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Abstract 

The viscosity parameter is a very important fluid property in reservoir engineering computations. It 
should be determined in the laboratory but most of the time; the data is not either reliable or 
unavailable. Hence, empirical correlations were derived to estimate them. However, the success of the 
correlations in prediction depends on the range of data at which they were originally developed in the region. 
In this study, artificial neural network (ANN) was used to address the inaccuracy of empirical 
correlations used for predicting crude oil viscosity. The new artificial neural network model was 
developed to predict the crude oil viscosity using 32 data sets collected from the Niger Delta Region of 
Nigeria. About 17 data sets were used to train the model, 10 sets were used to test the accuracy of the 
model, and remaining 5sets to validate the relationships established during the training process. The 
test results revealed that the back propagation neural network model (BPNN) were better than the 
empirical correlations in terms of average absolute relative error and correlation coefficient.  
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1. Introduction 

The crude oil viscosity is a very important physical property that controls and influences 
the flow of oil through porous media and pipes and is a strong function of reservoir 
temperature, reservoir pressure, gas gravity, oil gravity, and gas solubility. It is defined as 
the internal resistance of fluid to flow. Oil viscosity could be determined in the laboratory 
studies on available bottom hole samples at reservoir temperature and pressure and 
reported in standard PVT analyses. In case where laboratory data are not available or 
unreliable, Chew-Connally, Beggs-Robinson et al derived the correlations to estimate the 
crude oil viscosity at bubble point pressure [2,3,4,9,13]. The correlations were developed using 
linear and non-linear regression or graphical techniques. The correlations are accurate within 
the range of data that were used to develop them11. To address the complexity and 
inaccuracy of the correlations, a new predictive tool was developed in this study to estimate 
the Nigerian crude oil viscosity using artificial neural networks (ANNs). The ANNs are 
biologically inspired, non – algorithmic, non – digital, massively parallel distributive, 
adaptive information processing systems. They resemble the human brain in acquiring 
knowledge through learning process and in storing knowledge in interneuron connection 
strengths [1,10,11]. A new model was developed using 32 data sets: 17 sets were used to train 
the model, 5 sets to validate the relationship established during the training process, and 10 
sets were used to test the accuracy of the model. 

2. Empirical correlations for crude oil viscosity  

Most crude oil viscosity correlations use oil API gravity and reservoir temperature to 
estimate dead oil viscosity (µod) while solution gas oil ratio (Rs) and dead oil viscosity (µod )  



are used to estimate saturated oil viscosity (µob). The saturated oil viscosity (µob) and 
differential pressure above bubble point pressure are then used to predict undersaturated oil 
viscosity. Some of the studies which were carried out to develop empirical correlations for 
the estimation of the crude oil viscosity at bubble point are below: 

In 1959, Chew- Connally used 457 crude oil samples to develop a graphical correlation 
which was later expressed mathematically by Standing, in 1981, to estimate oil saturated 
viscosity(µob). In 1975, Beggs and Robinson collected 2,073 crude oil viscosity sets to 
propose an empirical correlation that estimated the saturated oil viscosity (µob). The studies 
concluded that the performance of the correlations suffer outside the range of application [4,12,13]. 

3. Artificial neural networks 

Boomer et al.[14] and Corpoven et al.[15] defined artificial neural network (ANN) as a 
computing system made up of a number of simple, highly interconnected elements which 
process information by its dynamic response to external inputs. Mohagheh et al.[16]  
described that ANN is a biologically inspired computing scheme which is an analog, adaptive, 
distributive and highly parallel system that has been used in many disciplines and has 
proven to have potential in solving problems that require pattern recognition. They resemble 
the human brain in acquiring knowledge through learning process and in storing knowledge 
in interneuron connection strength [1,5,6,7,8,10]. 

The advantages of ANN over the conventional correlations are:  neural networks have 
large degrees of freedom for fitting parameters, and thus, capture the systems’ non-linearity 
better than regression methods and they are superior to the regression models in that they 
could be further trained and refined when additional data become available and hence 
improve their prediction accuracy while it is impossible to make any further change in a 
linear or non linear regression model as soon as a model development is over [1,7,8,17]

  In this 
study, the back propagation neural network (BPNN) was used to model the Nigerian crude 
oil viscosity. The BPNN is multi- layered information flows from the input to the output 
through at least one hidden/middle layer. Each layer contain neurons that are connected to 
all neurons in the neighboring layers. The connections have numerical values (weights) 
associated with them which will be adjusted during the training phase [1,10,12]. 

