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Abstract 

Fracture geometry and conductivity are critical parameters for fracture treatment optimization, 
especially in cases that close to unwanted zones either water-bearing or gas zones. This study 
investigates the Artificial Neural Network (ANN) model for hydraulic fracturing optimization. The 
workflow begins with an integrated ANN model, then sets of variable fracture parameters and formation 
rock properties were utilized for training and testing the ANN based on the most appropriate activation 
function, the number of hidden layers and the number of neurons. 
The ANN model considers a 59 real field data of hydraulic fracturing treatments across the western 
desert of Egypt. The proposed ANN trained based on pressure transiet test analysis that was conducted 
on the real field data. The available data was divided as 70% for training, 15% for validation and 15% 
for testing. The optimum number of hidden layers and neurons was achieved after several trials. 
The proposed ANN model result was promising as compared with the common fracture simulation 
software FracCadeTM. The cross plot of the actual fracture geometry parameters versus the predicted 
ANN outputs showed a good match with the correlation coefficient (R) equal to 0.93. Then the relative 
importance of ANN input parameter on the fracture geometry optimization was employed by Garson 
method. The result of this work shows the potential of the approach developed based on the ANN 
model for predicting the fracture geometry. 

Keywords: Artificial Barrier Fracturing; Artificial Neural Network; MATLAB; Hydraulic fracture optimization. 

1. Introduction

Hydraulic fracturing is usually utilized to create enhanced wellbore connectivity to help tight
reservoirs to produce hydrocarbon. Several factors may be considered as risks to the success 
of fracturing treatment operations. One of the risks arises in pay zone reservoirs that are near 
from a water-bearing zone. The chance of fracture growth into the water zone limits the stim-
ulation options and decrease the possibilities of using hydraulic fracturing treatment to im-
prove well productivity, thereby limiting the well's future production, decrease recovery factor 
and often leading to lost recoverable reserves.  

Many of the wells at the western desert of Egypt are shut-in due to poor productivity and 
often the companies that used artificial lift produce with little recovery. In common terms, 
these are thought-about to be marginal wells and not worthy for specific attention [1]. In 

addition to several wells were to be fracture stimulated with a risk of growth through a nearby 
water zone. The productive pay of tight reservoirs is separated from underlying water zones 
by a weak or no stress barrier. The proximity of the water zone to the hydrocarbon producing 
zone around 20 to 80 ft [2].  

Controlling the fracture height in such well conditions to stop the fracture growth into the 
underlying water zone becomes a significant challenge. This may gamble the post-treatment 
well productivity. Thus it becomes necessary to prevent fracture height propagation from 
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growing into the neighboring water  zone, to eliminate the risk of lost well productivity, then 
reserves.  

An Artificial neural network model was developed to predict the fracture geometry as output 
by using back forward propagation method for different cases in the western desert of Egypt [3]. 

Based on several input data for  interested zone rock properties, overlying and underlying 
formations, fracture design parameters and well test data, it can optimize the fracture treat-
ment especially in cases close to water bearing zones. 

The objective of this study was to develop a new model have the ability to  
• Predict and optimize the fracture height to limited the height growth into unwanted zones.   
• Predict the effective fracture half length in tight reservoirs to optimize the fracture treat-

ment  

• Calculate dimension less fracture conductivity (FCD) for fracture treatment to maximize the 
well productivity. 

• Integrating all of the stress profile, fluid, proppant properties, fracture pumping parameters 
and the previous well test data to optimize the upcoming fracture treatment. 

• Evaluate which parameter have the high effect on fracture geometry based on each input 
weight. 

• Give high accuracy outputs compared to commercial software, therefore eliminate the need 

for well testing if not available to conduct well testing. 
Neural network model have the ability to collect all of the above desired characteristics 

because its ability to handle complex and nonlinear problem [4]. ANN can be trained to know 
how much the correlative pattern between variables, therefore can be used to predict outputs 
from new inputs parameter.  

2. Literature review 

Over the years, several authors have proposed the optimization of hydraulic fracture treat-
ment by optimizing the fracture geometry and conductivity to maximize well productivity.  

 

Fig. 1. Definition of variables for fracture con-
tainment problem [6] 

Usman et al. [5] provided a pseudo-three-di-
mensional model through the fracture me-
chanics equation with the assist of either 
Geertsma & Deklerk and Perkin & Kern 2D 
models for accounting fracture geometry. The 
main feature of this model lies in the capability 
of integrating rock and fluid properties with 
fracture treatment parameters of symmetry 
layers above and below the interested zone in 
the reservoir. 

