
MW Mud weight 
WOB  Weight on bit 
RPM  Rotating speed in revolutions per minute 
ROP  Rate of penetration 

GPM  Gallon per minute 
SPP  Standpipe pressure 
LSYP Low shear yield point 
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TFA Total flow area 

PV Plastic viscosity 
YP Yield point 
T Torque 
BPM Bingham plastic model 

PLM Power-law model 
GBM Herschel–Bulkley model 
LCM Lost circulation materials  
WOC Wait on cement  
HPHT High Pressure High Temperature 
XGBoost Extreme gradient-boosting 
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