4. Review of literature on artificial neural networks model for crude oil viscosity   

Several papers on neural networks have been presented to address many problems in the 
oil industry. Notable among the papers is the work of El-Sharkawy [12] who modeled crude oil 
viscosity with other PVT properties for oil and gas systems using radial basis function neural 
network (RBFNN). However, previous studies [5,6,7,8] on the use of back propagation neural 
network (BPNN) model to predict PVT oil properties do not attempt predicting µob. It was 
also believed in the same studies that the application of neural networks required the use of 
large number of data sets to get the desired results. The present study which aimed at 
predicting µob by developing back propagation neural network model (BPNN) has 
demonstrated that a reliable ANN model could in fact be developed using fewer data sets. 
The objectives of this study are to develop ANN models for predicting µob, evaluate and 
compare the accuracy of the ANN models to those of the empirical correlations. 

5. Mathematics of back propagation neural network  

The benefit of the following mathematical derivative is to show us how the back 
propagation neural network (BPNN) works in reality. 
From Fig 1, the derivative is conducted between layer (I) and layer (K). Let Ip represents the 
net input signals to a node (j) in a layer (J) and Wji stands for the weights of the connection 
from a node (i) in layer (I) to a node (j) in layer (J). 
Due to input pattern,Xpi,  Ip is defined as the sum of the inputs to a node (j) or neuron (j) in 
the middle (hidden) layer (J) as  in  the shown expression: 

pjI = ∑
J

jiW  * piX  = net        (1) 
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Where Wji is the weight of the neuron (j) in the middle layer (J) associated with the neuron 
(i) in the layer (I), and Ipj is the net input of the neuron (j) in the layer (J) or input pattern 
for the hidden layer, Xpi is an input pattern in the input layer (I).  Then, the output, Opj, from 
a node (j) or neuron (j) in the middle (hidden) layer (J) because of input pattern Xpi is 
defined as: 

pjO = 

)]exp(1[
1

Ipj−+
  = )(xf        (2) 

Similarly, the net input to a node ( n ) or neuron ( n ) in the layer ( K ) due to the input 
pattern, piX , of the input layer ( I ), can be defined as follows:  

pkI  =∑
k

niW * piX  = net        (3) 

Where niW  is the weight factor. Hence, the output from a node (n ) in the output layer ( K ) 

or layer ( K ) caused by the input pattern, piX , is defined as: 

pkO =

)]exp(1[
1

Ipk−+
= )(xf         (4) 

As soon as the neural network undergoes the learning processes, the mean square error 
criterion ( E ) is defined as a half of the sum of the squared difference between the actual 
outputs of output nodes of the network ( pkO ) and our desired output ( pkd ) given as: 

E =½∑
k
∑

p

 ( pkd - pkO )2         (5) 

Equation (5) is the objective function, which will be minimized during learning iterations or 
the minimization of the above error depending on weights as reported by Al-Kaabi et al.[18] 
and by the Widrow – Hoff theory as reported by Magali et al.[19].  
Learning is achieved by changing the weights by an incremental value, Δ Wni.  This value is 
defined as proportional to, E , by: 
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ni W
EW

∂
∂

−=Δ η          (6) 

Applying the chain rule to the right- hand of equation (6), we have:  
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Taking the derivative of pkI  with respect to niW  in equation (3), we obtain 
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pi
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Taking a derivative of  ( E ) with respect to (Opk) in equation (5), we have 

pkO
E

∂
∂

= - ( pkpk Od − )         (9) 

By definition, let pkδ  represents a local error defined as: 

δpk = ( 
pkI
E

∂
∂

)          (10) 

Using the chain rule to expand equation (10), we have:  

pkδ  = 
pk

pk

pk I
O

O
E

∂

∂

∂
∂ *          (11) 

183



From equation (4), taking a derivative of Opk with respect to pkI , we have: 

pk

pk

I
O
∂

∂
= )( pkIf ,         (12) 

Where the right- hand of the above equation is the transfer function of our neural network. 
Substituting Equations (8),  (9), and (12) into equation (7), we obtain: 

pipkpkpkni XIfOdW *)(*)(* −=Δ η        (13) 