Fung et al. [6] state that reservoir properties 

and tectonic stress are not symmetric and in-
troduce mathematical fracture penetration 
formula for computing vertical fracture growth 
in homogeneous reservoirs with horizontal 
stress distribution as illustrate in Fig. 1. The 
lower and upper-stress intensity factors can be 
expressed as: 

Fσ1 =  √
2

πh
 ∫ (p − σ(y))√

1−y

1+y
 . dy

h/2

−h/2
  …              (1) 

  Fσ2 =  √
2

πh
 ∫ (p − σ(y))√

1+y

1−y
 . dy

h/2

−h/2
   …              (2) 

where:𝜎(𝑦) = horizontal tectonic stress; p= internal fracture pressure, and h= fracture height. 
Rahim et al. [7] presents a mathematical equation for computing the approximate value of 

fracture height either up or down growth that can be after that use as an input for the PKN- 
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2D model to evaluate the fracture 
half-length and dimensionless fracture 
conductivity. Rahim considers asym-
metric layers where the stress differ-

ence between upper and lower layers 
is equal  with a given value of net pres-
sure and reasonable values of zones 
thickness, fracture toughness Fig. 2. 

 
 
 

 
 
 
 
 
 

Fig. 2. Hydraulic fracture propagation in 
multi-stress layers [7]. 

For a given number of layers, the mathematical formula as following:      

√πα(Kicn−Kicm)

2
= ∑ Si√α2 − Zi

2 − ∑ Sj√α2 − Zj
2n

j=3,2
m
i=1,2           (3) 

and  
√πα(Kicm−Kicn)

2√α
= ∑ sin−1 (

Zi

α
) + ∑ sin−1 (

Zj

α
) +

So  π

2

n
j=3,2

m
i=1,2          (4) 

ℎ𝑢 =  𝛼 − 𝑍2 +
ℎ1

2
…                     (5) 

ℎ𝑑 =  2𝛼 − ℎ𝑢                       (6) 

where: hu= Upper fracture height;  hd= Down fracture height; m = Number of upper layers in 
which fracture will propagate;   n = Number of lower layers in which fracture will propagate.  

Yang et al. [8] introduce an alternative technique to calculate fracture geometry by using 

the concept of Unified fracture Design [9] proppant number with the Pseudo-3D model. Yang 
started his approach by assuming net pressure value, then the fracture height was calculated 
by the equilibrium height calculation. The fracture height with proppant mass and permeabil-
ities of reservoirs result in getting the value of proppant number which in turn evaluates the 
value of fracture half-length and widht. The two-D fracture propagation model  can be used 
to calculate the value of net pressure which was compared with the assumed value.  

Garavand et al. [10] suggests a combination of a unified fracture design concept, a two-

dimension model and a linear elastic fracture mechanic (LEFM) to calculate the fracture ge-
ometry. This combination called Modified Pseudo-3D Model.       

First, the linear elastic fracture mechanic used to estimate equilibrium fracture height re-
lated to pressure, in-situ stress and fracture toughness distribution. Therefore, UFD with the 
2D model was used to calculated fracture half-length and net pressure. This approach covers 
more variety of multi-layered reservoirs with real in-situ stress distribution than Yang ap-

proach. Both approaches were programmed through MATLAB TM Software. 
Table 1 presents the different approaches of the previous authors to optimize the fracture 

geometry and control fracture height from propagation into unwanted zones. There were sev-
eral approaches such as Mendelsohn et al. [11], Palmer et al. [12] and Ahn et al. [13] that 
presents various models for hydraulic fracture propagation. All of these authors did not con-
sider the artificial barrier mass proppant, proppant pack permeability and proppant type ef-
fects in their approaches. 

806



Petroleum and Coal 

                         Pet Coal (2020); 62(3): 804-817 
ISSN 1337-7027 an open access journal 

Artificial Neural Network (ANN) model was developed to predict hydraulic fracture height, 
fracture half-length and dimensionless fracture conductivity as outputs by using back forward 
propagation for different cases in the western desert of Egypt and West of Nile fields. 

Table 1. Different approaches for hydraulic fracture optimization 

No Authors Model Type Objective function Ignored parameters 

1 Ahmed et al., 
[5] 

3D and 2D Model • Vertical fracture height 

• Fracture half-length 
• Fracture width 

• Artificial Barrier mass proppant 

• Artificial Barrier Proppant Pack 
permeability  

• Proppant type 

2 Fung et al., [6] Mathematical model • Vertical fracture height • Artificial Barrier mass proppant 

• Artificial Barrier Proppant Pack 
permeability  

• Proppant type 

3 Rahim et al., 

[7] 

Mathematical model • Vertical fracture height 

• Fracture half-length 
• Fracture width 

• Dimensionless fracture 
conductivity 

• Artificial Barrier mass proppant 

• Artificial Barrier Proppant Pack 
permeability  

• Proppant type 

4 Pitakbunkate 

et al., [8] 