Equation (8) gives the required weight change within a link between a node ( i ) in layer J 
and a node (n) in the output layer k.  
η is usually denoted the learning rate that takes any value between 0 and 1.  
A popular modification to increase the learning rate of the back propagation algorithm is the 
use of a momentum term as reported by Al - Kaabi et al.[18].  Hence, the change in the link 
or weight with the momentum term can be defined and added as follows: 
ΔWni (n+1) =η* pipkpk XIf *)(*δ +α*ΔWni (n)     (14) 

Where α takes values between 0 and 1. 
Also, the weight change (∆Wij) between the input layer (I) and hidden layer (J) can be 
derived as follows: 
The learning of the neural network is accomplished by changing the weight between the 
links by the following incremental value ∆Wij, which is defined as follows: 

ij
ij W

EW
∂
∂

−=Δ *η          (15) 

Applying the chain rule in the right- hand side of the equation (15), we have  
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Taking the derivative of E with respect to Opj in Equation (5), after replacing the subscript k for j, 
we have 

)( pjpj
pj

Od
O
E

−=
∂
∂

         (17) 

Taking the derivative of Opj with respect to net or Ipj in Equation (2), we have: 

( )Opj f net
net

∂
=

∂
         (18) 

Taking a derivative of net or Ipj with respect to Wij in Equation (1), we get: 

*Wij xpinet Xpi
Wij Wij

∂∂
= =

∂ ∂
∑

        (19) 

At the hidden layer (J), the local error is equal to the following: 

)(* netf
O
E

pj
pj ∂

∂
=δ          (20) 

From Equations (16), (17), (18), (19), and (20) , we obtain the final results 

pipjij XW **δη=Δ          (21) 

For the weight update using the gradient rule, we find; 

pipjijij XnWnW **)()1( δη+=+        (22) 

6. Data acquisition and analysis 

The 32 data sets used in this work were collected from the Niger delta region of Nigeria. 
The ranges of the data are the following: reservoir temperature (154 to 234oF), oil gravity 
(19–45.4oAPI), solution gas oil ratio(210–3100 SCF/BBL), gas gravity(0.690-1.118, air = 1.0), 

184



bubble point pressure (1420– 4845 psia), and crude oil viscosity at the bubble point (0.22 - 3.91 
centipoise). 

Of the 32 data sets, 17 were used to train the ANN models, 5 data sets were used to cross – 
validate the relationships established during training process and the remaining 10 data sets were 
used to test the ANN models to evaluate their accuracy through statistical analysis. 

7. Analysis of the results of obμ  ANN model  

A computer simulation program for Nigerian crude oil viscosity model was written in the 
C++ programming language to predict µob. Then, the 17 data sets were normalized and used 
in the µob ANN model as a training file. The model inputs were reservoir temperature, 
reservoir pressure, oil gravity, gas gravity, and solution gas - oil ratio. The output is crude 
oil viscosity at the bubble point. The learning rates, the momentum factor and the number 
of iterations were used as training parameters. The computed outputs were compared with 
the desired output to compute the error (Equation 5), which was back propagated through 
the system causing it to adjust the weights (Equations 13&14), which control the network. 
Several topologies including the proposed one were examined, but in the long run, the final 
result of the training phase on the µob ANN model converged at (0.01) learning rate and (7) 
neurons in the hidden layer. The stability of the training phase means the µob ANN model 
output was very close to their field values. Therefore, the new µob ANN model topology becomes 
three layers (i.e. one input layer, one hidden layer, and one output layer) as shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 One output layer back propagation neural 
network 

Fig. 2 A schematic of the achieved artificial 
neural network topology used for µob 

As soon as the training process was over, the error of our training process was examined 
using the 5 data sets which were not included in those used for the training phase to cross – 
validate the relationship established during training process. It was found out that the errors 
of the validation phase decreased in the same manner as the training phase progresses, 
which indicates that a good relationship was developed. To finally decide whether the 
training phase result was good or bad, the remaining 10 data sets that were not seen by the 
µob ANN model were used to test the model. The result in Table 1 showed that the µob ANN 
model was able to closely predict the test data. 

8. Discussion of the results of µob ANN model 

After training the neural network, the ANN crude oil viscosity model was tested using the 
testing data.  The results were compared with field data and the predictions of other 
empirical correlations (namely Chew-Connally, and Beggs- Robinson) are shown in Tables 1. 
The statistical analysis presented in Table 2 indicates that the average absolute relative 
error was 0.06781 for µob ANN model, 0.45852 for Chew-Connally correlation, 0.1741 for 
Beggs- Robinson correlation. The correlation coefficient was 0.9989 for the µob ANN model, 
0.9473 for Chew-Connally correlation, 0.9367 for Beggs- Robinson correlation. The fact that 
the ANN µob model gave the lowest average absolute relative error of 0.06781 and the 
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highest correlation coefficient of 0.9989 as compared to those obtained using other 
correlations, clearly demonstrated that the  ANN µob model were better predictors of 
viscosity than all the empirical correlations as graphically illustrated in Figures 1, 2, 3 and 4. 

Table 1: The results for the data used for the testing phase of obμ  mModel 

sR  sR  Gasgra  API  P  obμ  obnnμ  obchew connallyμ −  obbeg robinsonμ −  

1042 
1119 
977 
1237 
210 
3100 
1232 
1137 
1053 
950 

219 
183 
188 
180 
154 
215 
216 
212 
216 
214 

1.118 
0.920 
0.870 
0.940 
0.73 
1.048 
0.78 
0.78 
0.91 
0.77 

19 
40.6 
39.4 
43.4 
23.3 
45.4 
43.8 
44.1 
38.2 
39.8 

2951 
2736 
2858 
2655 
1680 
4340 
3963 
3710 
2965 
3614 

 0.28 
0.3 
0.3 
0.3 
3.84 
0.15 
0.22 
0.23 
0.29 
0.25  

1.2 
0.28 
0.32 
0.24 
4.71 
0.54 
0.21 
0.22 
0.29 
0.28  

1.03 
0.28 
0.3 
0.24 
3.5 
0.14 
0.21 
0.22 
0.28 
0.27  

Table 2: The Statistical Analysis for obμ  Model 

Correlation Chew-Connally Begg-Robinson Neutral Network 

Ave. absolute relative error (Eave) 0,45852 0,1741 0,06781 

Minimum absolute relative error (Emin) 3,8 3,12 0,12532 
Maximum absolute relative error 
(Emax) correlation coefficient (R2) 

0,225806 0,391304 0,347826 

 

  
Fig. 3 Comparison of the estimated crude oil 
viscosity versus experimental crude oil viscosity 
(µob ANN model). 

Fig. 4 Comparison of the estimated crude oil 
viscosity versus experimental crude oil viscosity 
(Chew-Connally correlation). 

  

Fig. 5 Comparison of the estimated crude oil 
viscosity versus experimental crude oil viscosity 
(Beggs-Robinson correlation). 

Fig.6  Comparison of different correlation 
coefficients for different correlations of µob 
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9. Conclusion 

The newly developed back propagation neural network (BPNN) model for predicting crude 
oil viscosity was better than the empirical correlations. 

The µob  ANN model, achieved the lowest average absolute relative error of 0.06781 and 
the highest correlation coefficient of 0.9989 as compared to existing empirical correlations. 

From the scatter diagrams for the ANN models and empirical correlations against their 
experimental values, the ANN models data points performed better than the existing 
empirical correlations. 

Nomenclature 

PVT Pressure, Volume, Temperature 
µob Crude oil viscosity at the bubble point 
Pb Bubble point pressure, psia. 
Rs Gas solubility, scf/stb 
Tf Reservoir temperature, F 
API Oil gravity 
γg (G.G) Gas gravity 
γo Specific oil gravity 
Eave Average absolute relative error 
Emin Minimum absolute relative error 
Emax Maximum absolute relative error  
ANN Artificial neural network 
Wji Weight between neuron (i) in the layer (I) and neuron (j) in the layer(J) 
Wni Weight between neuron (i) in the layer (J) and neuron (n) in the layer (k) 
α Momentum factor 
E Error 
δ Derivative of E with respect to Ipk = Local Error 
η Learning rate constant 
BPNN Back propagation neural network 
RBFNN Radial basis function neural network 
PE Processing element 
Xpi Input pattern in the input layer   

Subscript 

P, I , J , and  K layers 
Ji between layers i and j  
Ni between layers j and k 
fk(Ipk) Sigmoid Transfer Function Derivative 
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