Pseudo-3D model • Vertical fracture height 

• Fracture half-length 

• Fracture width 

• Artificial Barrier mass proppant 

• Artificial Barrier Proppant Pack 

permeability  

• Proppant type 

5 Garavand et 

al., [10]  

Modified Pseudo-3D 

(LEFM and 2D-UFD) 
model 

• Vertical fracture height 

• Fracture half-length 
• Fracture width 

• Artificial Barrier mass proppant 

• Artificial Barrier Proppant Pack 
permeability  

• Proppant type 

6 Present work ANN • Vertical fracture height 

• Fracture half-length 
• Dimensionless fracture 

conductivity 

 

3. Data used 

The real data used in this study were collected from different fields in western desert of 
Egypt and West of Nile. The data were divided into three categories: formation rock properties, 
fracture treatment pumping parameters and pressure transient analysis data Table 2. The real 
pressure data were measured from downhole memory gauges. Table 3 presents the data 

range for 59 hydraulic fracturing treatments. 

Table 2. ANN dataset input parameters 

No. Parameter type Input parameter 
Parame-
ter No. 

1 Formation Lithology, Thickness, Distance to WOC, Reservoir tempera-
ture 

4 

2 Reservoir and Rock Proper-

ties 

Permeability, Reservoir pressure, Porosity, In-situ stress, 

Young's Modulus, Poisson Ratio, Fracture toughness, Leak-off 
coefficient (CL), Spurt loss coefficient (Sp) 

9 

3 First Upper Layer properties Thickness, Lithology, In-situ stress, Young’s Modulus, Frac-
ture toughness, Permeability 

5 

4 Second Upper Layer proper-
ties 

Thickness, Lithology, In-situ stress, Young’s Modulus, Frac-
ture toughness, Permeability 

6 

5 First lower Layer properties Thickness, Lithology, In-situ stress, Young’s Modulus, Frac-
ture toughness, Permeability 

6 

6 Second Lower Layer proper-

ties 

Thickness, Lithology, In-situ stress, Young’s Modulus, Frac-

ture toughness, Permeability 
6 

7 Mini Frac analysis Net pressure, Clousre Gradient, ISIP Gradient 3 

8 Settle frac prop data Proppant type, Mass of proppant, Proppant concentration, 
Proppant Pack permeability 

4 

9 Main Fracture treatment Fracture type, Mass of proppant, Pumping rate 3 

10 Main fracture fluid Rheology flow behavior index, n', Rheology consistency index, 

K' 
2 

   48 
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Table 3. Real field data range for 59 fracture treatment 

Parameter Min. Max. Parameter Min. Max. 

Pay zone in-situ stress 3872 14465 Upper Layer 2 Toughness 700 2400 

Main Mass Prop, 1000 Lb 38.6 121.6 Main treatment Pumping Rate, BPM 20 30 

Lower Layer 1 in-situ stress 3872 14465 Upper Layer 1 permeability, md 0.001 25 

Net Pressure, psi 450 2152 Rheology flow behavior index, n' 0.11 0.54 

Upper Layer 1 in-situ stress 3872 14465 Rheology consistency index, K' 0.035 0.150 

Upper Layer 1 Toughness 700 2400 Fracture gradient 0.65 1.16 

pay zone E', *E+6 2.2 3.1 Lower Layer 1 permeability, md 0.001 25 

Upper Layer 1  E', *E+6 1.28 5.66 Net pay formation thickness, ft 4.8 84 

Upper Layer 2 permeability, md 0.001 25 Reservoir Pressure, psi 1500 6100 

Barrier Mass Prop, 1000 Ib 10 16.5 Upper Layer 2 in-situ stress 3872 14465 

pay zone permeability, md 2 70 Lower Layer 1 Toughness 700 2400 

Pay zone Toughness 
700 2400 

Artificial Barrier Proppant Pack per-
meability, md *E+5 

2.1 3.05 

Lower Layer 2 in-situ stress 3872 14465 Reservoir Porosity % 7.8 26 

Formation Lithology 1 5 Leak-off coefficient (CL), 

(ft/min½)* E-3 

1.96 8.25 

Distance to WOC, ft 16 171 Spurt loss coefficient (Sp), gal/100 
ft2 

0.5 2 

Reservoir Temperature, F° 175 290 Upper Layer 1 Lithology 1 5 

Upper Layer 1 Thickness 2 74 Upper Layer 2 Thickness 2 74 

Upper Layer 2 Lithology 1 5 Main fracture Type 1 2 

Barrier proppant type 1 2 Barrier proppant concentration, PPA 0.5 2 

Closure gradient 0.55 0.78 Lower Layer 2 Toughness 700 2400 

Lower Layer 2 permeability, md 0.001 25 Lower Layer 2 Thickness 2 74 

Lower Layer 2 Lithology 1 5 Lower Layer 1 Lithology 1 5 

Lower Layer 1 Thickness 2 74 Lower Layer 2 Toughness 700 2400 

Lower Layer 1  E', *E+6 1.28 5.66 Lower Layer 2  E', *E+6 1.28 5.66 

4. ANN model development 

In order to build ANN model for prediction fracture height, half-length and dimensionless 
fracture conductivity, the model was passed through 4 stages which including [14]:   
• Data preprocessing,  
• Normalizing data set,  
• Model learning,   

• Model evaluation. 

4.1. Data preprocessing  

Table 2 illustrate the input data for ANN. Among 49 data sets as input parameter across 59 
well were including formation rock properties for interested zone like in-situ stress, young's 
modulus and fracture toughness, formation data like permeability,  porosity and reservoir 
pressure, mini frac analysis data like net pressure, ISIP,  closure gradient and hydraulic frac-

turing parameters like pumping rate, gel load, proppant mass volume. 

4.2. Normalizing data set 

A spatial database was built consisting of 59 real field data covering almost the western 
desert of Egypt and west of Nile fields. All explanatory factors for rock and fracture treatment 
properties were added into the database. Normalization indicates that all the connection 
weights and the neuron activation thresholds are initialized with small random values, so as 

to achieve consistent results through learning. This was performed by the following scaling 
rule [15]: 

𝑇𝑛𝑒𝑤 =
𝑇𝑜𝑙𝑑− 𝑇𝑜𝑙𝑑,𝑚𝑖𝑛

𝑇𝑜𝑙𝑑,𝑚𝑎𝑥− 𝑇𝑜𝑙𝑑,𝑚𝑖𝑛
 …                   (7) 

where: 𝑇𝑜𝑙𝑑,𝑚𝑎𝑥, 𝑇𝑜𝑙𝑑,𝑚𝑖𝑛 are the max and min input values of inputs variables; whereas 𝑇𝑜𝑙𝑑, 

𝑇𝑛𝑒𝑤 are the values of old and new variables, respectively.  
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4.3. Model learning   

4.3.1. Artificial Neural Network methodology 

The algorithm of backpropagation in neural networks consists of the following sequence [16]: 

• Number of nodes (input, hidden, and output layer) is set relative to the number of input 
and out. 

• Learning rates and the maximum iterations (set all weights and thresholds to small ran-
dom values) are initialized. 

• Activation function which interconnect input neuron to it is output by mathematical equa-
tion. 

• Input values for the hidden nodes are determined based on Eq. 8: 

𝑆𝑗 =  ∑ 𝑋𝑖𝑊𝑖𝑗
𝑛
𝑖=1 …                       (8) 

where 𝐗𝐢 is the input variable at the node I and 𝐖𝐢𝐣 is the weight from input node i to hidden 

node j. Then the output was derived from the hidden nodes according to Eq. 9: 

𝑌𝑗 = 𝑓(𝑆𝑗) =  
1

1+𝑒
−𝑆𝑗

…                      (9) 

where 𝑌𝑗 is the output variable from hidden node j.  

The same algorithm was employed to calculate the inputs to the output nodes: 

• Error term for the output node was calculated. 
• Iteration ending condition was defined when the network errors were larger than predeter-

mined threshold or the number of iterations was less than the maximum preset iterations, 
then the calculation process continued till one of these criteria was achieved. 
In this study a simple of three layered ANN network (one input layer, one hidden layer and 

one output layer) was created by programming software MATLABTM to be suitable for this 
amount of input data. A cross validation plot was applied in order to determine The most 
proper number of neurons in the hidden layer. It is clearly shows that the lowest R error was 
achieved when the number of neurons in the hidden layer was 61 neuron.  

Weights and biases of the network were then appropriately initialized and therefore the 
artificial neural network was subjected to a backpropagation training algorithm [4]. ANN train-
ing and testing data involve the use of a total of 59 points, 43 are used for ANN training while 
the other 19 points used for model verification and testing Table 4 illustrate the summary of 
artificial neural network data. 

Table 4. Neural Network parameters 

Network structure ANN parameter 

Input layer neurons 49 
Output layer neurons 3 
Hidden layer 1 
Hidden layer neurons 61 
Activation function Sigmoid (Tan-Sig) & Linear 
Learning rate 0.001 

4.3.2. Artificial Neural Training  

The ANN model was trained by backpropagation method by learning rate 0.001. Fig. 3 pre-
sents the structure of the proposed artificial neural network model used in this study with 49 
input parameters and one hidden sigmoid layer with 61 neurons across this layer, then 3 

outputs through a linear output layer.   

 

Fig. 3. The proposed ANN model architecture (Generated by MATLABTM) 
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Fig. 6. Harmonic average permeability [19] 

Appendix A illustrates the proposed ANN 
training script. The optimum obtained net er-
ror (R) matches 0.934 is considered accepta-
ble to complete the learning process of this 

model. This value was calculated through 46 
iteration that calculates the correlation coef-
ficient output error for each lesson. Fig. 4 
shows the regression analysis of the trained 
ANN model. 

4.3.3. Model evaluation 

The accuracy of the neural network model is evaluated by using validation and testing data 
through several methods including mean squared error (MSE), correlation coefficient (R), 
standard deviation (SD), root mean squared error (RMSE), average percent relative error 
(APRE) and average absolute percent relative error (AAPRE) [17-18]. Table 5 illustrate the dif-

ferent error calculation techniques. 

  

Fig. 4. Regression of the proposed ANN model (Generated by MATLABTM) 

Table 5. ANN error calculation comparison using different techniques 

 Software error calculation 

Frac Parameter APRE % AAPRE % RMSR MSR SD R 

Height, Hf -14.06 43.07 44.9 2023.38 0.5 0.86 
Half length, Xf 0.829 32.71 92.2 8506.16 0.3 0.88 

FCD -6247.7 6247.7 532.1 283152 78.4 0.19 

 ANN error calculation 

Frac Parameter APRE % AAPRE % RMSR MSR SD R 

Height, Hf -11.4 28.9 40.2 1621.7 0.38 0.902 
Half length, Xf 10.3 19.8 62 3845.3 0.24 0.924 

FCD -0.51 60.2 7.7 60.241 0.81 0.891 
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5. Result and discussion 

5.1. ANN model structure 

The total data set was divided into three data sets: training set, validation set, and testing 

set. More specifically, 30% of the whole dataset was randomly selected as the testing and 
validation sets and then utilized for comparison between the proposed ANN model and com-
mercial software. 

This ANN is developed using the parameters provided in Table 2. One hidden layer is con-
structed, and the hidden layer has 61 neurons. Fig. 4 depicts the prediction results of regres-
sion analysis for training, validation, testing, and total data set.  

It is found that the difference of correlation coefficient (R) between training  and testing 
data sets is relatively small, which indicates that the ANN model training  process is reliable. 

Moreover, it can be observed that the predicted fracture height, half-length and FCD have 
a good match with the target values with an acceptable range of accuracy. The R of testing 
data set is estimated to be 0.88 indicating that the ANN model has a relatively strong predic-
tive performance. 

A more comprehensive set of error calculations are listed in Table 6. As can be seen that 
the standard deviation (SD) and correlation coefficient of the aforementioned dataset for frac-

ture height are 0.38 and 0.0.902 respectively. The average correlation coefficient for all the 
three outputs are 0.962 for training, 0.869 for validation and 0.888 for testing, respectively. 

Table 6. Relative importance of various input parameter in ANN model 

Parameter 
Relative im-
portance, 

(%) 

Parameter 
Relative im-
portance, 

(%) 

Main Mass Prop 8.960 pay zone E' 2.233 

pay zone in-situ stress 7.548 Upper Layer 1 Toughness 2.072 

Lower Layer 1 in-situ stress 6.335 Upper Layer 2 permeability 1.911 

Pay zone permeability 5.635 Rheology flow behavior index, n' 1.851 

Upper Layer 1 in-situ stress 3.423 Barrier Mass Prop 1.850 

Main treatment Pumping Rate 3.323 Fracture gradient 1.829 

Lower Layer 1 permeability 3.110 Upper Layer 2 Toughness 1.768 

Net Pressure 3.073 Closure gradient 1.736 

Reservoir Pressure 2.998 Rheology consistency index, K' 1.731 

Upper Layer 1 permeability 2.986 Lower Layer 1  E' 1.715 

Pay zone Toughness 2.552 Lower Layer 1 Toughness 1.475 

Artificial Barrier Proppant Pack per-
meability 

2.339 
Upper Layer 2 in-situ stress 

1.414 

Lower Layer 2 in-situ stress 1.411 Reservoir Porosity  0.981 

Barrier proppant concentration 1.405 Distance to WOC 0.978 

Leak-off coefficient (CL) 1.399 Spurt loss coefficient (Sp) 0.971 

Reservoir Temperature 1.375 Upper Layer 1 Lithology 0.969 

Upper Layer 1 Thickness 1.346 Upper Layer 2 Thickness 0.966 

Upper Layer 1  E' 1.332 Main fracture Type 0.855 

Barrier proppant type 1.291 Lower Layer 2 Toughness 0.825 

Net pay formation thickness 1.284 Upper Layer 2 Lithology 0.811 

Lower Layer 2 permeability 1.260 Lower Layer 2 Thickness 0.801 

Lower Layer 2 Lithology 1.260 Lower Layer 1 Lithology 0.799 

Lower Layer 1 Thickness 1.226 Lower Layer 2 Toughness 0.778 

Formation Lithology 1.101 Lower Layer 2  E' 0.777 

5.2. Comparison between ANN predicted data and commercial software 

The output parameters for fracture height, half-length and fracture dimension-less conduc-
tivity were calculated by commercial software, then compared with ANN proposed model. The 
validation and test data around 18 real case were used for this comparison.  

Fig. 5 shows the cross plots of ANN and FracCadeTM output parameters. It is observed that 
the ANN output parameters ( fracture height, half-length and FCD) have more accuracy rather 

than commercial software outputs.  
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Fig. 5. ANN and Software comparison for fracture height, fracture half-length and fracture conductivity. 
(a) Software fracture half-length; (b) Software fracture height; (c) Software fracture conductivity; (d) 
ANN fracture half-length; (e) ANN fracture height; (f) ANN fracture conductivity 

Table 5 illustrate  the error comparison between ANN and software. It is shows also that 
the ANN was less error compare to well test data than commercial software due to the follow-
ing reasons: 
• ANN model trained based on real well test data for different treatment jobs and at different 

formations of the western desert of Egypt rather than simulated stress profile for different 
commercial software, therefore model will achieve highest accuracy than FracCadeTM soft-

ware. 
• Besides, ANN model includes harmonic average permeability approach [19] for calculated 

dimensionless fracture conductivity as it considers that the total pressure drop is equal to 
the sum of pressure drop across each bed Fig. 6, so there was a big difference between 
ANN and commercial software error results Fig. 5 (c, f). 

∆𝑝 =  ∆𝑝1 + ∆𝑝2 + ∆𝑝3                    (10) 
𝑞𝜇𝐿

𝐴𝐾𝑎𝑣𝑔
=  

𝑞𝜇𝐿1

𝐴𝐾1
+  

𝑞𝜇𝐿2

𝐴𝐾2
+ 

𝑞𝜇𝐿3

𝐴𝐾3
 …                  (11) 

𝐾𝑎𝑣𝑔 =  
∑ 𝐿𝑖

𝑛
𝑖=1

∑ (
𝐿

𝐾
)𝑖

𝑛
𝑖=1

 …                      (12) 

where q is the flowrate of the formation; k is the permeability of the formation; A is the cross-
sectional area of the formation and μ is the viscosity of the fluid. 
• ANN will calculate effective fracture half-length and actual dimension less fracture conduc-

tivity FCD, however any commercial software will calculate either total fracture half-length 
or propped half-length and simulated FCD. 

• Integration between hydraulic fracture design, mini frac analysis and well test data will give 
more confidence for the model compared to any commercial software. 

5.3. BoxPlot parameter effect 

The conventional data analysis such as plotting of each parameter versus the output was 

found to be very difficult to explain the relationship between the input parameters and the  
outputs. Therefore, a boxplot was used to identify this relationship [20]. Fig. 7 presents the 

812



Petroleum and Coal 

                         Pet Coal (2020); 62(3): 804-817 
ISSN 1337-7027 an open access journal 

relationship between several rock properties, hydraulic fracture treatment parameters and 
artificial barrier parameters with fracture height growth. 

 
  

   

Fig. 7. Boxplots of effects of fracture stimulation parameters and rock properties on fracture height 
growth. (a) Pumping Rate; (b) Job mass volume; (c) Permeability contrast; (d) artificial barrier prop 
type; (e) stress contrast; (f) Fracture fluid gel loading (Generated by MATLABTM) 

Several interesting observation was mentioned. First, Fig. 7 -a, b, d and f illustrate that 
fracture height increased with the increase of pumping rates, main treatment mass volume, 
artificial barrier proppant type and fluid rheology flow behavior presented in fluid gel loading 
respectively. Second, Fig. 7-c  and e illustrate that fracture height decreased with the increase 
of permeability and stress contrast between overlying and underlying formations.  

Fig 7-a shows greater fracture height with increasing pumping rates. Once the formation in 
situ stress is overcome and fracture initiation happens, the pump rate must be adequate to 
overcome the natural formation leak-off rate just to keep the fracture open. An additional 
pump rate is then needed to increase downhole pressure and promote further propagation of 
the fracture. Fig 7-b shows a greater fracture height with increasing proppant mass volume. 
This means that as long as proppant mass volume was increased, the fracture height will grow 
into unwanted zones and cannot be containment. 

When the fracture grows into a formation of high permeability (high leak-off), it will be 
impossible for the fracture geometry to penetrate through this formation. Fig. 7-c illustrate 
that as the permeability contrast increase the fracture height will be decreased. 

For more fracture height containment, high-density proppant was pumped before the main 
hydraulic fracturing treatment with high breaker concentration. This bank will help in arresting 
downward movement of the fracture height to unwanted formations by increasing the in-situ 

stress differential above the unwanted zone [21-22]. Fig 7-d shows that smaller proppant mesh 
the size will create a smaller value for proppant pack permeability. Therefore, developed more 
resistance for the main fracture treatment movement lead to increase half-length rather than 
fracture height.   

Depending on the formation stresses fracture height growth is controlled by regulating the 
pump injection rates or using fluid with low viscosities to avoid exceeding a critical pressure 
that may cause excessive unwanted fracture height propagation the pay zone Warpinski et al. [23].  
Fig. 7-e illustrate that one of the main parameter for fracture height containment is that the 
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barrier in-situ stresses the contrast between the pay zone and the upward and downward 
formation layers.  

Fig. 7-f shows that by decreasing fracture fluid viscosity, lead to decreasing the net pres-
sure, then decreasing the ratio of pnet/ Δσ Simonson et al. [24]. This concept enables better 

arresting of fracture height growth to the unwanted formation, thus increasing effective frac-
ture half-length in the pay zone. The consistency and stability test was validated by the rheo-
logy test for different gel loading concentrations to ensure that we have the proper one. 

5.4. Garson algorithm 

Garson [15,25] introduce a method of partitioning the neural network connection weights in 
order to determine the relative importance of various input variable within the network. The 
connection weight of the ANN were utilized to determine the importance of each parameter. 

The details of Garson algorithm are given by the following equation: 

𝐼𝑀(𝑋𝑝) =  

∑ [(
|𝐼|𝑝𝑗

∑ |𝐼|𝑝𝑗,𝐾

𝑛𝑝
𝐾=1

⁄ )|𝑂|𝑗]
𝑛ℎ
𝑗=1

∑ (∑ [(
|𝐼|𝑝𝑗

∑ |𝐼|𝑝𝑗,𝐾

𝑛𝑝
𝐾=1

⁄ )|𝑂|𝑗]
𝑛ℎ
𝑗=1

)
𝑛𝑝
𝑖=1

 …             (13) 

where 𝐼𝑀(𝑋𝑝) represents the percentage of influence of the input variable on the output; 𝑛𝑝 is 

the number of input parameters and 𝑛ℎ is the number of neurons in the hidden layer. The 
term |𝐼|𝑝𝑗

 is the absolute value of the weight in the neural network for the 𝑃𝑡ℎinput variables 

and 𝐽𝑡ℎ hidden layer. The term |𝑂|𝑗 is the absolute value of the output layer weight in the 

neural network for 𝐽𝑡ℎ hidden layer. 
Table 6 presents the relative importance of various input parameter on fracture height 

output from ANN model. These results indicate that each input play a great role in controlling 
fracture height according to each input weight, therefore optimizing hydraulic fracture design. 
In-situ stress contrast has the great contribution percent, followed by permeability contrast, 
fracture treatment proppant mass, net pressure value, artificial barrier proppant volume and 
pack permeability, Young’s modulus, fracture toughness and pumping rate. 

Garson results in Table 6 can easily answer the following equation:  
• How many parameter that have vital role to limited the fracture height growth?  
• What are the magnitude of contributions for each parameter in controlling fracture height? 
• what can cause fracture height containment? 

The results of the Garson calculation can be summarized as follows: 
• Artificial barrier proppant pack permeability shows a relatively influence as proppant mate-

rial will increase the in-situ stress contrast, therefore control fracture height growth. 
• Artificial barrier proppant mass volume has a relative impact on frac height growth but the 

great impact on fracture half-length. A full length barrier placement yield the max effective 

fracture half-length, though it is impossible to place. 
• Fracture toughness can have a very significant impact on fracture growth. Consequently, 

contrasts in fracture toughness can form the most reliable barriers to height growth. 
• The effect of young’s modulus seems to be less important.  

A higher modulus layer tend to has a hindering effect when a fracture is approaching, 
whereas a lower modulus layer hinder the fracture height growth when the fracture in it.  
• Garson results reflect the importance of net fracture pressure, so by reducing net fracture 

pressure (Pnet), will help to control fracture height growth [26].  

𝑃𝑛𝑒𝑡 = ∆𝑃 ≈ [
𝐸2𝑛′+2𝐾′𝑄𝑛′

𝐿

(1−𝑣2)2𝑛′+2 𝐻3𝑛′+3
]

1

2𝑛′+3

…               (14) 

where E is Young’s Modulus; n΄ and k΄ are Power Law fluid coefficients; Q is fluid injection 
rate; L is fracture length; 𝒗 is Poisson’s ratio; and H is fracture height.  

Some mechanisms to achieve this objective are: 
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• Decreasing fracturing fluid viscosity by reducing fluid gel loading or using viscoelastic sur-
factant based fracturing fluids, or slickwater fracturing fluids that will decreasing the frac-
ture net pressure, therefore control fracture height. 

• Using the Pillar fracturing technique with less pad volume and pumping rate would yield 

fewer net pressures compared to conventional fracturing treatment techniques. 
• Decreasing hydraulic fracturing treatment pumping rate (decreasing Pnet). 

6. Conclusion 

Utilization of ANN approach for predicting the fracture height growth, therefore optimizing 
the fracture geometry and conductivity has been investigated in the present study.  

The ANN model has been applied on a total 59 real field data sets obtained from western 
desert of Egypt and West of Nile fields. The model was composed of several rock properties 
for different types of reservoirs and different hydraulic fracture technique either by different 
pumping technique (conventional or channel frac) or various products ( frac fluid or proppant type).  

Transient well test analysis data is applied also to improve the accuracy of the ANN model, 
then Garson algorithm is used to conduct the multi-factor analysis. Based on the process, 
some conclusions can be drawn as follows: 
• New reliable Artificial Neural Network model trained based on real well test data for different 

treatment jobs, at different formations of the western desert of Egypt and west of nile fields 
and for different reservoirs  has been developed. The model utilizes better accuracy when 
compared with commercial software Table 5. 

• ANN was applied to perform the multi-factor analysis. Results showed that stress contrast, 
permeability contrast, artificial barrier proppant mass and back permeability, main fracture 
treatment proppant mass volume and pumping rate are the main factors, significantly af-
fecting the fracture geometry and conductivity. Therefore, the aforementioned factors 
should be focus to optimize the fracture treatment in the actual situation. 

• The artificial neural network model proved through Garson calculation results the vital role 
for artificial barrier technology for either control fracture height growth into the underlying 
unwanted water bearing zone or increasing the effective fracture half-length to maximize 
well productivity. 

• The application of ANN model in the estimation of effective FCD showed a good correlation 
coefficient about 0.89, since it accounts for the harmonic average permeability approach, 

whereas the commercial software showed 0.197 Fig. 5-c, f. 
• ANN will provide the effective fracture half-length and actual dimension less fracture con-

ductivity FCD, however any commercial software will calculate either total fracture half-
length or propped half-length and simulated FCD. 

• Lacking detailed geomechanical properties, ANN model is the best candidate for fracture 
design. In such case the additional effort to run a simulation run with commercial software 
is not rewarded with higher accuracy in predicting fracture geometry if critical input param-
eters are unknown. In particular, in cases that close to water bearing zones.  

• The capability of the ANN model has been significantly improved by increasing hydraulic 
fracturing jobs, therefore increase model efficiency. 

Nomenclature 

A/R”G   ABU ROASH G Formation PBU Pressure build-Up Test 
BHP Bottom hole pressure, [psi] P    Internal fracture pressure, [psi]    

Cl.G. Closure gradient, [ psi/ft] Q Fluid injection rate, [bpm]    
E Young’s modulus, [psi]     WOC  Water oil contact 

F.G. Fracture gradient [ psi/ft] WON West of Nile  
Hf Fracture height, [ft]   W Fracture width, [in] 

ISIP  Instantaneous shut in pressure, [psi] Xf Fracturing half-length, [ft] 
K  Fracture permeability, [md] v Poisson ratio 

k  Formation permeability, [md] σmin Minimum in-situ stress, [psi]   
MAWHP  Max allowable wellhead pressure, [psi] n΄, k΄ Power law fluid coefficients    

MD Measured depth, [ft] E ′ Plane strain modulus 

PNet Net pressure, [psi]   σ(y)   Horizontal tectonic stress, [psi] 
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Appendix-A: MATLAB™ script for the proposed ANN model 
% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% Created 24-Sep-2017 19:47:20 
% 
% This script assumes these variables are defined: 
% 
% Input - input data. 
% Target - target data. 
x = Input; 
t = Target; 
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation. 
% Create a Fitting Network 
hiddenLayerSize = 30; 
net = fitnet(hiddenLayerSize,trainFcn); 
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.inputs.processFcns = {'removeconstantrows','mapminmax'}; 
net.outputs.processFcns = {'removeconstantrows','mapminmax'}; 
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand'; % Divide data randomly 
net.divideMode = 'sample'; % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse'; % Mean squared error 
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
'plotregression', 'plotfit'}; 
% Train the Network 
[net, tr] = train(net,x,t); 
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
% View the Network 

view(net) 
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